IUCrData

ISSN 2414-3146

Received 8 August 2017 Accepted 22 August 2017

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland

Keywords: crystal structure; salophene; Schiff base; intramolecular O—H···N hydrogen bonds.

CCDC reference: 1570194

Structural data: full structural data are available from iucrdata.iucr.org

2-[((*E*)-{2-[(*E*)-(2-Hydroxybenzylidene)amino]benzyl}imino)methyl]phenol

B. Raghuvarman,^a Jayagopi Gayathri,^b Kumar Sangeetha Selvan,^b S. Aravindhan^a and M. N. Ponnuswamy^c*

^aDepartment of Physics, Presidency College (Autonomous), Chennai 600 005, India, ^bDepartment of Inorganic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India, and ^cCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India. *Correspondence e-mail: mnpsy2004@yahoo.com

In the title hydroxyphenyl-substituted salophene compound, $C_{21}H_{18}N_2O_2$, there are two intramolecular $O-H \cdots N$ hydrogen bonds forming S(6) ring motifs. The phenol rings are inclined to one another by 65.9 (3)°, and by 0.0 (2) and 65.9 (2)°, respectively, to the central benzene ring. In the crystal, molecules are linked by a weak $C-H \cdots O$ contact forming chains along [010].

Structure description

The title hydroxyphenyl-substituted salophene compound was synthesized using Schiff base reactions, which play an important role in coordination chemistry (Ben Guzzi & El Alagi, 2013).

The molecular structure of the title compound is shown in Fig. 1. In the molecule, there are two intramolecular O—H···N hydrogen bonds forming S(6) ring motifs (Table 1 and Fig. 1). The phenol rings (C1–C6 and C16–C21) are inclined to one another by 65.9 (3)°. The C1–C6 phenol ring lies in the plane of the central benzene ring (C8–C13), with a dihedral angle of 0.0 (2)°, while the C16–C21 phenol ring is inclined to the central benzene ring (C8–C13) by 65.9 (2)°.

In the crystal, molecules are linked by weak $C-H\cdots O$ contacts forming chains propagating along the *b*-axis direction (Table 1 and Fig. 2).

Synthesis and crystallization

2-Aminobenzylamine (2 mmol) in methanol (50 ml) was added dropwise, with continuous stirring, to a warm methanolic solution of the appropriate salicylaldehyde (4 mmol),

Table 1

Hydrogen-bond geometry (Å, °).						
$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot$		
$\begin{array}{c} O1 - H1 \cdots N1 \\ O2 - H2 \cdots N2 \\ C7 - H7 \cdots O2^{i} \end{array}$	0.96 (6) 0.92 (5) 0.93	1.75 (6) 1.77 (5) 2.63	2.581 (5) 2.589 (5) 3.526 (6)	142 (5) 147 (5) 161		

Symmetry code: (i) -x + 1, $y + \frac{1}{2}$, $-z + \frac{1}{2}$.

Table 2Experimental details.

. .

Crystal data	
Chemical formula	$C_{21}H_{18}N_2O_2$
$M_{\rm r}$	330.37
Crystal system, space group	Monoclinic, $P2_1/c$
Temperature (K)	296
a, b, c (Å)	4.8654 (14), 17.652 (6), 19.927 (6)
β (°)	91.727 (8)
$V(Å^3)$	1710.6 (9)
Ζ	4
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	0.08
Crystal size (mm)	$0.35 \times 0.15 \times 0.10$
Data collection	
Diffractometer	Bruker SMART APEXII area-
Dimutometer	detector
Absorption correction	Multi-scan (SADABS; Bruker,
— —	2008)
T_{\min}, T_{\max}	0.9/1, 0.992
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	17523, 2177, 1427
R _{int}	0.069
θ_{\max} (°)	22.3
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.535
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.066, 0.150, 1.16
No. of reflections	2177
No. of parameters	234
H-atom treatment	H atoms treated by a mixture of
	independent and constrained refinement
$\Delta ho_{ m max}, \Delta ho_{ m min} ({ m e} { m \AA}^{-3})$	0.24, -0.22

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS2016 (Sheldrick, 2008), Mercury (Macrae et al., 2008), SHELXL2016 (Sheldrick, 2015) and PLATON (Spek, 2009).

and the mixture was refluxed for 3 h. The yellow solid obtained was filtered off, washed with cold Et_2O (10 ml) and dried in a vacuum. After a few minutes, yellow block-like crystals appeared, which were isolated *via* filtration and used without further purification.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

Figure 1

The molecular structure of the title compound, showing the atomic numbering and displacement ellipsoids drawn at the 30% probability level. The intramolecular $O-H\cdots N$ hydrogen bonds are shown as dashed lines (see Table 1).

