ISSN 2414-3146

Received 11 September 2017
Accepted 24 October 2017

Edited by W. T. A. Harrison, University of Aberdeen, Scotland

Keywords: crystal structure; organobromine compound; cycloalkyne.

CCDC reference: 1581763
Structural data: full structural data are available from iucrdata.iucr.org

(1E,5E)-2,5-Dibromocyclododeca-1,5-dien-9-yne

Heiner Detert* and Dieter Schollmeyer

University of Mainz, Institut of Organic Chemistry, Duesbergweg 10-14, 55099 Mainz, Germany. *Correspondence e-mail: detert@uni-mainz.de

The title compound, $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{Br}_{2}$, was prepared by bromination/dehydrobromination of E, E, Z-cyclododecatriene. The crystal is composed of $C_{2^{-}}$ symmetrical molecules with an E conformation of the bromoalkene fragments and nearly linear alkyne units. The torsion angles in the ring suggest significant ring strain.

Structure description

Dibromocyclododecatriene has been prepared as intermediate for the selective synthesis of (Z, Z, Z)-cyclododecatriene (Trauer \& Haufe, 1988) and cyclotridecatrienes (Trauer \& Haufe, 1990). The former is a valuable intermediate for the preparation of cyclododecatriyne (Barkovich \& Vollhardt, 1976) and hexaradialene (Barkovich et al. 1980). Currently, strained alkynes are central coupling partners in click chemistry. Even medium-sized cycloalkynes can be highly strained (Meier et al. 1982; Bissinger et al. 1988).

The orthorhombic unit cell of the title compound (Fig. 1) is filled with four identical molecules of C_{2} symmetry: the X-ray analysis gives proof for the E-conformation of the bromovinylene units. The C_{2}-symmetrical molecule shows a nearly perfect linearity of the alkyne unit with bond angles at the $s p$ carbon atoms of 178.4 (4) ${ }^{\circ}$. Whereas the ethylene unit $\mathrm{C} 1-\mathrm{C} 1^{\mathrm{i}}$ [symmetry code: (i) $-x, y,-z+\frac{1}{2}$] possesses quasi ideal bond and torsion angles, the bond angles at $\mathrm{C} 4\left[\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5=112.0(6)^{\circ}\right]$ and $\mathrm{C} 5[\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6=$ $\left.113.9(6)^{\circ}\right]$ are slightly opened. The same holds for the $s p^{2}$ carbon atoms $[\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 1=$ $\left.128.0(6)^{\circ}\right]$. These deformations and the torsion angles $\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5=-102.7$ (8) and $\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6=73.4(8)^{\circ}$ indicate geometrical ring strain even in a macrocyclic alkyne. In the crystal (Fig. 2), no directional interactions beyond normal van der Waals contacts could be identified.

Figure 1
View of the title compound. Displacement ellipsoids are drawn at the 50% probability level. Atoms with the suffix a are generated by the symmetry operation $-x, y,-z+\frac{1}{2}$.

Synthesis and crystallization

The title compound was prepared in a two-step procedure. First, $40.5 \mathrm{~g}(0.25 \mathrm{~mol})$ of $E, E, Z-1,5,9$-cyclododecatriene in a Morton flask (21) containing 11 anhydrous ether was cooled in an ice bath $\left(\mathrm{CaCl}_{2}\right.$ tube $)$. A solution of 120.0 g , of bromine (0.75 mol) in dichloromethane in a constant addition funnel with Mariott tube (NORMAG) was added dropwise to the heavily stirred solution. When the colour vanished, 100 ml of petroleum ether was added slowly and the precipitate was collected on a Büchner funnel, yield: 132.8 g (83%) of a white powder with m.p. 471 K . Dehydrobromination of 6.4 g of the

Table 1
Experimental details.
Crystal data

Chemical formula	$\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{Br}_{2}$
M_{r}	318.05
Crystal system, space group	Orthorhombic, Pbcn
Temperature (K)	120
$a, b, c(\AA)$	$16.8714(12), 7.7191(4), 9.1556(5)$
$V\left(\AA^{3}\right)$	$1192.35(12)$
Z	4
Radiation type	Mo $\mathrm{K} \alpha$
$\mu\left(\mathrm{mm}^{-1}\right)$	6.76
Crystal size (mm)	$0.27 \times 0.23 \times 0.22$
Data collection	
Diffractometer	Stoe IPDS 2T
Absorption correction	Integration $(X-R E D 32 ;$ Stoe \& Cie
	$2006 \mathrm{~b})$
$T_{\text {min }}, T_{\text {max }}$	$0.190,0.356$
No. of measured, independent and	$7295,1465,1204$
\quad observed $[I>2 \sigma(I)]$ reflections	
$R_{\text {int }}$	0.031
(sin $\theta / \lambda)_{\text {max }}\left(\AA^{-1}\right)$	0.665
Refinement	
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$	$0.061,0.193,1.20$
No. of reflections	1465
No. of parameters	64
H-atom treatment	H -atom parameters constrained
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA{ }^{-3}\right)$	$1.54,-0.69$

