ISSN 2414-3146

Ethyl 4-(2,5-dimethylphenyl)-6-methyl-2-sulfanylidene-1,2,3,4-tetrahydropyrimidine-5-carboxylate

Shashi R and Noor Shahina Begum*

Department of Studies in Chemistry, Central College Campus, Bangalore University, Bangalore 560 001, Karnataka, India. *Correspondence e-mail: noorsb@rediffmail.com

The title compound, $C_{16}H_{20}N_2O_2S$, crystallizes with two molecules in the asymmetric unit, one of which shows positional disorder of the ethyl side chain over two orientations in a 0.555 (7):0.445 (7) ratio. The hydropyrimidine ring adopts a shallow *boat* conformation and the 2,5-dimethylphenyl ring is positioned axially. The crystal structure features $N-H\cdots S$, $N-H\cdots O$ and $C-H\cdots O$ hydrogen bonds, which link the molecules into (101) sheets.

Structure description

Dihydropyrimidine (DHPM) derivatives are used as calcium channel blockers (Zorkun *et al.*, 2006) and inhibitors of mitotic kinesin Eg5 for treating cancer (Cochran *et al.*, 2005). As part of our studies of DHPM derivatives, the title compound, $C_{14}H_{14}F_4N_2O_3S$, was isolated and the structure determined by X-ray diffraction. The molecular structure of the compound is shown in Fig. 1. The title compound crystallizes with two molecules (*A* and *B*) in the asymmetric unit. The 2,5-dimethyl phenyl ring subtends dihedral angles with the pyrimidine ring of 88.7 (1) and 88.75 (1)° for *A* and *B*, respectively. The pyrimidine ring adopts a boat conformation with atoms N2 and C6 displaced by 0.130 (3) and 0.279 (8) Å, respectively, from the mean plane of the other four atoms (C2/C4/C5/N1) in molecule *A*. Similarly, the pyrimidine ring of molecule *B* adopts a boat conformation with atoms N2' and C6' displaced by 0.110 (4) and 0.325 (8) Å, respectively, from the mean plane of the other four atoms (C2'/C4'/C5'/N1').

The crystal structure features N-H···S, N-H···O and C-H···O hydrogen bonds (Table 1), which link the molecules into (101) sheets incorporating $R_2^2(8)$ loops (Fig. 2).

Synthesis and crystallization

A mixture of 2,5-dimethylbenzaldehydes (10 mmol), thiourea (10 mmol), ethyl acetoacetate (10 mmol) and a catalytic amount of concentrated hydrochloric acid in ethanol

Received 6 September 2017 Accepted 6 October 2017

Edited by W. T. A. Harrison, University of Aberdeen, Scotland

IUCrData

Keywords: crystal structure; DHPM derivative; hydrogen bonding.

CCDC reference: 1578486

Structural data: full structural data are available from iucrdata.iucr.org

Figure 1

The molecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level.

Figure 2

Unit-cell packing of the title compound, showing N2-H2 \cdots S2 and N1-H1 \cdots S1 interactions as dotted lines. H atoms not involved in hydrogen bonding have been excluded.

Figure 3 The reaction scheme for the preparation of the title compound.

$D - H \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - H \cdots A$
$N1-H1\cdots S1^{i}$	0.88	2.47	3.315 (2)	160
$N1' - H1' \cdots S1$	0.88	2.49	3.316 (2)	156
$N2-H2 \cdot \cdot \cdot S2$	0.88	2.65	3.431 (2)	148
$N2' - H2' \cdots O2^{ii}$	0.88	1.97	2.833 (3)	168
$C1-H1C\cdots O2'^{iii}$	0.98	2.58	3.477 (5)	152
$C1' - H1'2 \cdot \cdot \cdot O2^{ii}$	0.98	2.56	3.377 (4)	141
$C16-H16A\cdots S1^{i}$	0.98	2.77	3.717 (3)	162
Symmetry codes: $x + \frac{1}{2}, -y + \frac{3}{2}, z - \frac{1}{2}.$	(i) $-x, -y$	+2, -z; (ii	i) $-x - \frac{1}{2}, y - \frac{1}{2}$	$, -z - \frac{1}{2};$ (iii)

Table 2Experimental details.

Crystal data	
Chemical formula	$C_{16}H_{20}N_2O_2S$
M _r	304.40
Crystal system, space group	Monoclinic, $P2_1/n$
Temperature (K)	100
a, b, c (Å)	14.4124 (7), 14.9172 (6), 15.1412 (6)
β (°)	100.377 (1)
$V(Å^3)$	3202.0 (2)
Z	8
Radiation type	Μο Κα
$\mu (\text{mm}^{-1})$	0.21
Crystal size (mm)	$0.15 \times 0.15 \times 0.14$
Data collection	
Diffractometer	Bruker SMART APEX CCD
Absorption correction	Multi-scan (SADABS; Bruker, 1998)
T_{\min}, T_{\max}	0.969, 0.971
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	25239, 5637, 4227
R _{int}	0.049
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.595
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.049, 0.146, 0.78
No. of reflections	5637
No. of parameters	407
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({ m e} { m \AA}^{-3})$	0.51, -0.34

Computer programs: SMART and SAINT-Plus (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015) and CAMERON (Watkin et al., 1996).