Figure 2

The crystal packing of the title compound, viewed along the a axis. H atoms not involved in hydrogen bonding (dashed lines) have been omitted for clarity.

Acknowledgements

The authors thank TBI consultancy, University of Madras, India, for the data collection.

References

- Ben Guzzi, S. A. & El Alagi, H. S. (2013). J. Chem. Pharm. Res. 5, 10–14.
- Bruker (2008). *APEX2*, *SAINT* and *SADABS*. Bruker AXS Inc., Madison, Wisconsin, USA.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

full crystallographic data

IUCrData (2017). **2**, x171209 [https://doi.org/10.1107/S2414314617012093]

2-[((E)-{2-[(E)-(2-Hydroxybenzylidene)amino]benzyl}imino)methyl]phenol

B. Raghuvarman, Jayagopi Gayathri, Kumar Sangeetha Selvan, S. Aravindhan and M. N.

F(000) = 696

 $\theta = 1.5 - 22.3^{\circ}$

 $\mu = 0.08 \text{ mm}^{-1}$ T = 296 K

Block, yellow

 $R_{\rm int} = 0.069$

 $h = -5 \rightarrow 5$ $k = -18 \rightarrow 18$ $l = -21 \rightarrow 21$

 $0.35 \times 0.15 \times 0.10 \text{ mm}$

 $\theta_{\rm max} = 22.3^\circ, \ \theta_{\rm min} = 2.3^\circ$

17523 measured reflections 2177 independent reflections 1427 reflections with $I > 2\sigma(I)$

 $D_{\rm x} = 1.283 {\rm Mg} {\rm m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 1427 reflections

Ponnuswamy

 $2\-[((E)-\{2\-[(E)-(2\-Hydroxybenzylidene)amino]benzyl\}imino)methyl]phenol$

Crystal data

 $C_{21}H_{18}N_2O_2$ $M_r = 330.37$ Monoclinic, $P2_1/c$ a = 4.8654 (14) Å b = 17.652 (6) Å c = 19.927 (6) Å $\beta = 91.727$ (8)° V = 1710.6 (9) Å³ Z = 4

