

IUCrData

ISSN 2414-3146

Received 4 September 2017 Accepted 10 September 2017

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland

Keywords: crystal structure; piperazine; nitro benzoic acid; piperazine-1,4-diium; molecular salt; hydrogen bonding.

CCDC reference: 1573567

Structural data: full structural data are available from iucrdata.iucr.org

Piperazine-1,4-diium bis(4-nitrobenzoate) dihydrate

R. Rajkumar,^a P. Praveen Kumar^{a*} and B. Gunasekaran^{b*}

^aDepartment of Physics, Presidency College, Chennai 600 005, Tamil Nadu, India, and ^bDepartment of Physics & Nano Technology, SRM University, SRM Nagar, Kattankulathur, Kancheepuram Dist, Chennai 603 203, Tamil Nadu, India. *Correspondence e-mail: ppkpresidency@gmail.com, phdguna@gmail.com

The asymmetric unit of the title molecular salt, $C_4H_{12}N_2^{2+}\cdot 2C_7H_4NO_4^{-}\cdot 2H_2O$, is composed of half a protonated piperazine dication, located about an inversion center, a benzoate anion and a water molecule of crystallization. In the crystal, the various units are linked by $N-H\cdots O$, $O-H\cdots O$ and $C-H\cdots O$ hydrogen bonds, forming a supramolecular three-dimensional framework.

Structure description

Piperazine derivatives are found in a number of biologically active compounds, including several marketed drugs, and the piperazine ring is considered to be a privileged structure in drug discovery (Suzuki *et al.*, 1997). Piperazines are frequently used as building blocks for pharmaceuticals (Kaloustian *et al.*, 1976), and exhibit a substantial degree of selective RNA binding (Dega-Szafran *et al.*, 2002).

The asymmetric unit of the title molecular salt comprises half a protonated piperazine dication, a benzoate anion and a water molecule of crystallization (Fig. 1). The piperazine dication is located about an inversion center and the ring has a chair conformation. The geometric parameters agree well with those reported for a similar compound, piperazine-1,4-diium bis(4-aminobenzenesulfonate) (Kumar *et al.*, 2015).

In the crystal, the various units are linked by $N-H\cdots O$, $O-H\cdots O$ and $C-H\cdots O$ hydrogen bonds, forming a supramolecular three-dimensional framework (Table 1 and Fig. 2).

Synthesis and crystallization

4.3 g (0.057 mol) of piperazine and 8.4 g (0.029 mol) of 4-nitrobenzoic acid were dissolved in 50 ml of double-distilled water and stirred at room temperature for 5 h to

Figure 1

The molecular structure of the title compound, with atom labelling and 30% probability displacement ellipsoids. The unlabelled atoms of the piperazine-1,4-diium dication are related to the labelled atoms by inversion symmetry (symmetry operation: -x + 1, -y + 1, -z + 2).

obtain an homogeneous solution. The solution was filtered and allowed to evaporate in a dust-free atmosphere. After a few days, yellow block-like crystals were obtained (yield 94%, m.p. 370 K).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

Figure 2

A view along the a axis of the crystal packing of the title compound. Hydrogen bonds (Table 1) are shown as dashed lines, and H atoms not involved in these interactions have been omitted for clarity.

Table 1	
Hydrogen-bond geometry (Å, $^{\circ}$).	

		/		
$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$N2-H2A\cdots O3$	0.94 (2)	1.82 (2)	2.747 (2)	169 (2)
$N2-H2B\cdots O5^{i}$	0.92(2)	1.85 (2)	2.751 (2)	162 (2)
$O5-H5A\cdots O4$	0.89(2)	1.85 (2)	2.733 (2)	168 (2)
$O5-H5B\cdots O3^{ii}$	0.91 (2)	1.88(2)	2.761 (2)	164 (2)
$C8-H8A\cdots O2^{iii}$	0.97	2.51	3.326 (3)	141
C9−H9 <i>B</i> ···O5	0.97	2.52	3.312 (2)	139

Symmetry codes: (i) -x + 2, -y + 2, -z + 2; (ii) x + 1, y, z; (iii) -x, -y + 1, -z + 1.

Table 2

Experiment	al de	tails.