(20 ml) was refluxed for 8 h (Fig. 3). The reaction mixture was allowed to stand overnight at room temperature. The solid thus separated was neutralized by using aqueous sodium carbonate solution and the obtained precipitate was filtered and washed with a mixture of ethanol and water (1:1) and recrystallized from *N*,*N*-dimethylformamide solution yielding pale-yellow blocks of the title compound (Yield: 84%; m.p. 423–425 K) IR (KBr) ν cm⁻¹: 3298, 3174 (NH), 2982 (CH), 1702 (C=O), 1596 (C=C), 1567 (C=N). ¹H NMR (500 MHz, DMSO-*d*₆) *d*: 8.95 (*s*, 1H), 8.05 (*s*, 1H), 6.80–6.90 (*m*, 3H), 5.45 (*s*, 1H), 3.85 (*q*, 2H), 2.30 (*s*, 6H), 2.20 (*s*, 3H), 0.97 (*t*, 3H). Mass (*m*/*z*): 304 *M*, 305 *M*⁺, 199 (base peak), 231, 171.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

References

- Bruker. (1998). *SMART*, *SAINT-Plus* and *SADABS*. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cochran, J. C., Gatial, J. E., Kapoor, T. M. & Gilbert, S. P. (2005). J. Biol. Chem. 280, 12658–12667.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.

- Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). *CAMERON*. Chemical Crystallography Laboratory, University of Oxford, England.
- Zorkun, I. S., İnci, S., Saraç, S., Çelebi, S. & Erol, K. (2006). Bioorg. Med. Chem. 14, 8582–8589.

full crystallographic data

IUCrData (2017). 2, x171440 [https://doi.org/10.1107/S2414314617014407]

Ethyl 4-(2,5-dimethylphenyl)-6-methyl-2-sulfanylidene-1,2,3,4-tetrahydropyrimidine-5-carboxylate

Shashi R and Noor Shahina Begum

Ethyl 4-(2,5-dimethylphenyl)-6-methyl-2-sulfanylidene-1,2,3,4-tetrahydropyrimidine-5-carboxylate

Crystal data

C16H20N2O2S $M_r = 304.40$ Monoclinic, $P2_1/n$ a = 14.4124 (7) Å *b* = 14.9172 (6) Å c = 15.1412 (6) Å $\beta = 100.377 (1)^{\circ}$ V = 3202.0 (2) Å³ Z = 8

Data collection

Bruker SMART APEX CCD
diffractometer
ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
$T_{\min} = 0.969, \ T_{\max} = 0.971$
25239 measured reflections

Refinement

Refinement on F^2 Primary atom site location: structure-invariant Least-squares matrix: full direct methods $R[F^2 > 2\sigma(F^2)] = 0.049$ Hydrogen site location: inferred from $wR(F^2) = 0.146$ neighbouring sites S = 0.78H-atom parameters constrained 5637 reflections $w = 1/[\sigma^2(F_o^2) + (0.090P)^2 + 7.9246P]$ where $P = (F_0^2 + 2F_c^2)/3$ 407 parameters 0 restraints $(\Delta/\sigma)_{\rm max} = 0.001$ $\Delta \rho_{\rm max} = 0.51 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles, correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

F(000) = 1296 $D_{\rm x} = 1.263 {\rm Mg m^{-3}}$ Mo *K* α radiation, $\lambda = 0.71073$ Å Cell parameters from 5637 reflections $\theta = 2.0-25.0^{\circ}$ $\mu = 0.21 \text{ mm}^{-1}$ T = 100 KBlock, pale yellow $0.15 \times 0.15 \times 0.14 \text{ mm}$

5637 independent reflections 4227 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.049$ $\theta_{\rm max} = 25.0^{\circ}, \ \theta_{\rm min} = 2.0^{\circ}$ $h = -17 \rightarrow 17$ $k = -17 \rightarrow 17$ $l = -17 \rightarrow 18$

