ISSN 2414-3146

Received 24 August 2017 Accepted 31 August 2017

Edited by M. Weil, Vienna University of Technology, Austria

Keywords: crystal structure; azotetrazolate; dianion; dication; imidazole.

CCDC reference: 1571912

Structural data: full structural data are available from iucrdata.iucr.org

3,3'-(Dodecane-1,12-diyl)bis(1-methylimidazolium) 5,5'-azotetrazolate heptahydrate

Gerhard Laus,* Klaus Wurst and Herwig Schottenberger

University of Innsbruck, Faculty of Chemistry and Pharmacy, Innrain 80-82, 6020 Innsbruck, Austria. *Correspondence e-mail: gerhard.laus@uibk.ac.at

The title compound, $C_{20}H_{36}N_4 \cdot C_2N_{10} \cdot 7H_2O$, was obtained by reaction of 1-methylimidazole with 1,12-dibromododecane, followed by repeated ion metathesis (bromide \rightarrow sulfate \rightarrow azotetrazolate). An intricate network of hydrogen bonds is formed between anions and water molecules, leading to a layered arrangement parallel to (101).

Structure description

Two heterocyclic cations joined by hydrocarbon linkage chains and paired with different anions constitute a new class of ionic liquids. Dicationic imidazolium-based ionic liquids exhibit superior thermal stabilities compared to those of traditional ionic liquids (Anderson *et al.*, 2005). Coincidentally, heterocyclic dianions are of interest as components for nitrogen-rich salts (Laus *et al.*, 2016) or potential explosives (Singh *et al.*, 2006). A combination of these dications and dianions was presumed to furnish products with interesting structural attributes. Repeated ion metathesis (bromide \rightarrow sulfate \rightarrow azotetrazolate) was successfully employed for the synthesis of the desired salts, the crystal structure of one of which is reported here.

In the crystal structure of the title hydrated salt, an intricate network of $O-H\cdots O$ and $O-H\cdots N$ hydrogen-bonded anions and water molecules is observed (Table 1) which can be adequately described by graph-set symbols (Etter, 1990; Etter *et al.*, 1990). One azotetrazolate dianion is surrounded by various water molecules enclosing pairs of $R_4^4(10), R_3^3(11)$ and $R_7^7(16)$ ring motifs each, as well as one $R_4^4(9)$ and one $R_7^7(15)$ ring motif (Fig. 1). The planar dianion [the maximum deviation from the least-squares plane is 0.027 (2) Å for N9] and seven water molecules are located near the (101) plane, whereas the bar-shaped dications are found above and beneath this layer (Fig. 2). The dihedral angle between the two 1-methylimidazolium moieties in the dication is 8.57 (15)°.

Figure 1

The arrangement of molecular entities in the crystal structure of the title compound, showing selected atom labels and displacement ellipsoids at the 50% probability level for non-H atoms. Hydrogen bonds are shown as dashed lines. Graph-set symbols indicate the hydrogen-bond patterns.

Related structures of geminal dications with traditional anions (Anderson *et al.*, 2005) as well as related azotetrazolate salts with traditional cations (Laus *et al.*, 2012) have been reported.

Synthesis and crystallization

Silver sulfate (156 mg, 0.50 mmol) was added to a solution of 3,3'-(dodecane-1,12-diyl)bis(1-methylimidazolium) bromide (246 mg, 0.50 mmol; Tadesse *et al.*, 2012) in water (5 ml). The mixture was stirred at 323 K for 10 min and ultrasonicated for 5 min. Subsequently, the precipitate was removed by centrifugation. Barium 5,5'-azotetrazolate pentahydrate (196 mg, 0.50 mmol; Hammerl *et al.*, 2002) was added to the super-

Figure 2

Arrangement of cations above and beneath the plane of anions and water molecules in the unit cell of the title compound.

Table	1			
Hydro	gen-bond	geometry	(Å,	°).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$01 - H110 \cdots N2^{i}$	0.87(3)	2.02.(3)	2,884 (3)	174 (3)
$O1 - H12O \cdots O2$	0.89(5)	2.00(4)	2.850 (3)	159 (4)
O2−H22 <i>O</i> ···O3	0.84 (4)	2.00(4)	2.819 (3)	162 (4)
O2−H21 <i>O</i> ···N1	0.82(3)	2.06 (3)	2.875 (3)	174 (3)
O3−H32O···N3 ⁱⁱ	0.85 (4)	2.00 (4)	2.853 (3)	172 (4)
O3−H31 <i>O</i> ···N7	0.84 (4)	2.14 (3)	2.959 (3)	165 (4)
$O4-H42O\cdots N4^{ii}$	0.86 (3)	2.06 (3)	2.914 (3)	175 (3)
O4−H41 <i>O</i> ···N8	0.87 (3)	1.99 (3)	2.853 (3)	171 (3)
$O5-H52O\cdots N10^{ii}$	0.82 (3)	2.06 (3)	2.879 (3)	179 (3)
O5−H51 <i>O</i> ···O4	0.87 (3)	1.94 (3)	2.790 (3)	166 (4)
O6−H61 <i>O</i> ···O5	0.90 (3)	1.89 (3)	2.755 (3)	161 (3)
O6−H62 <i>O</i> ···O7	0.84 (4)	1.93 (3)	2.753 (3)	169 (3)
$O7-H71O\cdots O6^{iii}$	0.86 (3)	1.96 (3)	2.807 (4)	169 (4)
$O7-H72O\cdots N9^{iv}$	0.84 (3)	2.10 (3)	2.931 (3)	170 (3)