Crystal data	
Chemical formula	$0.5C_4H_{12}N_2^{2+}\cdot C_7H_4NO_4^{-}\cdot H_2O$
M _r	228.21
Crystal system, space group	Triclinic, P1
Temperature (K)	296
a, b, c (Å)	6.5793 (5), 6.8094 (5), 12.3767 (9)
α, β, γ (°)	92.085 (4), 99.427 (3), 109.301 (4)
$V(\text{\AA}^3)$	513.81 (7)
Z	2
Radiation type	Μο Κα
$\mu (\mathrm{mm}^{-1})$	0.12
Crystal size (mm)	$0.20 \times 0.20 \times 0.15$
Data collection	
Diffractometer	Bruker Kappa APEXII CCD
Absorption correction	Multi-scan (<i>SADABS</i> ; Bruker, 2008)
T_{\min}, T_{\max}	0.976, 0.982
No. of measured, independent and	10658, 2019, 1369
observed $[I > 2\sigma(I)]$ reflections	
R _{int}	0.043
$(\sin \theta / \lambda)_{\text{max}} (\text{\AA}^{-1})$	0.617
(, ()	
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.039, 0.106, 0.97
No. of reflections	2019
No. of parameters	162
No. of restraints	6
H-atom treatment	H atoms treated by a mixture of
	independent and constrained refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({\rm e} {\rm \AA}^{-3})$	0.16, -0.17

Computer programs: *APEX2* and *SAINT* (Bruker, 2008), *SHELXS97* and *SHELXL97* (Sheldrick, 2008), *PLATON* (Spek, 2009) and *publCIF* (Westrip, 2010).

Acknowledgements

The authors acknowledge the SAIF, IIT Madras, Chennai, for the data collection.

References

- Bruker (2008). *APEX2*, *SAINT* and *SADABS*. Bruker AXS Inc., Madison, Wisconsin, USA.
- Dega-Szafran, Z., Jaskólski, M., Kurzyca, I., Barczyński, P. & Szafran, M. (2002). J. Mol. Struct. 614, 23–32.
- Kaloustian, M. K., Dennis, N., Mager, S., Evans, S. A., Alcudia, F. & Eliel, E. L. (1976). J. Am. Chem. Soc. 98, 956–965.
- Kumar, K. S., Ranjith, S., Sudhakar, S., Srinivasan, P. & Ponnuswamy, M. N. (2015). Acta Cryst. E71, o1084–o1085.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Suzuki, T., Fukazawa, N., San-nohe, K., Sato, W., Yano, O. & Tsuruo, T. (1997). *J. Med. Chem.* **40**, 2047–2052.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

full crystallographic data

IUCrData (2017). **2**, x171291 [https://doi.org/10.1107/S2414314617012913]

Piperazine-1,4-diium bis(4-nitrobenzoate) dihydrate

R. Rajkumar, P. Praveen Kumar and B. Gunasekaran

Piperazine-1,4-diium bis(4-nitrobenzoate) dihydrate

Crystal data

0.5C₄H₁₂N₂²⁺·C₇H₄NO₄⁻·H₂O $M_r = 228.21$ Triclinic, *P*1 a = 6.5793 (5) Å b = 6.8094 (5) Å c = 12.3767 (9) Å a = 92.085 (4)° $\beta = 99.427$ (3)° $\gamma = 109.301$ (4)° V = 513.81 (7) Å³

Data collection

Bruker Kappa APEXII CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator Detector resolution: 0 pixels mm⁻¹ ω and φ scans Absorption correction: multi-scan (SADABS; Bruker, 2008) $T_{\min} = 0.976$, $T_{\max} = 0.982$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.039$ $wR(F^2) = 0.106$ S = 0.972019 reflections 162 parameters 6 restraints Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Z = 2 F(000) = 240 $D_x = 1.475 \text{ Mg m}^{-3}$ Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 2927 reflections $\theta = 6.2-30.1^{\circ}$ $\mu = 0.12 \text{ mm}^{-1}$ T = 296 K Block, yellow $0.20 \times 0.20 \times 0.15 \text{ mm}$

10658 measured reflections 2019 independent reflections 1369 reflections with $I > 2\sigma(I)$ $R_{int} = 0.043$ $\theta_{max} = 26.0^\circ, \ \theta_{min} = 3.2^\circ$ $h = -8 \rightarrow 8$ $k = -8 \rightarrow 8$ $l = -15 \rightarrow 15$

Hydrogen site location: inferred from neighbouring sites H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.045P)^2 + 0.1764P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.16$ e Å⁻³ $\Delta\rho_{min} = -0.17$ e Å⁻³ Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc²\lambda³/sin(2\theta)]^{-1/4} Extinction coefficient: 0.069 (7)

Special details

Refinement. The NH₂ and water H atoms were located in difference-Fourier maps and refined with distance restraints: N -H = O - H = 0.90 (2) Å and H - H = 1.48 (2) Å. The C-bound H atoms were fixed geometrically and allowed to ride on their parent atoms: C - H = 0.93 - 0.97 Å with $U_{iso}(H) = 1.2U_{eq}(C)$.