 $\Delta \rho_{\rm min} = -0.34 \text{ e} \text{ Å}^{-3}$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
S 1	0.00143 (5)	0.85136 (5)	0.03650 (4)	0.02149 (19)	
S2	-0.12626 (5)	0.60299 (5)	-0.02637 (5)	0.0300 (2)	
01	-0.20098 (14)	0.83962 (13)	-0.39604 (12)	0.0256 (5)	
O2	-0.13530 (14)	0.97632 (13)	-0.38361 (13)	0.0271 (5)	
N2′	-0.30632 (16)	0.63422 (15)	-0.01800 (16)	0.0237 (5)	
H2′	-0.3173	0.5816	-0.0440	0.028*	
N1	-0.02760 (15)	0.94157 (15)	-0.11651 (14)	0.0194 (5)	
H1	-0.0160	0.9892	-0.0821	0.023*	
N2	-0.06218 (16)	0.79254 (15)	-0.12882 (14)	0.0211 (5)	
H2	-0.0544	0.7385	-0.1053	0.025*	
C2	-0.03058 (18)	0.86416 (18)	-0.07630 (18)	0.0190 (6)	
C5	-0.10039 (19)	0.87969 (18)	-0.26024 (18)	0.0196 (6)	
N1′	-0.20635 (16)	0.75143 (15)	0.02123 (15)	0.0235 (5)	
H1′	-0.1486	0.7701	0.0420	0.028*	
C4	-0.10644 (19)	0.80106 (18)	-0.21849 (18)	0.0224 (6)	
C6	-0.04177 (19)	0.95575 (18)	-0.21342 (17)	0.0196 (6)	
H6	-0.0778	1.0128	-0.2276	0.024*	
C6′	-0.2839 (2)	0.81632 (19)	0.02050 (19)	0.0242 (6)	
H6′	-0.2666	0.8567	0.0736	0.029*	
C14′	-0.25847 (19)	0.96154 (18)	-0.0615 (2)	0.0224 (6)	
C1′	-0.4641 (2)	0.6189 (2)	0.0127 (2)	0.0292 (7)	
H1′1	-0.4559	0.5894	0.0715	0.044*	
H1′2	-0.4688	0.5734	-0.0346	0.044*	
H1′3	-0.5219	0.6549	0.0037	0.044*	
C3	-0.14684 (19)	0.90319 (18)	-0.35165 (18)	0.0214 (6)	
C10′	-0.3412 (2)	0.8390 (2)	-0.1455 (2)	0.0293 (7)	
H10′	-0.3662	0.7800	-0.1464	0.035*	
01′	-0.41751 (19)	0.89949 (17)	0.0866 (2)	0.0715 (10)	
C5′	-0.3723 (2)	0.76588 (19)	0.03087 (19)	0.0266 (7)	
C11	0.1992 (2)	0.8927 (2)	-0.2667 (2)	0.0312 (7)	
C9′	-0.29503 (19)	0.87409 (18)	-0.0645 (2)	0.0232 (6)	
C9	0.0534 (2)	0.96553 (19)	-0.24365 (18)	0.0224 (6)	
C10	0.1109 (2)	0.8900 (2)	-0.24104 (18)	0.0246 (6)	
H10	0.0892	0.8348	-0.2211	0.030*	
C16′	-0.2128 (2)	1.00512 (19)	0.0250 (2)	0.0286 (7)	
H2'1	-0.1864	1.0632	0.0121	0.043*	
H2′2	-0.1623	0.9665	0.0560	0.043*	
H2′3	-0.2601	1.0141	0.0633	0.043*	
C2′	-0.2169 (2)	0.66710 (19)	-0.00703 (18)	0.0238 (6)	
C4′	-0.3815 (2)	0.6781 (2)	0.00902 (18)	0.0244 (6)	
C7	-0.2443 (2)	0.8619 (2)	-0.48809 (19)	0.0302 (7)	
H7A	-0.1962	0.8847	-0.5216	0.036*	
H7B	-0.2932	0.9086	-0.4885	0.036*	
C1	-0.1571 (2)	0.7181 (2)	-0.2567 (2)	0.0331 (7)	
H1A	-0.2253	0.7288	-0.2671	0.050*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