Symmetry codes: (i) -x + 2, $y - \frac{1}{2}$, -z; (ii) x, y - 1, z; (iii) $-x + 1, y + \frac{1}{2}, -z + 1$; (iv) $-x + 1, y - \frac{1}{2}, -z + 1$.

Table 2

Experimental details.

Crystal data Chemical formula M_r Crystal system, space group Temperature (K) a, b, c (Å) β (°) V (Å3) ZRadiation type μ (mm⁻¹) Crystal size (mm) Data collection Diffractometer Absorption correction

 T_{\min}, T_{\max} No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections R_{int}

 $(\sin \theta / \lambda)_{max} (\text{\AA}^{-1})$ Refinement

 $R[F^2 > 2\sigma(F^2)]$, $wR(F^2)$, S No. of reflections No. of parameters No. of restraints H-atom treatment

Absolute structure parameter

 $\Delta \rho_{\text{max}}, \Delta \rho_{\text{min}} \text{ (e Å}^{-3})$ Absolute structure $\begin{array}{c} C_{20}H_{36}N_4 \cdot C_2N_{10} \cdot 7H_2O\\ 622.76\\ Monoclinic, P2_1\\ 183\\ 7.2847 (3), 8.9932 (4), 25.3962 (11)\\ 91.062 (1)\\ 1663.49 (12)\\ 2\\ Mo \ K\alpha\\ 0.10\\ 0.17 \times 0.12 \times 0.08\\ \end{array}$ Bruker D8 QUEST PHOTON 100 Multi-scan (*SADABS*; Bruker, 2014)

0.848, 0.888 29637, 6171, 5428

 $\begin{array}{c} 0.032\\ 0.606 \end{array}$

0.035, 0.081, 1.04
6171
447
15
H atoms treated by a mixture of
independent and constrained
refinement
0.17, -0.15
Flack x determined using 2270
quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$
(Parsons et al., 2013).
-0.2 (4)

Computer programs: *APEX2* and *SAINT* (Bruker, 2014), *SHELXT* (Sheldrick, 2015*a*), *SHELXL2014*/7 (Sheldrick, 2015*b*), *ORTEP-3 for Windows* (Farrugia, 2012) and *Mercury* (Macrae *et al.*, 2008).

natant, and the mixture was again stirred at 323 K for 10 min and ultrasonicated for 5 min. After centrifugation, the supernatant solution was filtered (0.45 μ m) and taken to dryness in a rotary evaporator under reduced pressure, the temperature not exceeding 323 K. The yellow residue was recrystallized from hot water, collected by filtration and vacuum-dried to yield 280 mg (90%) of the title compound. ¹H NMR (DMSOd₆, 300 MHz): δ 9.29 (s, 2H), 7.81 (s, 2H), 7.73 (s, 2H), 4.18 (t, J = 7.2 Hz, 4H), 3.88 (s, 6H), 1.74 (m, 4H), 1.17 (m, 16H). ¹³C NMR (DMSO-d₆, 75 MHz): δ 173.5, 136.7, 123.6, 122.3, 48.8, 35.8, 29.4, 28.8, 28.7, 28.3, 25.4. IR (neat): ν 3351 s, 2919 m, 2855 m, 1651 w, 1588 m, 1473 m, 1394 m, 1163 s, 732 m cm⁻¹.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. Hydrogen atoms bound to water molecules were found from difference maps and were included in the refinement with distance restraints of d(O-H)= 0.82 Å. Three reflections, (101), (202) and (505), were omitted because of poor agreement between calculated and observed intensities.

References

Anderson, J. L., Ding, R., Ellern, A. & Armstrong, D. W. (2005). J. Am. Chem. Soc. 127, 593–604.

- Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.
- Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Hammerl, A., Holl, G., Klapötke, T. M., Mayer, P., Nöth, H., Piotrowski, H. & Warchhold, M. (2002). *Eur. J. Inorg. Chem.* pp. 834–845.
- Laus, G., Kahlenberg, V., Wurst, K., Schottenberger, H., Fischer, N., Stierstorfer, J. & Klapötke, T. M. (2012). *Crystals*, 2, 127–136.
- Laus, G., Wurst, K., Kahlenberg, V. & Schottenberger, H. (2016). Crystals, 6, 13–20.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Singh, R. P., Verma, R. D., Meshri, D. T. & Shreeve, J. M. (2006). Angew. Chem. Int. Ed. 45, 3584–3601.
- Tadesse, H., Blake, A. J., Champness, N. R., Warren, J. E., Rizkallah, P. J. & Licence, P. (2012). *CrystEngComm*, **14**, 4886–4893.

full crystallographic data

IUCrData (2017). **2**, x171255 [https://doi.org/10.1107/S241431461701255X]

3,3'-(Dodecane-1,12-diyl)bis(1-methylimidazolium) 5,5'-azotetrazolate heptahydrate

Gerhard Laus, Klaus Wurst and Herwig Schottenberger

3,3'-(Dodecane-1,12-diyl)bis(1-methylimidazolium) 5,5'-azotetrazolate heptahydrate

Crystal data

 $C_{20}H_{36}N_4 \cdot C_2N_{10} \cdot 7H_2O$ $M_r = 622.76$ Monoclinic, P2₁ a = 7.2847 (3) Å b = 8.9932 (4) Å c = 25.3962 (11) Å $\beta = 91.062$ (1)° V = 1663.49 (12) Å³ Z = 2

Data collection

Bruker D8 QUEST PHOTON 100 diffractometer Radiation source: Incoatec Microfocus Multi layered optics monochromator Detector resolution: 10.4 pixels mm⁻¹ φ and ω scans Absorption correction: multi-scan (*SADABS*; Bruker, 2014) $T_{\min} = 0.848, T_{\max} = 0.888$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.035$ $wR(F^2) = 0.081$ S = 1.046171 reflections 447 parameters 15 restraints Hydrogen site location: mixed H atoms treated by a mixture of independent and constrained refinement F(000) = 672 $D_x = 1.243 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 9972 reflections $\theta = 2.4-25.6^{\circ}$ $\mu = 0.10 \text{ mm}^{-1}$ T = 183 KPrism, colourless $0.17 \times 0.12 \times 0.08 \text{ mm}$

29637 measured reflections 6171 independent reflections 5428 reflections with $I > 2\sigma(I)$ $R_{int} = 0.032$ $\theta_{max} = 25.5^{\circ}, \ \theta_{min} = 2.4^{\circ}$ $h = -8 \rightarrow 8$ $k = -10 \rightarrow 10$ $l = -30 \rightarrow 28$

$$\begin{split} &w = 1/[\sigma^2(F_o^2) + (0.0462P)^2 + 0.1318P] \\ &where P = (F_o^2 + 2F_c^2)/3 \\ &(\Delta/\sigma)_{max} < 0.001 \\ &\Delta\rho_{max} = 0.17 \text{ e } \text{Å}^{-3} \\ &\Delta\rho_{min} = -0.15 \text{ e } \text{Å}^{-3} \\ &\text{Extinction correction: SHELXL-2014/7} \\ & (\text{Sheldrick, 2015}), \\ &\text{Fc}^* = \text{kFc}[1 + 0.001 \text{xFc}^2 \lambda^3 / \sin(2\theta)]^{-1/4} \\ &\text{Extinction coefficient: } 0.026 (2) \\ &\text{Absolute structure: Flack x determined using} \\ & 2270 \text{ quotients } [(I^+) - (I^-)]/[(I^+) + (I^-)] \text{ (Parsons et al., 2013).} \\ &\text{Absolute structure parameter: } -0.2 (4) \end{split}$$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Hydrogens at water molecules O1–O7 were found and refined with bond restraints (d=83 (2)pm).