Data collection

Bruker SMART APEXII area-detector
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
ω and φ scans
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
$T_{\min} = 0.971, \ T_{\max} = 0.992$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.066$	Hydrogen site location: mixed
$wR(F^2) = 0.150$	H atoms treated by a mixture of independent
S = 1.16	and constrained refinement
2177 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0136P)^2 + 3.0321P]$
234 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{max} < 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{max} = 0.24$ e Å ⁻³
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.24 \text{ e} \text{ Å}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.22 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	-0.0311 (9)	0.4754 (2)	0.09631 (18)	0.0762 (11)	
H1	0.112 (12)	0.455 (3)	0.126 (3)	0.11 (2)*	
O2	0.7654 (10)	0.1330 (2)	0.12620 (19)	0.0856 (13)	
H2	0.656 (11)	0.175 (3)	0.131 (3)	0.09 (2)*	
N1	0.2561 (7)	0.4637 (2)	0.20684 (17)	0.0440 (9)	
N2	0.6237 (8)	0.2743 (2)	0.12028 (18)	0.0491 (10)	
C1	-0.0757 (9)	0.5601 (2)	0.1879 (2)	0.0489 (12)	
C2	-0.1524 (10)	0.5363 (3)	0.1230 (3)	0.0572 (13)	
C3	-0.3537 (11)	0.5745 (3)	0.0867 (3)	0.0766 (16)	
Н3	-0.402875	0.558447	0.043505	0.092*	
C4	-0.4815 (12)	0.6357 (4)	0.1136 (4)	0.088 (2)	
H4	-0.618823	0.660737	0.088810	0.105*	
C5	-0.4099 (13)	0.6606 (3)	0.1764 (4)	0.090 (2)	
Н5	-0.495865	0.702795	0.194215	0.108*	
C6	-0.2102 (11)	0.6230 (3)	0.2133 (3)	0.0696 (15)	
H6	-0.163483	0.640004	0.256330	0.084*	
C7	0.1301 (9)	0.5220 (3)	0.2282 (2)	0.0476 (12)	
H7	0.173152	0.540229	0.270990	0.057*	
C8	0.4603 (8)	0.4252 (2)	0.2448 (2)	0.0398 (11)	
C9	0.5489 (10)	0.4456 (3)	0.3096 (2)	0.0551 (13)	
H9	0.471246	0.487282	0.330369	0.066*	
C10	0.7494 (10)	0.4046 (3)	0.3429 (2)	0.0575 (13)	
H10	0.804140	0.418456	0.386321	0.069*	
C11	0.8712 (9)	0.3433 (3)	0.3133 (2)	0.0544 (13)	
H11	1.008338	0.315912	0.335980	0.065*	
C12	0.7847 (9)	0.3234 (3)	0.2490 (2)	0.0503 (12)	
H12	0.866455	0.282191	0.228447	0.060*	
C13	0.5812 (8)	0.3627 (2)	0.2145 (2)	0.0392 (11)	
C14	0.4834 (9)	0.3410 (3)	0.1441 (2)	0.0529 (13)	
H14	0.287088	0.331458	0.143787	0.063*	
H13	0.515840	0.382958	0.113827	0.063*	
C15	0.7827 (9)	0.2816 (2)	0.0713 (2)	0.0468 (12)	