H1B	-0.1415	0.6684	-0.2143	0.050*	
H1C	-0.1377	0.7029	-0.3136	0.050*	
C16	0.0274 (2)	1.1324 (2)	-0.2750(2)	0.0333 (7)	
H16A	0.0249	1.1514	-0.2135	0.050*	
H16B	-0.0367	1.1215	-0.3076	0.050*	
H16C	0.0570	1.1797	-0.3054	0.050*	
C12′	-0.3134(2)	0.9720 (2)	-0.2225 (2)	0.0290 (7)	
H12′	-0.3183	1.0060	-0.2762	0.035*	
C14	0.0843 (2)	1.0479 (2)	-0.27263 (19)	0.0272 (7)	
C13	0.1725 (2)	1.0494 (2)	-0.2994 (2)	0.0348 (8)	
H13	0.1948	1.1043	-0.3197	0.042*	
O2′	-0.5221 (2)	0.78754 (19)	0.0748 (3)	0.0772 (11)	
C11′	-0.3520 (2)	0.8869 (2)	-0.2253 (2)	0.0304 (7)	
C13′	-0.2677 (2)	1.0080 (2)	-0.1422 (2)	0.0290 (7)	
H13′	-0.2418	1.0665	-0.1422	0.035*	
C8	-0.2873 (3)	0.7777 (2)	-0.5298 (2)	0.0446 (9)	
H8A	-0.2381	0.7322	-0.5288	0.067*	
H8B	-0.3174	0.7896	-0.5920	0.067*	
H8C	-0.3347	0.7560	-0.4959	0.067*	
C15′	-0.4070 (3)	0.8492 (2)	-0.3117 (2)	0.0433 (9)	
H3′1	-0.4013	0.8895	-0.3615	0.065*	
H3′2	-0.4736	0.8435	-0.3067	0.065*	
H3′3	-0.3819	0.7901	-0.3230	0.065*	
C15	0.2608 (2)	0.8103 (3)	-0.2595 (2)	0.0421 (9)	
H15A	0.2970	0.8056	-0.1983	0.063*	
H15B	0.3043	0.8149	-0.3021	0.063*	
H15C	0.2212	0.7570	-0.2732	0.063*	
C12	0.2280 (2)	0.9737 (2)	-0.2972 (2)	0.0366 (8)	
H12	0.2868	0.9772	-0.3170	0.044*	
C3′	-0.4458 (3)	0.8152 (2)	0.0651 (3)	0.0499 (10)	
C7A′	-0.4956 (5)	0.9670 (5)	0.0962 (8)	0.059 (2)	0.555 (7)
H7A1	-0.5440	0.9687	0.0408	0.071*	0.555 (7)
H7A2	-0.5264	0.9508	0.1474	0.071*	0.555 (7)
C8A'	-0.4474 (4)	1.0547 (4)	0.1120 (5)	0.050 (2)	0.555 (7)
H8A1	-0.3936	1.0492	0.1615	0.075*	0.555 (7)
H8A2	-0.4917	1.0994	0.1274	0.075*	0.555 (7)
H8A3	-0.4251	1.0735	0.0575	0.075*	0.555 (7)
C7B′	-0.4663 (6)	0.9414 (5)	0.1581 (6)	0.0317 (19)	0.445 (7)
H7B1	-0.4485	1.0055	0.1617	0.038*	0.445 (7)
H7B2	-0.5349	0.9392	0.1343	0.038*	0.445 (7)
C8B′	-0.4528 (5)	0.9071 (6)	0.2546 (6)	0.043 (2)	0.445 (7)
H8B1	-0.4764	0.8455	0.2548	0.065*	0.445 (7)
H8B2	-0.4877	0.9455	0.2897	0.065*	0.445 (7)
H8B3	-0.3856	0.9082	0.2811	0.065*	0.445 (7)