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
N1	0.8692 (3)	0.4847 (2)	0.12571 (8)	0.0307 (5)	
N2	0.8791 (3)	0.6275 (2)	0.11135 (8)	0.0373 (5)	
N3	0.8434 (3)	0.7122 (2)	0.15240 (8)	0.0400 (5)	
N4	0.8089 (3)	0.6279 (2)	0.19435 (8)	0.0340 (5)	
N5	0.8068 (3)	0.3557 (2)	0.20434 (8)	0.0261 (4)	
N6	0.7696 (3)	0.3769 (2)	0.25202 (7)	0.0263 (4)	
N7	0.7674 (3)	0.1051 (2)	0.26322 (8)	0.0329 (5)	
N8	0.7297 (3)	0.0225 (2)	0.30551 (8)	0.0378 (5)	
N9	0.6900 (3)	0.1093 (2)	0.34584 (8)	0.0336 (5)	
N10	0.7021 (3)	0.2510(2)	0.33069 (7)	0.0292 (5)	
N11	0.5418 (3)	1.5010 (2)	-0.02519 (7)	0.0305 (5)	
N12	0.5847 (3)	1.4521 (2)	-0.10701 (8)	0.0348 (5)	
N13	-0.1024 (3)	1.2390 (2)	0.58176 (7)	0.0290 (5)	
N14	-0.1585 (3)	1.3001 (2)	0.66194 (7)	0.0307 (5)	
C1	0.8260 (3)	0.4893 (3)	0.17634 (8)	0.0251 (5)	
C2	0.7486 (3)	0.2445 (3)	0.28024 (8)	0.0241 (5)	
C3	0.4658 (3)	1.5052 (3)	-0.07287 (9)	0.0349 (6)	
H3	0.3458	1.5405	-0.0813	0.042*	
C4	0.7151 (3)	1.4425 (3)	-0.02907 (10)	0.0353 (6)	
H4	0.8004	1.4263	-0.0009	0.042*	
C5	0.7411 (3)	1.4128 (3)	-0.07982 (10)	0.0380 (6)	
H5	0.8490	1.3717	-0.0945	0.046*	
C6	0.5567 (4)	1.4409 (4)	-0.16425 (10)	0.0505 (8)	
H6A	0.4453	1.4954	-0.1747	0.076*	
H6B	0.5433	1.3362	-0.1742	0.076*	
H6C	0.6626	1.4837	-0.1820	0.076*	
C7	0.4564 (4)	1.5521 (3)	0.02358 (10)	0.0381 (6)	
H7A	0.3320	1.5906	0.0152	0.046*	
H7B	0.5299	1.6347	0.0387	0.046*	
C8	0.4423 (3)	1.4289 (3)	0.06399 (9)	0.0320 (6)	
H8A	0.5644	1.3825	0.0694	0.038*	
H8B	0.3569	1.3515	0.0506	0.038*	
C9	0.3744 (3)	1.4871 (3)	0.11621 (9)	0.0338 (6)	
H9A	0.4631	1.5613	0.1301	0.041*	
H9B	0.2556	1.5384	0.1102	0.041*	
C10	0.3493 (4)	1.3665 (3)	0.15710 (9)	0.0319 (6)	
H10A	0.4637	1.3074	0.1600	0.038*	
H10B	0.2498	1.2990	0.1450	0.038*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

C11	0.3028 (3)	1.4261 (3)	0.21137 (9)	0.0311 (6)
H11A	0.1935	1.4910	0.2079	0.037*
H11B	0.4063	1.4883	0.2243	0.037*
C12	0.2647 (3)	1.3067 (3)	0.25226(9)	0.0309(5)