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
C1	0.3881 (3)	0.7745 (2)	0.62147 (14)	0.0307 (4)
C2	0.1832 (3)	0.7949 (3)	0.60281 (15)	0.0380 (5)
H2	0.1225	0.8221	0.6620	0.046*
C3	0.0685 (3)	0.7751 (3)	0.49680 (15)	0.0397 (5)
H3	-0.0688	0.7898	0.4840	0.048*
C4	0.1595 (3)	0.7335 (3)	0.41069 (14)	0.0344 (4)
C5	0.3615 (3)	0.7113 (3)	0.42579 (15)	0.0413 (5)
Н5	0.4204	0.6824	0.3663	0.050*
C6	0.4745 (3)	0.7332 (3)	0.53230 (15)	0.0392 (5)
H6	0.6125	0.7199	0.5444	0.047*
C7	0.5200 (3)	0.7940 (3)	0.73631 (15)	0.0380 (5)
C8	0.5409 (3)	0.3454 (3)	0.93267 (14)	0.0353 (4)
H8A	0.4891	0.3739	0.8590	0.042*
H8B	0.5943	0.2294	0.9265	0.042*
C9	0.7243 (3)	0.5354 (3)	0.99088 (15)	0.0354 (4)
H9A	0.7843	0.5032	1.0622	0.042*
H9B	0.8405	0.5752	0.9483	0.042*
N1	0.0338 (3)	0.7086 (3)	0.29788 (13)	0.0487 (5)
N2	0.6427 (2)	0.7116 (2)	1.00540 (12)	0.0334 (4)
01	0.1169 (3)	0.6756 (3)	0.22173 (13)	0.0826 (6)
O2	-0.1475 (3)	0.7239 (3)	0.28617 (13)	0.0698 (5)
O3	0.4310(2)	0.8115 (2)	0.81642 (10)	0.0483 (4)
O4	0.7073 (2)	0.7872 (3)	0.74364 (12)	0.0700 (5)
05	1.0952 (2)	0.9029 (2)	0.88996 (11)	0.0438 (4)
H2A	0.588 (3)	0.752 (3)	0.9379 (12)	0.052 (6)*
H2B	0.753 (3)	0.828 (3)	1.0429 (14)	0.055 (6)*
H5B	1.187 (3)	0.863 (4)	0.8539 (17)	0.071 (8)*
H5A	0.971 (3)	0.884 (4)	0.8424 (17)	0.082 (8)*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0281 (9)	0.0282 (9)	0.0337 (10)	0.0086 (7)	0.0028 (7)	0.0026 (7)
C2	0.0356 (10)	0.0517 (12)	0.0316 (10)	0.0195 (9)	0.0099 (8)	0.0041 (8)
C3	0.0273 (10)	0.0534 (12)	0.0394 (11)	0.0165 (9)	0.0026 (8)	0.0067 (9)
C4	0.0359 (10)	0.0337 (10)	0.0284 (10)	0.0080 (8)	-0.0003 (8)	0.0027 (7)
C5	0.0449 (12)	0.0483 (11)	0.0352 (11)	0.0200 (9)	0.0121 (9)	0.0002 (8)
C6	0.0304 (10)	0.0464 (11)	0.0448 (12)	0.0188 (9)	0.0063 (8)	0.0031 (9)
C7	0.0368 (11)	0.0379 (10)	0.0374 (11)	0.0154 (9)	-0.0028 (8)	-0.0002 (8)
C8	0.0370 (10)	0.0389 (10)	0.0308 (10)	0.0148 (8)	0.0053 (8)	-0.0005 (8)

data reports

C9	0.0282(9) 0.0537(11)	0.0434 (10)	0.0352 (10)	0.0138 (8)	0.0042(7)	0.0044 (8)
N2	0.0303 (8)	0.0332 (8)	0.0308 (9)	0.0059 (7)	0.0001 (7)	0.0023 (8)
O1 O2	0.0929 (14) 0.0550 (10)	0.1240 (16) 0.0952 (13)	0.0322 (9) 0.0524 (10)	0.0438 (12) 0.0289 (9)	0.0045 (9) -0.0153 (8)	-0.0088 (9) 0.0047 (9)
O3	0.0507 (9)	0.0685 (10)	0.0309 (7)	0.0293 (7)	0.0029 (6)	0.0072 (6)
04	0.0423 (9) 0.0361 (8)	0.0481 (8)	0.0389 (8)	0.0074 (7)	0.0006 (6)	-0.0104(9) -0.0047(6)