Computer programs: X-AREA and X-RED32 (Stoe \& Cie, 2006), SHELXT2014 (Sheldrick, 2015a) and SHELXL2017 (Sheldrick, 2015b).
hexabromocyclododecane with sodium ethanolate in ethanol was performed according to Trauer \& Haufe (1988) and yielded 2.13 g (65%) of an off-white powder with m.p. 431 K . Colourless blocks were grown via slow evaporation of a solution in chloroform and 2-propanol (1:1).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1.

References

Barkovich, A. J., Strauss, E. S. \& Vollhardt, K. P. C. (1980). Isr. J. Chem. 20, 225-232.
Barkovich, A. J. \& Vollhardt, K. P. C. (1976). J. Am. Chem. Soc. 98, 2667-2668.
Bissinger, H. J., Detert, H. \& Meier, H. (1988). Liebigs Ann. Chem. pp. 221-224.
Meier, H., Molz, T., Merkle, U., Echter, T. \& Lorch, M. (1982). Liebigs Ann. Chem. pp. 914-923.
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
Stoe \& Cie (2006). X-AREA and X-RED32. Stoe \& Cie, Darmstadt, Germany.
Trauer, H. \& Haufe, G. (1988). Z. Chem. 28, 290-291.
Trauer, H. \& Haufe, G. (1990). J. Chem. Res. (S), 7, 210-211.

full crystallographic data

IUCrData (2017). 2, x171550 [https://doi.org/10.1107/S2414314617015504]

(1E,5E)-2,5-Dibromocyclododeca-1,5-dien-9-yne

Heiner Detert and Dieter Schollmeyer

(1E,5E)-2,5-Dibromocyclododeca-1,5-dien-9-yne

Crystal data

$\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{Br}_{2}$
$M_{r}=318.05$
Orthorhombic, Pbcn
$a=16.8714$ (12) \AA
$b=7.7191$ (4) \AA
$c=9.1556$ (5) \AA
$V=1192.35(12) \AA^{3}$
$Z=4$
$F(000)=624$

Data collection

Stoe IPDS 2T
diffractometer
Radiation source: sealed X-ray tube, 12×0.4
mm long-fine focus
Plane graphite monochromator
Detector resolution: 6.67 pixels mm^{-1}
rotation method scans
Absorption correction: integration
(X-RED32; Stoe \& Cie, 2006b)

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.061$
$w R\left(F^{2}\right)=0.193$
$S=1.20$
1465 reflections
64 parameters
0 restraints
$D_{\mathrm{x}}=1.772 \mathrm{Mg} \mathrm{m}^{-3}$
Melting point: 431 K
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 9463 reflections
$\theta=2.4-28.4^{\circ}$
$\mu=6.76 \mathrm{~mm}^{-1}$
$T=120 \mathrm{~K}$
Block, colourless
$0.27 \times 0.23 \times 0.22 \mathrm{~mm}$
$T_{\text {min }}=0.190, T_{\text {max }}=0.356$
7295 measured reflections
1465 independent reflections
1204 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.031$
$\theta_{\text {max }}=28.2^{\circ}, \theta_{\text {min }}=2.4^{\circ}$
$h=-22 \rightarrow 22$
$k=-10 \rightarrow 10$
$l=-11 \rightarrow 12$