H12A	0.1618	1.2437	0.2394	0.037*
H12B	0.3744	1.2424	0.2563	0.037*
C13	0.2169 (3)	1.3705 (3)	0.30569 (9)	0.0313 (6)
H13A	0.3160	1 4393	0 3171	0.038*
H13B	0.1026	1 4294	0.3018	0.038*
C14	0.1903 (3)	1 2553 (3)	0.34859 (9)	0.0300 (5)
H144	0.3072	1.2003 (0)	0.3546	0.036*
H14R	0.0971	1.2013	0.3365	0.036*
C15	0.0971	1.1022	0.40039 (9)	0.0303 (6)
H15A	0.1290 (3)	1.3255 (5)	0.40059(9)	0.0303 (0)
	0.2243	1.3930	0.4120	0.036*
C16	0.0143	1.3793 1 2114 (3)	0.3333	0.030°
	0.0977 (4)	1.2114 (5)	0.44362 (9)	0.0314(0)
	0.2131	1.1304	0.4311	0.038*
	0.0039	1.138/	0.4518	0.038^{*}
	0.0341 (3)	1.2848 (3)	0.49451 (9)	0.0311 (6)
HI/A	0.1332	1.3493	0.5087	0.03/*
HI/B	-0.0740	1.3483	0.4866	0.03/*
C18	-0.0161 (4)	1.1707 (3)	0.53555 (9)	0.0332 (6)
HI8A	-0.1018	1.0974	0.5196	0.040*
H18B	0.0961	1.1169	0.5472	0.040*
C19	-0.0403 (3)	1.2306 (3)	0.63118 (9)	0.0319 (6)
H19	0.0699	1.1829	0.6426	0.038*
C20	-0.2646 (3)	1.3162 (3)	0.58112 (9)	0.0349 (6)
H20	-0.3385	1.3386	0.5509	0.042*
C21	-0.2997 (3)	1.3544 (3)	0.63103 (9)	0.0336 (6)
H21	-0.4030	1.4088	0.6428	0.040*
C22	-0.1416 (4)	1.3157 (4)	0.71928 (9)	0.0455 (7)
H22A	-0.0381	1.2557	0.7323	0.068*
H22B	-0.2549	1.2815	0.7356	0.068*
H22C	-0.1204	1.4204	0.7283	0.068*
01	1.1165 (3)	0.2885 (3)	-0.01317 (9)	0.0604 (6)
H11O	1.119 (5)	0.234 (4)	-0.0413 (12)	0.081 (13)*
H12O	1.057 (6)	0.238 (6)	0.0114 (16)	0.13 (2)*
02	0.9157 (3)	0.1993 (3)	0.07677 (9)	0.0511 (6)
H21O	0.900 (4)	0.283 (3)	0.0887 (12)	0.053 (10)*
H22O	0.950 (6)	0.140 (5)	0.1007 (15)	0.114 (19)*
03	0.9542 (3)	0.0143 (2)	0.16588 (9)	0.0564 (6)
H31O	0.904 (5)	0.056 (5)	0.1916 (12)	0.090 (14)*
H32O	0.911 (6)	-0.073 (4)	0.1609 (18)	0.112 (17)*
O4	0.6059 (3)	-0.2736(2)	0.28580 (8)	0.0447 (5)
H41O	0.656 (4)	-0.187 (3)	0.2911 (13)	0.060 (10)*
H42O	0.664 (4)	-0.308(4)	0.2595 (10)	0.060 (10)*
05	0.6601 (3)	-0.4551 (2)	0.37380 (8)	0.0422 (5)
H510	0.624 (6)	-0.400(4)	0.3475 (13)	0.095 (15)*
			()	

