

ISSN 2414-3146

Received 18 July 2017 Accepted 22 August 2017

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland

Keywords: crystal structure; bromobutoxy; C— $H \cdots \pi$ interaction.

CCDC reference: 1570193

Structural data: full structural data are available from iucrdata.iucr.org

1,3-Bis(4-bromobutoxy)benzene

Gunasekaran Maragatham,^a Sivasamy Selvarani,^b Perumal Rajakumar^b and Srinivasakannan Lakshmi^a*

^aDepartment of Physics, S.D.N.B. Vaishnav College for Women, Chromepet, Chennai 600 044, India, and ^bDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India. *Correspondence e-mail: lakssdnbvc@gmail.com

The whole molecule of the title compound, $C_{14}H_{20}Br_2O_2$, is generated by twofold rotational symmetry, with the twofold axis bisecting the benzene ring. The packing of the molecules features $C-H\cdots\pi$ interactions, which link the molecules to form chains along [100].

Structure description

Alkoxy-substituted benzenes are useful precursors in the synthesis of monodisperse aromatic oligomers (Lightowler & Hird, 2005). The *tert*-butoxy radicals plays an active role in initiating polymerization (Rizzardo & Solomon, 1979).

In the title compound (Fig. 1), the bromobutoxy side chains are attached to the benzene ring in positions 1 and 3. The asymmetric unit contains one-half of the molecule, the whole molecule being generated by twofold rotational symmetry. This twofold axis bisects the benzene ring at atoms C5 and C8. The dihedral angle between the benzene ring and the mean plane which best fits the atoms of the bromobutoxy side chain is 40.75° . The angle between the bonds $[O1-C7 \text{ and } C7a-O1a; \text{ symmetry code: (a) } -x + 1, y, -z + \frac{1}{2}]$ connecting the bromobutoxy side chains with the benzene ring is 69.9 (2)°. In the crystal, molecules are linked by C-H··· π interactions, forming chains along the *a*-axis direction (Fig. 2 and Table 1).

Synthesis and crystallization

A mixture of resorcinol/hydroquinol (1.0 equivalent) and potassium carbonate (2.0 equivalents) in acetone (50 ml) was stirred for 15 min at 333 K. 1,3-Dibromobutane (2.1 equivalents) was added to the reaction mixture and stirred at 333 K for 7 h. After completion of the reaction (monitored by thin-layer chromatography), the solvent was

Table 1

Hydrogen-bond geometry (Å, $^{\circ}$).

Cg1 is the centroid of the bezne ring.

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdots A$	$D \cdots A$	$D - H \cdots A$
$C4-H4B\cdots Cg1^i$	0.97	2.81	3.664 (4)	147

Symmetry code: (i) x - 1, y, z.

Figure 1

The molecular structure of the title compound, with the atom labelling. Displacement ellipsoids are drawn at the 50% probability level. Unlabelled atoms are related to the labelled atoms by the twofold rotation axis (symmetry code: -x + 1, y, $-z + \frac{1}{2}$) that bisects atoms C5 and C8.

The crystal packing of the title compound, viewed along the a axis.

removed under reduced pressure and the residue was extracted with CHCl₃ (3 × 100 ml), then washed with water (2 × 100 ml) and brine (150 ml), and finally dried over anhydrous Na₂SO₄. The resulting solution was filtered and concentrated *in vacuo* and the residue obtained was purified by column chromatography using CHCl₃-hexane (1:9 v/v) as eluent. The white solid obtained was crystallized from methanol solution by slow evaporation, giving colourless block-like crystals.

Tal	ble	2	
Ex	peri	mental	details.

Crystal data	
Chemical formula	$C_{14}H_{20}Br_2O_2$
M _r	380.12
Crystal system, space group	Orthorhombic, Pbcn
Temperature (K)	296
a, b, c (Å)	4.8948 (3), 11.4976 (8), 27.636 (2)
$V(Å^3)$	1555.30 (18)
Z	4
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	5.21
Crystal size (mm)	$0.35 \times 0.30 \times 0.25$
Data collection	
Diffractometer	Bruker Kappa APEXII CCD
Absorption correction	Multi-scan (<i>SADABS</i> ; Bruker, 2004)
T_{\min}, T_{\max}	0.562, 0.745
No. of measured, independent and $L_{2,2}(D)$ reflections	17085, 1366, 974
observed $[I > 20(I)]$ reflections	0.035
\mathbf{R}_{int}	0.055
$(\sin \theta/\lambda)_{\max}(\mathbf{A})$	0.393
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.033, 0.070, 1.08
No. of reflections	1366
No. of parameters	83
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({ m e} { m \AA}^{-3})$	0.45, -0.39

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), SHELXL2016 (Sheldrick, 2015), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Refinement

Crystal data collection and structure refinement details are summarized in Table 2.