Primary atom site location: structure-invariant direct methods
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{0}{ }^{2}\right)+(0.0757 P)^{2}+11.4374 P\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=1.54 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.69 \mathrm{e}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Hydrogen atoms attached to carbons were placed at calculated positions with $\mathrm{C}-\mathrm{H}=0.95 \AA\left(s p^{2}\right)$ or 0.99 $\AA\left(s p^{3} \mathrm{C}\right.$-atom). All H atoms were refined in the riding-model approximation with isotropic displacement parameters (set at 1.2-1.5 times of the $U_{\text {eq }}$ of the parent atom).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
Br1	$0.15412(3)$	$0.49337(7)$	$0.37567(6)$	$0.0204(3)$
C1	$0.0288(3)$	$0.3816(8)$	$0.1832(7)$	$0.0243(12)$
H1A	0.010594	0.295662	0.110314	0.029^{*}
H1B	0.028447	0.497259	0.136454	0.029^{*}
C2	$0.1119(3)$	$0.3376(8)$	$0.2315(7)$	$0.0223(12)$
C3	$0.1575(3)$	$0.2044(9)$	$0.1877(8)$	$0.0265(13)$
H3	0.208538	0.193789	0.230594	0.032^{*}
C4	$0.1342(4)$	$0.0716(9)$	$0.0768(8)$	$0.0300(14)$
H4A	0.179279	0.051056	0.009796	0.036^{*}
H4B	0.089357	0.116479	0.018263	0.036^{*}
C5	$0.1100(5)$	$-0.1000(9)$	$0.1478(8)$	$0.0339(16)$
H5A	0.109077	-0.191212	0.071789	0.041^{*}
H5B	0.150743	-0.132693	0.220615	0.041^{*}
C6	$0.0324(4)$	$-0.0948(8)$	$0.2201(8)$	$0.0305(14)$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br 1	$0.0147(4)$	$0.0213(4)$	$0.0251(4)$	$-0.00532(19)$	$-0.0026(2)$	$0.00172(19)$
C 1	$0.017(2)$	$0.026(3)$	$0.031(3)$	$0.001(2)$	$-0.002(3)$	$0.001(3)$
C 2	$0.020(3)$	$0.025(3)$	$0.022(3)$	$-0.002(2)$	$-0.001(2)$	$0.005(2)$
C 3	$0.018(3)$	$0.031(3)$	$0.031(3)$	$0.002(2)$	$0.001(2)$	$0.005(3)$
C 4	$0.025(3)$	$0.039(4)$	$0.025(3)$	$0.005(3)$	$0.002(3)$	$-0.001(3)$
C 5	$0.033(4)$	$0.027(3)$	$0.042(4)$	$0.009(3)$	$0.004(3)$	$-0.001(3)$
C 6	$0.038(3)$	$0.025(3)$	$0.029(3)$	$-0.001(3)$	$-0.002(3)$	$0.000(3)$

Geometric parameters ($A,{ }^{\circ}$)

$\mathrm{Br} 1-\mathrm{C} 2$	$1.922(6)$	$\mathrm{C} 4-\mathrm{C} 5$	$1.531(11)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.509(8)$	$\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	0.9900
$\mathrm{C} 1-\mathrm{C} 1^{\mathrm{i}}$	$1.562(12)$	$\mathrm{C} 4-\mathrm{H} 4 \mathrm{~B}$	0.9900
$\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	0.9900	$\mathrm{C} 5-\mathrm{C} 6$	$1.469(10)$
$\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	0.9900	$\mathrm{C} 5-\mathrm{H} 5 \mathrm{~A}$	0.9900
$\mathrm{C} 2-\mathrm{C} 3$	$1.346(9)$	$\mathrm{C} 5-\mathrm{H} 5 \mathrm{~B}$	0.9900
$\mathrm{C} 3-\mathrm{C} 4$	$1.495(10)$	$\mathrm{C} 6-\mathrm{C}^{\mathrm{i}}$	$1.222(14)$
$\mathrm{C} 3-\mathrm{H} 3$	0.9500		
			109.2
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 1^{\mathrm{i}}$	$110.4(6)$	$\mathrm{C} 3-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	109.2
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	109.6	$\mathrm{C} 5-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	109.2
$\mathrm{C} 1-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	109.6	$\mathrm{C} 3-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~B}$	109.2

$\mathrm{C} 1-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	109.6	$\mathrm{H} 4 \mathrm{~A}-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~B}$	107.9
$\mathrm{H} 1 \mathrm{~A}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	108.1	$\mathrm{C} 6-\mathrm{C} 5-\mathrm{C} 4$	$113.9(6)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 1$	$128.0(6)$	$\mathrm{C} 6-\mathrm{C} 5-\mathrm{H} 5 \mathrm{~A}$	108.8
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{Br} 1$	$118.1(5)$	$\mathrm{C} 4-\mathrm{C} 5-\mathrm{H} 5 \mathrm{~A}$	108.8
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{Br} 1$	$113.9(4)$	$\mathrm{C} 6-\mathrm{C} 5-\mathrm{H} 5 \mathrm{~B}$	108.8
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$125.2(6)$	$\mathrm{C} 4-\mathrm{C} 5-\mathrm{H} 5 \mathrm{~B}$	108.8
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3$	117.4	$\mathrm{H} 5 \mathrm{~A}-\mathrm{C} 5-\mathrm{H} 5 \mathrm{~B}$	107.7
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3$	117.4	$\mathrm{C} 6-\mathrm{C} 6-\mathrm{C} 5$	$178.4(4)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$112.0(6)$		
$\mathrm{C} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$120.5(6)$	$\mathrm{Br} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$-179.9(5)$
$\mathrm{C} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{Br} 1$	$-58.5(4)$	$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$-102.7(8)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$1.2(11)$		$73.4(8)$

[^0]
[^0]: Symmetry code: (i) $-x, y,-z+1 / 2$.