H52O	0.672 (4)	-0.539 (3)	0.3618 (13)	0.054 (10)*	
O6	0.5478 (3)	-0.5538 (3)	0.47071 (8)	0.0532 (6)	
H61O	0.564 (5)	-0.507 (4)	0.4400 (11)	0.075 (11)*	
H62O	0.492 (5)	-0.493 (4)	0.4895 (13)	0.069 (11)*	
07	0.4008 (3)	-0.3607 (3)	0.54270 (8)	0.0468 (5)	
H71O	0.431 (6)	-0.270 (3)	0.5374 (16)	0.091 (15)*	
H72O	0.383 (5)	-0.379 (4)	0.5748 (10)	0.071 (11)*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.0356 (11)	0.0304 (11)	0.0264 (10)	0.0008 (9)	0.0036 (8)	0.0002 (9)
N2	0.0483 (14)	0.0328 (13)	0.0310 (12)	0.0018 (10)	0.0074 (10)	0.0034 (10)
N3	0.0570 (14)	0.0296 (12)	0.0337 (12)	-0.0005 (10)	0.0102 (10)	0.0017 (10)
N4	0.0458 (13)	0.0280 (12)	0.0285 (11)	0.0005 (10)	0.0061 (9)	0.0009 (9)
N5	0.0272 (11)	0.0263 (11)	0.0249 (11)	0.0000 (8)	0.0023 (8)	-0.0034 (8)
N6	0.0249 (10)	0.0282 (10)	0.0258 (11)	0.0016 (8)	0.0012 (8)	-0.0014 (9)
N7	0.0431 (13)	0.0273 (11)	0.0284 (11)	-0.0015 (9)	0.0082 (9)	-0.0021 (9)
N8	0.0508 (13)	0.0284 (12)	0.0346 (12)	-0.0033 (10)	0.0087 (10)	-0.0013 (10)
N9	0.0404 (13)	0.0298 (12)	0.0308 (11)	-0.0021 (10)	0.0087 (9)	-0.0015 (9)
N10	0.0330 (11)	0.0275 (11)	0.0274 (10)	-0.0006 (9)	0.0048 (8)	-0.0024 (9)
N11	0.0325 (11)	0.0330 (12)	0.0261 (10)	0.0009 (9)	0.0051 (8)	0.0020 (9)
N12	0.0386 (12)	0.0405 (13)	0.0257 (10)	-0.0052 (10)	0.0059 (9)	0.0022 (10)
N13	0.0368 (11)	0.0258 (10)	0.0245 (10)	0.0034 (9)	0.0052 (8)	0.0009 (9)
N14	0.0346 (11)	0.0345 (11)	0.0231 (10)	-0.0019 (10)	0.0049 (8)	-0.0005 (9)
C1	0.0243 (12)	0.0254 (12)	0.0257 (12)	0.0012 (10)	0.0016 (9)	-0.0028 (10)
C2	0.0241 (12)	0.0244 (12)	0.0240 (11)	0.0008 (10)	0.0022 (9)	-0.0028 (10)
C3	0.0347 (14)	0.0412 (15)	0.0290 (13)	0.0039 (12)	0.0013 (11)	0.0046 (12)
C4	0.0285 (13)	0.0418 (15)	0.0357 (13)	-0.0005 (11)	0.0028 (10)	0.0046 (12)
C5	0.0319 (14)	0.0433 (15)	0.0393 (14)	-0.0016 (12)	0.0118 (11)	0.0033 (12)
C6	0.065 (2)	0.062 (2)	0.0253 (13)	-0.0115 (16)	0.0055 (13)	-0.0008 (13)
C7	0.0430 (15)	0.0424 (15)	0.0290 (14)	0.0076 (13)	0.0060 (11)	-0.0012 (12)
C8	0.0321 (14)	0.0374 (14)	0.0268 (12)	-0.0042 (11)	0.0024 (10)	-0.0016 (11)
C9	0.0314 (13)	0.0431 (15)	0.0269 (12)	0.0022 (12)	0.0026 (10)	-0.0026 (12)
C10	0.0294 (13)	0.0412 (15)	0.0251 (12)	-0.0046 (11)	0.0012 (10)	-0.0030 (11)
C11	0.0275 (12)	0.0411 (14)	0.0246 (12)	-0.0004 (11)	0.0022 (10)	-0.0036 (11)
C12	0.0272 (13)	0.0393 (14)	0.0265 (12)	-0.0009 (11)	0.0025 (9)	-0.0022 (11)
C13	0.0308 (13)	0.0380 (14)	0.0253 (12)	-0.0026 (11)	0.0041 (10)	-0.0032 (11)
C14	0.0263 (12)	0.0378 (14)	0.0260 (12)	0.0021 (10)	0.0030 (9)	0.0001 (11)
C15	0.0310 (13)	0.0354 (14)	0.0245 (12)	0.0024 (11)	0.0037 (10)	0.0003 (10)
C16	0.0340 (14)	0.0326 (14)	0.0277 (13)	0.0054 (11)	0.0061 (10)	0.0002 (11)
C17	0.0375 (14)	0.0283 (12)	0.0279 (12)	0.0033 (11)	0.0050 (10)	0.0029 (11)
C18	0.0447 (15)	0.0281 (13)	0.0270 (13)	0.0069 (11)	0.0078 (11)	0.0012 (11)
C19	0.0357 (14)	0.0333 (13)	0.0270 (13)	0.0020 (11)	0.0036 (10)	0.0047 (11)
C20	0.0359 (14)	0.0392 (14)	0.0296 (13)	0.0070 (12)	0.0008 (10)	0.0052 (11)
C21	0.0343 (14)	0.0346 (13)	0.0322 (13)	0.0050 (11)	0.0074 (10)	0.0010 (11)
C22	0.0520 (17)	0.0611 (19)	0.0234 (13)	-0.0051 (15)	0.0041 (11)	-0.0045 (13)
01	0.0662 (15)	0.0664 (15)	0.0485 (13)	-0.0007 (13)	-0.0049 (11)	-0.0205 (13)