H15	0.798118	0.328849	0.050982	0.056*	
C16	0.9399 (9)	0.2192 (2)	0.0461 (2)	0.0425 (11)	
C17	1.1157 (10)	0.2311 (3)	-0.0068 (2)	0.0569 (13)	
H17	1.125123	0.278977	-0.026086	0.068*	
C18	1.2748 (11)	0.1740 (4)	-0.0312 (3)	0.0718 (16)	
H18	1.390668	0.182823	-0.066642	0.086*	
C19	1.2609 (13)	0.1040 (4)	-0.0028 (3)	0.0872 (19)	
H19	1.368830	0.065028	-0.019071	0.105*	
C20	1.0912 (14)	0.0900 (3)	0.0493 (3)	0.0870 (19)	
H20	1.084064	0.041860	0.068086	0.104*	
C21	0.9311 (11)	0.1473 (3)	0.0738 (2)	0.0612 (14)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

data reports

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.100 (3)	0.074 (3)	0.053 (2)	0.018 (2)	-0.012 (2)	-0.005 (2)
O2	0.133 (4)	0.061 (3)	0.064 (3)	0.012 (3)	0.013 (3)	0.016 (2)
N1	0.050 (2)	0.043 (2)	0.039 (2)	0.0002 (19)	0.0056 (18)	-0.0015 (18)
N2	0.061 (3)	0.049 (2)	0.037 (2)	0.004 (2)	-0.001 (2)	-0.0075 (18)
C1	0.044 (3)	0.044 (3)	0.059 (3)	0.000(2)	0.010 (2)	0.005 (2)
C2	0.059 (3)	0.052 (3)	0.061 (4)	-0.002 (3)	0.000 (3)	0.013 (3)
C3	0.079 (4)	0.076 (4)	0.074 (4)	-0.004 (3)	-0.010 (3)	0.022 (3)
C4	0.067 (4)	0.078 (5)	0.119 (6)	0.010 (4)	0.003 (4)	0.044 (4)
C5	0.079 (5)	0.064 (4)	0.127 (6)	0.019 (3)	0.023 (4)	0.007 (4)
C6	0.068 (4)	0.062 (4)	0.079 (4)	0.009 (3)	0.009 (3)	0.000 (3)
C7	0.053 (3)	0.049 (3)	0.041 (3)	-0.006(2)	0.005 (2)	-0.004(2)
C8	0.043 (3)	0.044 (3)	0.032 (3)	-0.006 (2)	0.003 (2)	0.001 (2)
C9	0.067 (3)	0.055 (3)	0.044 (3)	0.001 (3)	0.001 (3)	-0.004(2)
C10	0.074 (4)	0.066 (3)	0.032 (3)	-0.020 (3)	-0.003 (3)	-0.002(3)
C11	0.056 (3)	0.064 (3)	0.042 (3)	-0.004 (3)	-0.013 (2)	0.013 (3)
C12	0.053 (3)	0.051 (3)	0.047 (3)	0.001 (2)	-0.002(2)	-0.001 (2)
C13	0.041 (3)	0.043 (3)	0.034 (2)	-0.005 (2)	0.002 (2)	0.002 (2)
C14	0.053 (3)	0.063 (3)	0.042 (3)	0.004 (2)	-0.004 (2)	-0.010 (2)
C15	0.056 (3)	0.046 (3)	0.037 (3)	0.002 (2)	-0.012 (2)	0.001 (2)
C16	0.051 (3)	0.045 (3)	0.030 (3)	0.002 (2)	-0.009 (2)	-0.008(2)
C17	0.060 (3)	0.064 (3)	0.046 (3)	0.005 (3)	-0.003 (3)	-0.005 (3)
C18	0.069 (4)	0.099 (5)	0.047 (3)	0.017 (4)	-0.002 (3)	-0.011 (3)
C19	0.098 (5)	0.094 (5)	0.069 (4)	0.040 (4)	-0.009 (4)	-0.025 (4)
C20	0.131 (6)	0.058 (4)	0.071 (4)	0.038 (4)	-0.012 (4)	0.005 (3)
C21	0.085 (4)	0.055 (3)	0.043 (3)	0.010 (3)	-0.008 (3)	0.001 (3)