data reports

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U ³³	U^{12}	U ¹³	U^{23}
S1	0.0266 (4)	0.0218 (4)	0.0167 (3)	-0.0018 (3)	0.0055 (3)	-0.0007 (3)
S2	0.0321 (4)	0.0230 (4)	0.0364 (4)	0.0024 (3)	0.0098 (3)	0.0027 (3)
01	0.0309 (11)	0.0270 (11)	0.0181 (10)	-0.0065 (9)	0.0018 (8)	0.0002 (9)
O2	0.0308 (11)	0.0222 (11)	0.0274 (11)	-0.0013 (9)	0.0027 (9)	0.0056 (9)
N2′	0.0287 (13)	0.0192 (12)	0.0243 (13)	-0.0049 (10)	0.0079 (10)	-0.0017 (10)
N1	0.0256 (12)	0.0169 (12)	0.0169 (12)	-0.0017 (9)	0.0071 (9)	-0.0031 (10)
N2	0.0316 (13)	0.0152 (11)	0.0168 (12)	0.0004 (10)	0.0050 (10)	0.0010 (10)
C2	0.0179 (13)	0.0200 (14)	0.0204 (14)	0.0008 (11)	0.0070 (11)	-0.0023 (12)
C5	0.0225 (14)	0.0189 (14)	0.0184 (14)	-0.0010 (11)	0.0063 (11)	-0.0029 (12)
N1′	0.0250 (13)	0.0228 (13)	0.0239 (13)	-0.0058 (10)	0.0074 (10)	-0.0033 (10)
C4	0.0276 (15)	0.0203 (14)	0.0209 (14)	-0.0030 (12)	0.0084 (12)	-0.0030 (12)
C6	0.0274 (15)	0.0158 (13)	0.0161 (14)	0.0006 (11)	0.0049 (11)	0.0004 (11)
C6′	0.0288 (15)	0.0207 (14)	0.0259 (15)	-0.0053 (12)	0.0119 (12)	-0.0054 (13)
C14′	0.0159 (14)	0.0205 (14)	0.0316 (16)	0.0027 (11)	0.0063 (12)	0.0011 (12)
C1′	0.0311 (16)	0.0266 (16)	0.0307 (17)	-0.0075 (13)	0.0077 (13)	0.0010 (13)
C3	0.0219 (14)	0.0221 (15)	0.0214 (15)	0.0016 (11)	0.0072 (11)	-0.0015 (12)
C10′	0.0396 (18)	0.0244 (15)	0.0285 (17)	-0.0106 (13)	0.0181 (14)	-0.0056 (14)
01′	0.0527 (17)	0.0398 (15)	0.140 (3)	-0.0169 (13)	0.0657 (19)	-0.0429 (17)
C5′	0.0310 (16)	0.0253 (16)	0.0264 (16)	-0.0050 (12)	0.0128 (13)	-0.0003 (13)
C11	0.0276 (16)	0.0446 (19)	0.0212 (15)	0.0020 (14)	0.0040 (12)	-0.0039 (14)
C9′	0.0226 (15)	0.0207 (14)	0.0295 (16)	0.0010 (11)	0.0129 (12)	-0.0039 (12)
C9	0.0282 (15)	0.0249 (15)	0.0138 (14)	-0.0062 (12)	0.0034 (11)	-0.0012 (12)
C10	0.0273 (16)	0.0288 (16)	0.0180 (14)	-0.0021 (12)	0.0046 (12)	-0.0005 (12)
C16′	0.0282 (16)	0.0177 (14)	0.0386 (18)	-0.0026 (12)	0.0030 (13)	0.0005 (13)
C2′	0.0316 (16)	0.0238 (15)	0.0162 (14)	-0.0030 (12)	0.0052 (12)	0.0039 (12)
C4′	0.0300 (16)	0.0274 (16)	0.0171 (14)	-0.0040 (12)	0.0077 (12)	0.0031 (12)
C7	0.0302 (16)	0.0400 (18)	0.0194 (15)	-0.0028 (14)	0.0021 (12)	0.0006 (14)
C1	0.050 (2)	0.0220 (15)	0.0257 (16)	-0.0104 (14)	0.0039 (14)	-0.0001 (13)
C16	0.050 (2)	0.0264 (16)	0.0251 (16)	-0.0083 (14)	0.0100 (14)	0.0013 (13)
C12′	0.0326 (17)	0.0257 (16)	0.0315 (17)	0.0061 (13)	0.0133 (13)	0.0064 (14)
C14	0.0345 (17)	0.0302 (16)	0.0166 (14)	-0.0075 (13)	0.0042 (12)	0.0007 (13)
C13	0.0389 (19)	0.0416 (19)	0.0249 (16)	-0.0154 (15)	0.0084 (14)	0.0032 (15)
O2′	0.0587 (18)	0.0531 (17)	0.139 (3)	-0.0233 (14)	0.069 (2)	-0.0380 (19)
C11′	0.0317 (17)	0.0310 (17)	0.0316 (17)	-0.0010 (13)	0.0136 (13)	-0.0023 (14)
C13′	0.0251 (16)	0.0206 (15)	0.0420 (19)	0.0016 (12)	0.0085 (13)	0.0033 (14)
C8	0.058 (2)	0.052 (2)	0.0238 (17)	-0.0221 (18)	0.0064 (16)	-0.0058 (16)
C15′	0.055 (2)	0.049 (2)	0.0278 (18)	-0.0102 (17)	0.0109 (16)	-0.0017 (16)
C15	0.0326 (18)	0.060 (2)	0.0347 (19)	0.0101 (16)	0.0073 (14)	-0.0096 (17)
C12	0.0258 (17)	0.058 (2)	0.0282 (17)	-0.0070 (15)	0.0093 (13)	-0.0019 (16)
C3′	0.046 (2)	0.038 (2)	0.077 (3)	-0.0149 (17)	0.039 (2)	-0.0178 (19)
C7A′	0.042 (4)	0.052 (5)	0.091 (7)	0.007 (4)	0.033 (5)	-0.015 (5)
C8A'	0.035 (4)	0.037 (4)	0.080 (5)	0.009 (3)	0.015 (3)	-0.023 (4)
C7B′	0.030 (4)	0.022 (4)	0.047 (5)	0.005 (3)	0.016 (4)	-0.008 (4)
C8B′	0.032 (4)	0.050 (5)	0.051 (5)	-0.005 (4)	0.012 (4)	-0.011 (4)

Geometric parameters (Å, °)