Acknowledgements

The authors thank the single-crystal XRD facility, SAIF, IIT Madras, Chennai, for the data collection.

References

- Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Lightowler, S. & Hird, M. (2005). Chem. Mater. 17, 5538-5549.
- Rizzardo, E. & Solomon, D. H. (1979). J. Macromol. Sci. Chem. 13, 1005–1013.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

full crystallographic data

IUCrData (2017). 2, x171208 [https://doi.org/10.1107/S2414314617012081]

1,3-Bis(4-bromobutoxy)benzene

Gunasekaran Maragatham, Sivasamy Selvarani, Perumal Rajakumar and Srinivasakannan Lakshmi

 $D_{\rm x} = 1.623 {\rm Mg} {\rm m}^{-3}$

 $\theta = 5.9 - 48.6^{\circ}$

 $\mu = 5.21 \text{ mm}^{-1}$ T = 296 K

 $R_{\rm int} = 0.035$

 $h = -5 \rightarrow 5$

 $k = -13 \rightarrow 13$

 $l = -32 \rightarrow 27$

Block, colourless

 $0.35 \times 0.30 \times 0.25 \text{ mm}$

 $\theta_{\rm max} = 25.0^\circ, \, \theta_{\rm min} = 3.0^\circ$

1366 independent reflections

974 reflections with $I > 2\sigma(I)$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 4934 reflections

1,3-Bis(4-bromobutoxy)benzene

Crystal data

 $C_{14}H_{20}Br_2O_2$ $M_r = 380.12$ Orthorhombic, *Pbcn* a = 4.8948 (3) Å b = 11.4976 (8) Å c = 27.636 (2) Å $V = 1555.30 (18) Å^3$ Z = 4F(000) = 760

Data collection

Bruker Kappa APEXII CCD diffractometer Bruker axs kappa axes2 CCD Diffractometer scans Absorption correction: multi-scan (SADABS; Bruker, 2004) $T_{min} = 0.562, T_{max} = 0.745$ 17085 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.033$	Hydrogen site location: inferred from
$wR(F^2) = 0.070$	neighbouring sites
S = 1.08	H-atom parameters constrained
1366 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0142P)^2 + 2.6984P]$
83 parameters	where $P = (F_0^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.45 \text{ e } \text{\AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.39 \ {\rm e} \ {\rm \AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	У	Z	$U_{ m iso}$ */ $U_{ m eq}$	
Br1	0.11607 (11)	0.33877 (4)	0.03546 (2)	0.0782 (2)	
01	0.1750 (5)	0.64764 (18)	0.18910 (8)	0.0444 (6)	
C8	0.500000	0.6559 (4)	0.250000	0.0356 (10)	
H8	0.499996	0.575059	0.250002	0.043*	
C6	0.3314 (7)	0.8365 (3)	0.21849 (12)	0.0418 (8)	
H6	0.218658	0.877424	0.197420	0.050*	
C7	0.3318 (6)	0.7156 (3)	0.21855 (11)	0.0346 (7)	
C3	-0.1534 (8)	0.6095 (3)	0.12858 (13)	0.0534 (10)	
H3A	-0.288821	0.645044	0.107659	0.064*	
H3B	-0.249217	0.560942	0.151726	0.064*	
C5	0.500000	0.8946 (4)	0.250000	0.0457 (12)	
Н5	0.499996	0.975466	0.250001	0.055*	
C4	-0.0030 (7)	0.7038 (3)	0.15550 (12)	0.0463 (9)	
H4A	0.101479	0.751205	0.133121	0.056*	
H4B	-0.131214	0.753551	0.172471	0.056*	
C1	-0.1216 (9)	0.4392 (4)	0.07311 (15)	0.0707 (12)	
H1A	-0.256633	0.473929	0.051861	0.085*	
H1B	-0.217731	0.392901	0.096989	0.085*	
C2	0.0331 (8)	0.5336 (3)	0.09825 (13)	0.0520 (10)	
H2A	0.125154	0.581386	0.074360	0.062*	
H2B	0.171316	0.499101	0.118904	0.062*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br1	0.1073 (4)	0.0652 (3)	0.0622 (3)	0.0010 (3)	-0.0155 (3)	-0.0107 (2)
O1	0.0516 (15)	0.0376 (12)	0.0439 (12)	-0.0008 (12)	-0.0128 (11)	0.0034 (10)
C8	0.043 (3)	0.029 (2)	0.035 (2)	0.000	0.005 (2)	0.000
C6	0.045 (2)	0.0326 (16)	0.0474 (18)	0.0052 (18)	0.0027 (16)	0.0071 (16)
C7	0.0363 (19)	0.0331 (16)	0.0343 (16)	-0.0027 (15)	0.0045 (15)	0.0001 (14)
C3	0.045 (2)	0.066 (2)	0.050 (2)	0.001 (2)	-0.0093 (18)	0.0053 (19)
C5	0.046 (3)	0.029 (2)	0.061 (3)	0.000	0.002 (3)	0.000
C4	0.045 (2)	0.049 (2)	0.044 (2)	0.0043 (18)	-0.0043 (18)	0.0049 (17)
C1	0.076 (3)	0.068 (3)	0.068 (3)	-0.013 (3)	-0.007 (3)	-0.004 (2)
C2	0.057 (2)	0.055 (2)	0.044 (2)	-0.007 (2)	-0.0086 (19)	-0.0001 (18)