data reports

O2	0.0565 (13)	0.0432 (13)	0.0536 (14)	0.0068 (11)	-0.0016 (11)	-0.0204 (12)
03	0.0778 (15)	0.0367 (12)	0.0560 (13)	-0.0055 (11)	0.0364 (12)	-0.0107 (11)
O4	0.0577 (13)	0.0309 (11)	0.0463 (12)	-0.0036 (10)	0.0217 (10)	-0.0080 (9)
05	0.0539 (12)	0.0330 (11)	0.0397 (11)	-0.0008 (10)	0.0039 (9)	-0.0105 (10)
O6	0.0789 (16)	0.0460 (13)	0.0349 (11)	0.0130 (11)	0.0050 (10)	-0.0038 (10)
O7	0.0619 (13)	0.0476 (13)	0.0312 (11)	0.0055 (10)	0.0102 (9)	-0.0005 (10)

Geometric parameters (Å, °)

N1—C1	1.330 (3)	C11—C12	1.523 (3)
N1—N2	1.337 (3)	C11—H11A	0.9900
N2—N3	1.321 (3)	C11—H11B	0.9900
N3—N4	1.335 (3)	C12—C13	1.520 (3)
N4—C1	1.334 (3)	C12—H12A	0.9900
N5—N6	1.260 (3)	C12—H12B	0.9900
N5—C1	1.405 (3)	C13—C14	1.518 (3)
N6—C2	1.399 (3)	C13—H13A	0.9900
N7—C2	1.335 (3)	C13—H13B	0.9900
N7—N8	1.338 (3)	C14—C15	1.524 (3)
N8—N9	1.324 (3)	C14—H14A	0.9900
N9—N10	1.335 (3)	C14—H14B	0.9900
N10-C2	1.333 (3)	C15—C16	1.514 (3)
N11—C3	1.323 (3)	C15—H15A	0.9900
N11—C4	1.373 (3)	C15—H15B	0.9900
N11—C7	1.470 (3)	C16—C17	1.526 (3)
N12—C3	1.326 (3)	C16—H16A	0.9900
N12—C5	1.368 (3)	C16—H16B	0.9900
N12—C6	1.468 (3)	C17—C18	1.512 (3)
N13—C19	1.329 (3)	C17—H17A	0.9900
N13—C20	1.370 (3)	C17—H17B	0.9900
N13—C18	1.475 (3)	C18—H18A	0.9900
N14—C19	1.330 (3)	C18—H18B	0.9900
N14—C21	1.372 (3)	C19—H19	0.9500
N14—C22	1.466 (3)	C20—C21	1.342 (3)
С3—Н3	0.9500	C20—H20	0.9500
C4—C5	1.333 (3)	C21—H21	0.9500
C4—H4	0.9500	C22—H22A	0.9800
С5—Н5	0.9500	C22—H22B	0.9800
С6—Н6А	0.9800	C22—H22C	0.9800
C6—H6B	0.9800	O1—H11O	0.87 (2)
С6—Н6С	0.9800	O1—H12O	0.89 (3)
С7—С8	1.515 (4)	O2—H21O	0.82 (2)
C7—H7A	0.9900	O2—H22O	0.84 (3)
С7—Н7В	0.9900	O3—H31O	0.84 (2)
С8—С9	1.517 (3)	O3—H32O	0.85 (3)
C8—H8A	0.9900	O4—H41O	0.87 (2)
C8—H8B	0.9900	O4—H42O	0.85 (2)
C9—C10	1.515 (4)	O5—H51O	0.87 (2)

С9—Н9А	0.9900	O5—H52O	0.82 (2)
С9—Н9В	0.9900	O6—H61O	0.90(2)
C10—C11	1.522 (3)	O6—H62O	0.84 (2)
C10—H10A	0.9900	O7—H71O	0.86 (3)
C10—H10B	0.9900	O7—H72O	0.84 (2)
C1—N1—N2	104.39 (19)	C12—C11—H11A	108.6
N3—N2—N1	109.03 (19)	C10-C11-H11B	108.6
N2—N3—N4	110.2 (2)	C12—C11—H11B	108.6
C1—N4—N3	103.69 (19)	H11A—C11—H11B	107.6
N6—N5—C1	112.44 (18)	C13—C12—C11	113.0 (2)
N5—N6—C2	112.98 (18)	C13—C12—H12A	109.0
C2—N7—N8	103.75 (19)	C11—C12—H12A	109.0
N9—N8—N7	110.2 (2)	C13—C12—H12B	109.0
N8—N9—N10	108.86 (19)	C11—C12—H12B	109.0
C2—N10—N9	104.76 (18)	H12A—C12—H12B	107.8
C3—N11—C4	108.4 (2)	C14—C13—C12	114.7 (2)
C3—N11—C7	125.9 (2)	C14—C13—H13A	108.6
C4—N11—C7	125.75 (19)	C12—C13—H13A	108.6
C3—N12—C5	108.1 (2)	C14—C13—H13B	108.6
C3—N12—C6	126.3 (2)	C12—C13—H13B	108.6
C5—N12—C6	125.6 (2)	H13A—C13—H13B	107.6
C19—N13—C20	108.58 (19)	C13—C14—C15	112.9 (2)
C19—N13—C18	125.8 (2)	C13—C14—H14A	109.0
C20—N13—C18	125.6 (2)	C15—C14—H14A	109.0
C19—N14—C21	108.55 (19)	C13—C14—H14B	109.0
C19—N14—C22	125.8 (2)	C15—C14—H14B	109.0
C21—N14—C22	125.6 (2)	H14A—C14—H14B	107.8
N1—C1—N4	112.7 (2)	C16—C15—C14	114.4 (2)
N1—C1—N5	119.4 (2)	C16—C15—H15A	108.7
N4—C1—N5	127.95 (19)	C14—C15—H15A	108.7
N10—C2—N7	112.4 (2)	C16—C15—H15B	108.7
N10—C2—N6	119.17 (19)	C14—C15—H15B	108.7
N7—C2—N6	128.38 (19)	H15A—C15—H15B	107.6
N11—C3—N12	108.7 (2)	C15—C16—C17	112.3 (2)
N11—C3—H3	125.6	C15—C16—H16A	109.1
N12—C3—H3	125.6	C17—C16—H16A	109.1
C5—C4—N11	107.1 (2)	C15—C16—H16B	109.1
C5—C4—H4	126.5	C17—C16—H16B	109.1
N11—C4—H4	126.5	H16A—C16—H16B	107.9
C4—C5—N12	107.7 (2)	C18—C17—C16	111.7 (2)
C4—C5—H5	126.2	C18—C17—H17A	109.3
N12—C5—H5	126.2	С16—С17—Н17А	109.3
N12—C6—H6A	109.5	C18—C17—H17B	109.3
N12—C6—H6B	109.5	С16—С17—Н17В	109.3
H6A—C6—H6B	109.5	H17A—C17—H17B	107.9
N12—C6—H6C	109.5	N13—C18—C17	112.2 (2)
H6A—C6—H6C	109.5	N13—C18—H18A	109.2