S1—C2	1.698 (3)	C10—H10	0.9500
S2—C2′	1.687 (3)	C16'—H2'1	0.9800
O1—C3	1.331 (3)	C16'—H2'2	0.9800
O1—C7	1.459 (3)	C16'—H2'3	0.9800
O2—C3	1.217 (3)	C7—C8	1.489 (4)
N2′—C2′	1.361 (4)	С7—Н7А	0.9900
N2′—C4′	1.389 (4)	С7—Н7В	0.9900
N2'—H2'	0.8800	C1—H1A	0.9800
N1—C2	1.310 (3)	C1—H1B	0.9800
N1—C6	1.460 (3)	C1—H1C	0.9800
N1—H1	0.8800	C16—C14	1.501 (4)
N2—C2	1.360 (3)	C16—H16A	0.9800
N2-C4	1.398 (3)	C16—H16B	0.9800
N2—H2	0.8800	C16—H16C	0.9800
C5-C4	1 343 (4)	C12'-C13'	1.382(4)
C_{5}	1 467 (4)	C12' - C11'	1.382(1) 1 383(4)
C_{5}	1 513 (4)	C12′—H12′	0.9500
N1' - C2'	1.318(1) 1 328(4)	C12 $C12$ $C13$	1403(4)
N1′C6′	1.320(4) 1 477(4)	C_{13} C_{12} C_{12}	1.403(4) 1 381(5)
N1′H1′	0.8800	C13_H13	0.9500
C_{4} C_{1}	1 400 (4)	O_2' O_2'	1.208(4)
C_{4}	1.499 (4)	$C_{11'}$ $C_{15'}$	1.203(4) 1.512(5)
С6 Н6	1.0000	C13' H13'	0.9500
C6' - C5'	1.511 (4)		0.9500
C6' - C9'	1.511(4) 1 533 (4)		0.9800
Сб' Нб'	1.0000		0.9800
C14'-C13'	1 391 (4)	C15'H3'1	0.9800
C14' - C15'	1.391(4) 1 405 (4)	$C_{15} - H_{5}$	0.9800
$C_{14} = C_{3}$	1.403(4)	C15' - H3'2	0.9800
C1' = C10	1.303(4) 1.402(4)	$C_{15} = H_{15}$	0.9800
C1' = C4	0.0800	C15 H15B	0.9800
C1' = H1'2	0.9800	C15 H15C	0.9800
C1 - H12	0.9800	C12 H12	0.9800
C10' $C11'$	1.388(4)	C7A' $C8A'$	1.470(10)
C10 - C11	1.300 (4)	C/A - CoA	0.0000
C10 - C9	1.309 (4)	C/A - H/AI	0.9900
C10 - H10	0.9300	$C/A - \pi/A2$	0.9900
01 - C3	1.344 (4)		0.9800
OI = C/B	1.327(7)	CoA - HoA2	0.9800
OI - C/A	1.536 (7)	$C3A^2$ —H8A3	0.9800
$C3^{\prime}$	1.351 (4)	$C/B = C8B^{\circ}$	1.527 (12)
C_{3}	1.459 (4)	C/B - H/BI	0.9900
C11—C12	1.383 (5)	$C/B' - H'/B'_2$	0.9900
	1.597 (4)		0.9800
	1.508 (5)	C8B'—H8B2	0.9800
C9—C10	1.395 (4)	С8В'—Н8В3	0.9800
C9—C14	1.404 (4)		

~ ~ ~ ~=			
C3—O1—C7	115.5 (2)	С8—С7—Н7А	110.4
C2'—N2'—C4'	124.5 (2)	O1—C7—H7B	110.4
C2'—N2'—H2'	117.8	C8—C7—H7B	110.4
C4'—N2'—H2'	117.8	H7A—C7—H7B	108.6
C2—N1—C6	125.8 (2)	C4—C1—H1A	109.5
C2—N1—H1	117.1	C4—C1—H1B	109.5
C6—N1—H1	117.1	H1A—C1—H1B	109.5
C2—N2—C4	122.8 (2)	C4—C1—H1C	109.5
C2—N2—H2	118.6	H1A—C1—H1C	109.5
C4—N2—H2	118.6	H1B—C1—H1C	109.5
N1—C2—N2	117.1 (2)	C14—C16—H16A	109.5
N1 - C2 - S1	122.8 (2)	C14—C16—H16B	109.5
N2-C2-S1	120.1(2)	H16A—C16—H16B	109.5
C4-C5-C3	1265(3)	C14—C16—H16C	109.5
C4-C5-C6	120.9(2)	H16A—C16—H16C	109.5
C_{3} C_{5} C_{6}	1126.9(2)	H_{16B} C_{16} H_{16C}	109.5
C_{2}^{2} N1' C6'	112.0(2) 125.1(2)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	109.5
$C_2 = N_1 = C_0$	125.1 (2)	C13' - C12' - C11'	110 7
$C_2 = N_1 = H_1$	117.4	C13 - C12 - H12	119.7
$C_0 = N_1 = H_1$	11/.4 118.7(2)	$C_{11} = C_{12} = H_{12}$	119.7 117.4(2)
C_{3} C_{4} C_{1}	116.7(2)	$C_{13} - C_{14} - C_{9}$	117.4(3)
C_{3}	127.4(3)	C13 - C14 - C16	119.9 (3)
$N_2 - C_4 - C_1$	115.9 (2)	C9 - C14 - C10	122.7 (3)
NI - C6 - C5	109.1 (2)	C12 - C13 - C14	122.0 (3)
NI-C6-C9	110.1 (2)	C12—C13—H13	119.0
C5—C6—C9	112.7 (2)	C14—C13—H13	119.0
NI	108.2	C12'—C11'—C10'	117.7 (3)
С5—С6—Н6	108.2	C12'—C11'—C15'	120.9 (3)
С9—С6—Н6	108.2	C10'—C11'—C15'	121.4 (3)
N1'—C6'—C5'	108.9 (2)	C12'—C13'—C14'	122.3 (3)
N1'—C6'—C9'	109.8 (2)	C12'—C13'—H13'	118.8
C5'—C6'—C9'	113.9 (2)	C14'—C13'—H13'	118.8
N1'—C6'—H6'	108.0	С7—С8—Н8А	109.5
С5'—С6'—Н6'	108.0	C7—C8—H8B	109.5
С9'—С6'—Н6'	108.0	H8A—C8—H8B	109.5
C13'—C14'—C9'	117.3 (3)	C7—C8—H8C	109.5
C13'—C14'—C16'	120.5 (3)	H8A—C8—H8C	109.5
C9'—C14'—C16'	122.2 (3)	H8B—C8—H8C	109.5
C4′—C1′—H1′1	109.5	C11'—C15'—H3'1	109.5
C4′—C1′—H1′2	109.5	C11'—C15'—H3'2	109.5
H1′1—C1′—H1′2	109.5	H3'1—C15'—H3'2	109.5
C4′—C1′—H1′3	109.5	С11'—С15'—НЗ'З	109.5
H1′1—C1′—H1′3	109.5	H3'1—C15'—H3'3	109.5
H1′2—C1′—H1′3	109.5	H3′2—C15′—H3′3	109.5
O2—C3—O1	123.2 (3)	C11—C15—H15A	109.5
O2—C3—C5	121.2 (3)	C11—C15—H15B	109.5
O1—C3—C5	115.6 (2)	H15A—C15—H15B	109.5
C11′—C10′—C9′	122.3 (3)	C11—C15—H15C	109.5
	~ /		