Geometric parameters (Å, °)

Br1—C1	1.942 (4)	С3—НЗА	0.9700
O1—C7	1.364 (4)	C3—H3B	0.9700
O1—C4	1.428 (4)	С5—Н5	0.9300
C8—C7 ⁱ	1.380 (4)	C4—H4A	0.9700
C8—C7	1.380 (4)	C4—H4B	0.9700
C8—H8	0.9300	C1—C2	1.494 (5)
C6—C5	1.373 (4)	C1—H1A	0.9700

data reports

С6—С7	1.390 (4)	C1—H1B	0.9700
С6—Н6	0.9300	C2—H2A	0.9700
C3—C4	1.507 (5)	C2—H2B	0.9700
C3—C2	1.515 (5)		
C7—O1—C4	118.2 (2)	O1—C4—C3	107.1 (3)
C7 ⁱ —C8—C7	120.4 (4)	O1—C4—H4A	110.3
C7 ⁱ —C8—H8	119.8	C3—C4—H4A	110.3
С7—С8—Н8	119.8	O1—C4—H4B	110.3
C5—C6—C7	119.0 (3)	C3—C4—H4B	110.3
С5—С6—Н6	120.5	H4A—C4—H4B	108.6
С7—С6—Н6	120.5	C2-C1-Br1	112.2 (3)
O1—C7—C8	115.3 (3)	C2—C1—H1A	109.2
O1—C7—C6	124.8 (3)	Br1—C1—H1A	109.2
C8—C7—C6	119.9 (3)	C2—C1—H1B	109.2
C4—C3—C2	113.2 (3)	Br1—C1—H1B	109.2
С4—С3—Н3А	108.9	H1A—C1—H1B	107.9
С2—С3—НЗА	108.9	C1—C2—C3	111.7 (3)
С4—С3—Н3В	108.9	C1—C2—H2A	109.3
С2—С3—Н3В	108.9	С3—С2—Н2А	109.3
НЗА—СЗ—НЗВ	107.8	C1—C2—H2B	109.3
C6 ⁱ —C5—C6	121.8 (4)	С3—С2—Н2В	109.3
C6 ⁱ —C5—H5	119.1	H2A—C2—H2B	107.9
С6—С5—Н5	119.1		
C4—O1—C7—C8	-179.7 (2)	C7—C6—C5—C6 ⁱ	0.0 (2)
C4—O1—C7—C6	0.2 (5)	C7—O1—C4—C3	-179.0 (3)
C7 ⁱ —C8—C7—O1	179.9 (3)	C2-C3-C4-O1	-64.1 (4)
C7 ⁱ —C8—C7—C6	0.0 (2)	Br1-C1-C2-C3	-178.5 (2)
C5—C6—C7—O1	-179.9 (2)	C4—C3—C2—C1	178.5 (3)
C5—C6—C7—C8	0.0 (4)		

Symmetry code: (i) -x+1, y, -z+1/2.

Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the bezne ring.

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	<i>D</i> —H··· <i>A</i>
C4—H4 B ··· $Cg1^{ii}$	0.97	2.81	3.664 (4)	147

Symmetry code: (ii) x-1, y, z.