Atomic displacement parameters $(Å^2)$

Geometric parameters (Å, °)

01—C2	1.344 (6)	С9—Н9	0.9300
01—H1	0.96 (6)	C10—C11	1.375 (6)
O2—C21	1.362 (6)	C10—H10	0.9300
O2—H2	0.92 (5)	C11—C12	1.382 (6)
N1—C7	1.278 (5)	C11—H11	0.9300
N1—C8	1.405 (5)	C12—C13	1.376 (6)
N2—C15	1.271 (5)	C12—H12	0.9300
N2-C14	1.448 (5)	C13—C14	1.518 (5)
C1—C6	1.393 (6)	C14—H14	0.9700
C1—C2	1.398 (6)	C14—H13	0.9700
C1—C7	1.432 (6)	C15—C16	1.440 (6)
С2—С3	1.377 (7)	C15—H15	0.9300
С3—С4	1.365 (8)	C16—C21	1.385 (6)
С3—Н3	0.9300	C16—C17	1.394 (6)
C4—C5	1.362 (8)	C17—C18	1.369 (7)
C4—H4	0.9300	C17—H17	0.9300
C5—C6	1.371 (8)	C18—C19	1.361 (8)

С5—Н5	0.9300	C18—H18	0.9300
С6—Н6	0.9300	C19—C20	1.368 (8)
С7—Н7	0.9300	С19—Н19	0.9300
C8—C13	1.397 (6)	C20—C21	1.375 (7)
C8—C9	1.397 (6)	С20—Н20	0.9300
C9—C10	1.370 (6)		
C2—O1—H1	112 (3)	C10—C11—H11	120.8
C21—O2—H2	107 (3)	C12—C11—H11	120.8
C7—N1—C8	123.3 (4)	C13—C12—C11	122.0 (4)
C15—N2—C14	118.2 (4)	C13—C12—H12	119.0
C6—C1—C2	117.4 (5)	C11—C12—H12	119.0
C6—C1—C7	119.9 (5)	C12—C13—C8	119.3 (4)
C2—C1—C7	122.7 (4)	C12—C13—C14	122.4 (4)
O1—C2—C3	119.8 (5)	C8—C13—C14	118.3 (4)
O1—C2—C1	119.9 (4)	N2—C14—C13	111.7 (4)
C3—C2—C1	120.3 (5)	N2—C14—H14	109.3
C4—C3—C2	120.4 (6)	C13—C14—H14	109.3
С4—С3—Н3	119.8	N2—C14—H13	109.3
С2—С3—Н3	119.8	C13—C14—H13	109.3
C5—C4—C3	120.6 (6)	H14—C14—H13	107.9
C5—C4—H4	119.7	N2—C15—C16	122.1 (4)
C3—C4—H4	119.7	N2—C15—H15	118.9
C4—C5—C6	119.6 (6)	С16—С15—Н15	118.9
С4—С5—Н5	120.2	C21—C16—C17	117.8 (4)
С6—С5—Н5	120.2	C21—C16—C15	122.7 (4)
C5—C6—C1	121.6 (6)	C17—C16—C15	119.5 (4)
С5—С6—Н6	119.2	C18—C17—C16	121.6 (5)
С1—С6—Н6	119.2	С18—С17—Н17	119.2
N1	121.7 (4)	С16—С17—Н17	119.2
N1—C7—H7	119.1	C19—C18—C17	119.0 (5)
C1—C7—H7	119.1	C19—C18—H18	120.5
C13—C8—C9	118.7 (4)	C17—C18—H18	120.5
C13—C8—N1	116.7 (4)	C18 - C19 - C20	121.2(5)
C9—C8—N1	124.6 (4)	C18—C19—H19	119.4
C10-C9-C8	1205(4)	C_{20} C_{19} H_{19}	119.4
C10 - C9 - H9	119.7	C19 - C20 - C21	119.1
C8-C9-H9	119.7	C19 - C20 - H20	120.1
C9-C10-C11	121 2 (4)	C_{21} C_{20} H_{20}	120.1
C9-C10-H10	119.4	02-C21-C20	1194(5)
$C_{11} - C_{10} - H_{10}$	119.1	02 - 021 - 020	1201(3)
C10-C11-C12	119.4 118 3 (<i>A</i>)	C_{20} C_{21} C_{16}	120.1(4) 120.5(5)
010 011 012	(ד) (ד)	220 021 010	120.5 (5)
C6—C1—C2—O1	-179.3 (4)	C11—C12—C13—C14	-179.6 (4)
C7—C1—C2—O1	0.0 (7)	C9—C8—C13—C12	-0.5 (6)
C6—C1—C2—C3	0.0 (7)	N1—C8—C13—C12	179.2 (4)
C7—C1—C2—C3	179.3 (4)	C9—C8—C13—C14	180.0 (4)
O1—C2—C3—C4	179.0 (5)	N1-C8-C13-C14	-0.3 (5)

C1—C2—C3—C4	-0.3 (8)	C15—N2—C14—C13	-113.7 (4)
C2—C3—C4—C5	0.8 (9)	C12-C13-C14-N2	1.7 (6)
C3—C4—C5—C6	-0.9 (9)	C8—C13—C14—N2	-178.7 (4)
C4—C5—C6—C1	0.6 (9)	C14—N2—C15—C16	177.3 (4)
C2-C1-C6-C5	-0.1 (7)	N2-C15-C16-C21	-0.7 (7)
C7—C1—C6—C5	-179.5 (5)	N2-C15-C16-C17	-178.6 (4)
C8—N1—C7—C1	179.6 (4)	C21—C16—C17—C18	0.2 (7)
C6—C1—C7—N1	179.3 (4)	C15—C16—C17—C18	178.2 (4)
C2-C1-C7-N1	0.0 (7)	C16—C17—C18—C19	-0.2 (8)
C7—N1—C8—C13	-179.5 (4)	C17—C18—C19—C20	0.1 (9)
C7—N1—C8—C9	0.2 (6)	C18—C19—C20—C21	-0.1 (9)
C13—C8—C9—C10	-0.4 (6)	C19—C20—C21—O2	-179.2 (5)
N1-C8-C9-C10	179.9 (4)	C19—C20—C21—C16	0.1 (8)
C8—C9—C10—C11	0.9 (7)	C17—C16—C21—O2	179.1 (4)
C9—C10—C11—C12	-0.6 (7)	C15—C16—C21—O2	1.2 (7)
C10-C11-C12-C13	-0.4 (7)	C17—C16—C21—C20	-0.1 (7)
C11—C12—C13—C8	0.9 (6)	C15—C16—C21—C20	-178.1 (5)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	Н…А	D····A	D—H···A
O1—H1…N1	0.96 (6)	1.75 (6)	2.581 (5)	142 (5)
O2—H2…N2	0.92 (5)	1.77 (5)	2.589 (5)	147 (5)
C7—H7····O2 ⁱ	0.93	2.63	3.526 (6)	161

Symmetry code: (i) -x+1, y+1/2, -z+1/2.