С11′—С10′—Н10′	118.8	H15A—C15—H15C	109.5
C9'—C10'—H10'	118.8	H15B—C15—H15C	109.5
C3'—O1'—C7B'	113.4 (4)	C13—C12—C11	121.1 (3)
C3'—O1'—C7A'	116.2 (4)	C13—C12—H12	119.5
C4′—C5′—C3′	122.0 (3)	C11—C12—H12	119.5
C4'—C5'—C6'	120.3 (3)	O2'—C3'—O1'	122.2 (3)
C3'—C5'—C6'	117.7 (3)	O2'—C3'—C5'	127.3 (3)
C12—C11—C10	117.4 (3)	O1′—C3′—C5′	110.5 (3)
C12—C11—C15	121.9 (3)	C8A'—C7A'—O1'	105.4 (5)
C10-C11-C15	120.7 (3)	C8A'—C7A'—H7A1	110.7
C10'—C9'—C14'	119.7 (3)	O1'—C7A'—H7A1	110.7
C10'—C9'—C6'	119.4 (2)	C8A'—C7A'—H7A2	110.7
C14′—C9′—C6′	120.9 (3)	O1'—C7A'—H7A2	110.7
C10—C9—C14	119.7 (3)	H7A1—C7A'—H7A2	108.8
С10—С9—С6	118.3 (2)	C7A'—C8A'—H8A1	109.5
C14—C9—C6	122.0 (3)	C7A'—C8A'—H8A2	109.5
C9—C10—C11	122.4 (3)	H8A1—C8A'—H8A2	109.5
C9—C10—H10	118.8	C7A'—C8A'—H8A3	109.5
C11—C10—H10	118.8	H8A1—C8A'—H8A3	109.5
C14′—C16′—H2′1	109.5	H8A2—C8A'—H8A3	109.5
C14′—C16′—H2′2	109.5	C8B'—C7B'—O1'	123.0 (6)
H2'1—C16'—H2'2	109.5	C8B'—C7B'—H7B1	106.6
C14′—C16′—H2′3	109.5	O1′—C7B′—H7B1	106.6
H2'1—C16'—H2'3	109.5	C8B'—C7B'—H7B2	106.6
H2'2—C16'—H2'3	109.5	O1′—C7B′—H7B2	106.6
N1′—C2′—N2′	115.6 (3)	H7B1—C7B′—H7B2	106.5
N1′—C2′—S2	123.1 (2)	C7B'—C8B'—H8B1	109.5
N2′—C2′—S2	121.4 (2)	C7B'—C8B'—H8B2	109.5
C5'—C4'—N2'	118.8 (3)	H8B1—C8B′—H8B2	109.5
C5'—C4'—C1'	127.5 (3)	C7B'—C8B'—H8B3	109.5
N2′—C4′—C1′	113.7 (2)	H8B1—C8B'—H8B3	109.5
O1—C7—C8	106.6 (3)	H8B2—C8B'—H8B3	109.5
O1—C7—H7A	110.4		
C6—N1—C2—N2	-9.6 (4)	C14—C9—C10—C11	-0.2 (4)
C6—N1—C2—S1	171.3 (2)	C6—C9—C10—C11	-179.5 (3)
C4—N2—C2—N1	-11.8 (4)	C12—C11—C10—C9	-1.3 (4)
C4—N2—C2—S1	167.3 (2)	C15—C11—C10—C9	177.6 (3)
C3—C5—C4—N2	-175.8 (2)	C6'—N1'—C2'—N2'	-15.3 (4)
C6—C5—C4—N2	3.9 (4)	C6'—N1'—C2'—S2	166.0 (2)
C3—C5—C4—C1	3.6 (5)	C4'—N2'—C2'—N1'	-8.7 (4)
C6—C5—C4—C1	-176.7 (3)	C4'—N2'—C2'—S2	170.1 (2)
C2—N2—C4—C5	14.3 (4)	C3'—C5'—C4'—N2'	-176.1 (3)
C2—N2—C4—C1	-165.2 (3)	C6'—C5'—C4'—N2'	3.7 (4)
C2—N1—C6—C5	24.5 (3)	C3'—C5'—C4'—C1'	1.9 (5)
C2—N1—C6—C9	-99.7 (3)	C6'—C5'—C4'—C1'	-178.3 (3)
C4—C5—C6—N1	-20.8 (3)	C2'—N2'—C4'—C5'	14.1 (4)
C3—C5—C6—N1	159.0 (2)	C2'—N2'—C4'—C1'	-164.1 (3)