H6B—C6—H6C	109.5	C17—C18—H18A	109.2
N11—C7—C8	112.2 (2)	N13—C18—H18B	109.2
N11—C7—H7A	109.2	C17—C18—H18B	109.2
С8—С7—Н7А	109.2	H18A—C18—H18B	107.9
N11—C7—H7B	109.2	N13—C19—N14	108.4 (2)
С8—С7—Н7В	109.2	N13—C19—H19	125.8
H7A—C7—H7B	107.9	N14—C19—H19	125.8
C7—C8—C9	111.5 (2)	C21—C20—N13	107.3 (2)
С7—С8—Н8А	109.3	С21—С20—Н20	126.3
С9—С8—Н8А	109.3	N13—C20—H20	126.3
С7—С8—Н8В	109.3	C20—C21—N14	107.2 (2)
С9—С8—Н8В	109.3	C20—C21—H21	126.4
H8A—C8—H8B	108.0	N14—C21—H21	126.4
С10—С9—С8	113.4 (2)	N14—C22—H22A	109.5
С10—С9—Н9А	108.9	N14—C22—H22B	109.5
С8—С9—Н9А	108.9	H22A—C22—H22B	109.5
С10—С9—Н9В	108.9	N14—C22—H22C	109.5
С8—С9—Н9В	108.9	H22A—C22—H22C	109.5
Н9А—С9—Н9В	107.7	H22B—C22—H22C	109.5
C9—C10—C11	113.6 (2)	H110—01—H120	108 (4)
C9—C10—H10A	108.8	H210—O2—H22O	111 (4)
C11—C10—H10A	108.8	H310—O3—H32O	111 (4)
C9—C10—H10B	108.8	H410—O4—H42O	103 (3)
C11—C10—H10B	108.8	H510—O5—H52O	106 (4)
H10A—C10—H10B	107.7	Н610—О6—Н62О	105 (3)
C10-C11-C12	114.6 (2)	H710—O7—H72O	113 (4)
C10-C11-H11A	108.6		

Hydrogen-bond geometry (Å, °)

<i>D</i> —H··· <i>A</i>	D—H	H···A	D···A	D—H···A
01—H110····N2 ⁱ	0.87 (3)	2.02 (3)	2.884 (3)	174 (3)
O1—H12 <i>O</i> ···O2	0.89 (5)	2.00 (4)	2.850 (3)	159 (4)
O2—H22 <i>O</i> ···O3	0.84 (4)	2.00 (4)	2.819 (3)	162 (4)
O2—H21 <i>O</i> …N1	0.82 (3)	2.06 (3)	2.875 (3)	174 (3)
O3—H32 <i>O</i> ····N3 ⁱⁱ	0.85 (4)	2.00 (4)	2.853 (3)	172 (4)
O3—H31 <i>O</i> …N7	0.84 (4)	2.14 (3)	2.959 (3)	165 (4)
O4—H42 <i>O</i> ····N4 ⁱⁱ	0.86 (3)	2.06 (3)	2.914 (3)	175 (3)
O4—H41 <i>O</i> …N8	0.87 (3)	1.99 (3)	2.853 (3)	171 (3)
O5—H52 <i>O</i> …N10 ⁱⁱ	0.82 (3)	2.06 (3)	2.879 (3)	179 (3)
O5—H51 <i>O</i> ···O4	0.87 (3)	1.94 (3)	2.790 (3)	166 (4)
O6—H61 <i>O</i> …O5	0.90 (3)	1.89 (3)	2.755 (3)	161 (3)
O6—H62 <i>O</i> …O7	0.84 (4)	1.93 (3)	2.753 (3)	169 (3)
O7—H71 <i>O</i> ···O6 ⁱⁱⁱ	0.86 (3)	1.96 (3)	2.807 (4)	169 (4)
07—H72 <i>O</i> ····N9 ^{iv}	0.84 (3)	2.10 (3)	2.931 (3)	170 (3)

Symmetry codes: (i) -*x*+2, *y*-1/2, -*z*; (ii) *x*, *y*-1, *z*; (iii) -*x*+1, *y*+1/2, -*z*+1; (iv) -*x*+1, *y*-1/2, -*z*+1.