Geometric parameters (Å, °)

C1—C6	1.382 (2)	C8—N2 ⁱ	1.487 (2)
C1—C2	1.384 (2)	C8—C9	1.505 (3)
C1—C7	1.516 (2)	C8—H8A	0.9700
C2—C3	1.380 (3)	C8—H8B	0.9700
С2—Н2	0.9300	C9—N2	1.484 (2)
C3—C4	1.369 (2)	С9—Н9А	0.9700
С3—Н3	0.9300	С9—Н9В	0.9700
C4—C5	1.370 (3)	N1—O1	1.213 (2)
C4—N1	1.474 (2)	N1—O2	1.217 (2)
C5—C6	1.380 (3)	N2—C8 ⁱ	1.487 (2)
С5—Н5	0.9300	N2—H2A	0.940 (14)
С6—Н6	0.9300	N2—H2B	0.922 (15)
C7—O4	1.237 (2)	O5—H5B	0.908 (15)
С7—О3	1.252 (2)	O5—H5A	0.892 (16)
C6—C1—C2	118.80 (16)	N2 ⁱ —C8—H8A	109.6
C6—C1—C7	118.92 (15)	С9—С8—Н8А	109.6
C2—C1—C7	122.28 (16)	N2 ⁱ —C8—H8B	109.6
C3—C2—C1	120.31 (17)	С9—С8—Н8В	109.6
С3—С2—Н2	119.8	H8A—C8—H8B	108.1
C1—C2—H2	119.8	N2—C9—C8	110.25 (14)
C4—C3—C2	119.09 (17)	N2—C9—H9A	109.6
С4—С3—Н3	120.5	С8—С9—Н9А	109.6
С2—С3—Н3	120.5	N2—C9—H9B	109.6
C3—C4—C5	122.35 (16)	С8—С9—Н9В	109.6
C3—C4—N1	118.67 (16)	H9A—C9—H9B	108.1
C5—C4—N1	118.97 (17)	O1—N1—O2	123.50 (18)
C4—C5—C6	117.74 (17)	O1—N1—C4	118.42 (18)
C4—C5—H5	121.1	O2—N1—C4	118.08 (18)
С6—С5—Н5	121.1	$C9-N2-C8^{i}$	111.36 (14)
C5—C6—C1	121.70 (17)	C9—N2—H2A	112.4 (11)
С5—С6—Н6	119.1	C8 ⁱ —N2—H2A	106.2 (12)
С1—С6—Н6	119.1	C9—N2—H2B	111.1 (13)
O4—C7—O3	124.85 (17)	C8 ⁱ —N2—H2B	108.3 (12)
O4—C7—C1	117.09 (17)	H2A—N2—H2B	107.3 (15)
O3—C7—C1	118.05 (16)	H5B—O5—H5A	108.0 (17)
N2 ⁱ —C8—C9	110.14 (14)		

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-0.3 (3) -179.75 (17) 0.5 (3) -0.2 (3) 178.82 (17) -0.3 (3) -179.32 (17) 0.5 (3) -0.3 (3)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5.3 (3) -175.23 (18) -173.33 (17) 6.2 (3) -56.7 (2) 178.66 (19) -2.3 (3) -0.8 (3) 178.29 (18)
C2—C1—C6—C5	-0.3 (3)	C5—C4—N1—O2	178.29 (18)
C7—C1—C6—C5	179.25 (17)	C8—C9—N2—C8 ⁱ	57.4 (2)

Symmetry code: (i) -x+1, -y+1, -z+2.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	Н…А	D····A	D—H···A
N2—H2A····O3	0.94 (2)	1.82 (2)	2.747 (2)	169 (2)
N2—H2 <i>B</i> ···O5 ⁱⁱ	0.92 (2)	1.85 (2)	2.751 (2)	162 (2)
O5—H5 <i>A</i> ···O4	0.89 (2)	1.85 (2)	2.733 (2)	168 (2)
O5—H5 <i>B</i> ···O3 ⁱⁱⁱ	0.91 (2)	1.88 (2)	2.761 (2)	164 (2)
C8—H8A····O2 ^{iv}	0.97	2.51	3.326 (3)	141
С9—Н9 <i>В</i> …О5	0.97	2.52	3.312 (2)	139

Symmetry codes: (ii) -*x*+2, -*y*+2, -*z*+2; (iii) *x*+1, *y*, *z*; (iv) -*x*, -*y*+1, -*z*+1.