C4—C5—C6—C9	101.9 (3)	C3—O1—C7—C8	170.5 (3)
C3—C5—C6—C9	-78.3 (3)	C10-C9-C14-C13	1.1 (4)
C2'—N1'—C6'—C5'	29.5 (4)	C6—C9—C14—C13	-179.7 (3)
C2'—N1'—C6'—C9'	-95.9 (3)	C10-C9-C14-C16	-178.4 (3)
C7—O1—C3—O2	1.9 (4)	C6—C9—C14—C16	0.9 (4)
C7—O1—C3—C5	-177.8 (2)	C9-C14-C13-C12	-0.4 (4)
C4—C5—C3—O2	-178.8 (3)	C16—C14—C13—C12	179.1 (3)
C6—C5—C3—O2	1.5 (4)	C13'—C12'—C11'—C10'	-1.5 (4)
C4—C5—C3—O1	0.9 (4)	C13'—C12'—C11'—C15'	176.3 (3)
C6-C5-C3-O1	-178.8 (2)	C9'—C10'—C11'—C12'	1.1 (4)
N1'—C6'—C5'—C4'	-22.4 (4)	C9'—C10'—C11'—C15'	-176.6 (3)
C9'—C6'—C5'—C4'	100.5 (3)	C11'—C12'—C13'—C14'	-0.1 (4)
N1'—C6'—C5'—C3'	157.5 (3)	C9'—C14'—C13'—C12'	2.0 (4)
C9'—C6'—C5'—C3'	-79.6 (4)	C16'—C14'—C13'—C12'	-176.7 (3)
C11'—C10'—C9'—C14'	0.8 (4)	C14—C13—C12—C11	-1.2 (5)
C11'—C10'—C9'—C6'	-178.6 (3)	C10-C11-C12-C13	2.0 (5)
C13'—C14'—C9'—C10'	-2.3 (4)	C15-C11-C12-C13	-176.9 (3)
C16'—C14'—C9'—C10'	176.4 (3)	C7B'-O1'-C3'-O2'	25.2 (7)
C13'—C14'—C9'—C6'	177.1 (2)	C7A'	-18.2 (8)
C16'—C14'—C9'—C6'	-4.2 (4)	C7B'-O1'-C3'-C5'	-154.5 (5)
N1'—C6'—C9'—C10'	78.3 (3)	C7A'	162.2 (5)
C5'—C6'—C9'—C10'	-44.1 (3)	C4'—C5'—C3'—O2'	-3.2 (7)
N1'—C6'—C9'—C14'	-101.1 (3)	C6'—C5'—C3'—O2'	177.0 (4)
C5'—C6'—C9'—C14'	136.5 (3)	C4'—C5'—C3'—O1'	176.4 (3)
N1-C6-C9-C10	69.9 (3)	C6'—C5'—C3'—O1'	-3.4 (5)
C5-C6-C9-C10	-52.2 (3)	C3'—O1'—C7A'—C8A'	-175.3 (6)
N1-C6-C9-C14	-109.4 (3)	C3'—O1'—C7B'—C8B'	65.6 (8)
C5—C6—C9—C14	128.5 (3)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
$N1$ — $H1$ ···· $S1^{i}$	0.88	2.47	3.315 (2)	160
N1'—H1'…S1	0.88	2.49	3.316 (2)	156
N2—H2…S2	0.88	2.65	3.431 (2)	148
N2'—H2'…O2 ⁱⁱ	0.88	1.97	2.833 (3)	168
C1—H1 <i>C</i> ···O2′ ⁱⁱⁱ	0.98	2.58	3.477 (5)	152
C1′—H1′2···O2 ⁱⁱ	0.98	2.56	3.377 (4)	141
C16—H16A…S1 ⁱ	0.98	2.77	3.717 (3)	162

Symmetry codes: (i) -x, -y+2, -z; (ii) -x-1/2, y-1/2, -z-1/2; (iii) x+1/2, -y+3/2, z-1/2.