

IUCrData

ISSN 2414-3146

Received 26 August 2017 Accepted 14 October 2017

Edited by P. C. Healy, Griffith University, Australia

Keywords: crystal structure; piperidine; hydrogen bonds.

CCDC reference: 1580031

Structural data: full structural data are available from iucrdata.iucr.org

(3-Hydroxypiperidin-1-yl)(4-methylphenyl)methanone

S. Gomathi,^a D. Reuben Jonathan,^b U. Mohamooda Sumaya,^c E. R. A. Dravida Thendral^d and G. Usha^d*

^aDepartment of Physics, Bhaktavatsalam Memorial College for Women, Korattur, Chennai-80, Tamilnadu, India, ^bDepartment of Chemistry, Madras Christian College, Chennai-59, India, ^cDepartment of Physics, Bharathi Women's College, Chennai 600 108, Tamilnadu, India, and ^dPG and Research Department of Physics, Queen Mary's College, Chennai-4, Tamilnadu, India. *Correspondence e-mail: guqmc@yahoo.com

In the title molecule, $C_{13}H_{17}NO_2$, the piperidine ring assumes a chair conformation. The dihedral angle between the mean plane of the piperidine ring and the benzene ring is 45.49 (1)°. In the crystal, molecules are linked by $O-H\cdots O$ intermolecular hydrogen bonds, leading to a molecular chain running along the *c*-axis direction. The atoms of the hydroxy piperidine ring and the methyl group of methylphenyl ring are disordered over two sets of sites with refined occupancies of 0.754 (5) and 0.246 (5).

Structure description

Piperidine and its derivative have played vital roles in the design of pharmaceutical drugs (Das & Brahmachari, 2013). It has been shown that the antioxidant activity of the title molecule can be enhanced by the substitution of hydroxyl, methoxy, nitro and alkyl groups on the piperidine ring system (Ravindernath & Reddy, 2017).

In the compound (Fig. 1), the bond lengths are typical of such derivatives and are in good agreement with literature values (Allen *et al.*, 1987). The C–N distances [1.370 (5)–1.464 (5) Å], C=O distance [1.189 (5) Å] and C–O distance [1.399 (5) Å] are in good agreement with the values of similar reported structures (Revathi *et al.*, 2015; Prathebha *et al.*, 2015). The +*syn*-periplanar(+*sp*) orientation of the keto group with the hydroxy-piperidine ring is revealed by the torsion angle O1–C8–N1–C9 [15.1 (6)]°. The total angle (359.5°) around the N atom indicates *sp*² hybridization of this atom. The piperidine ring (N1/C9–C13) adopts a chair conformation with puckering parameters q2 = 0.0097 (4), q3 = 0.5605 (4), $Q_{\rm T}= 0.5605$ (4) Å, $\varphi 2 = -22$ (21)° and $\theta 2 = 1.0$ (4)°. Atoms

Table 1		
Hydrogen-bond	geometry (Å	, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$C9-H9B\cdotsO1^{i}$ $O2-H2\cdotsO1^{ii}$ $O2'-H2'\cdotsO1'^{ii}$	0.97	2.66	3.598 (7)	163
	0.82	2.02	2.802 (7)	159
	0.82	2.07	2.70 (3)	134

Symmetry codes: (i) $-x, -y, z - \frac{1}{2}$; (ii) x, y, z - 1.

C10 and C13 deviate by -0.233 (2) and 0.243 (2) Å, respectively, from the mean plane through all ring atoms.

In the crystal, molecules are linked through $O-H \cdots O$ hydrogen bonds (Table 1, Fig. 2), forming chains running parallel to [001].

Synthesis and crystallization

The title compound was synthesized following a published procedure (Revathi et al., 2015). In a 250 ml round-bottomed flask, 15 ml of ethyl methyl ketone was added to 3-hydroxy piperidine (0.01 mol; 1 g m) and stirred at room temperature. After 5 min, triethylamine (0.02 mol; 1.3 ml) was added and the mixture stirred for 15 min. Then 4-methyl benzoyl chloride (0.02 mol; 1.2 ml) and 15 ml of ethyl methyl ketone were added and the reaction mixture stirred at room temperature for 2 h. A white precipitate was formed which was filtered off. The filtrate was evaporated to give the crude product. It was then recrystallized twice from ethyl methyl ketone to give

Figure 1

ORTEP-3 for Windows (Farrugia, 2012) plot of the title compound, with displacement ellipsoids drawn at the 30% probability level.

Crystal data	
Chemical formula	$C_{13}H_{17}NO_2$
M _r	219.28
Crystal system, space group	Orthorhombic, Pca2 ₁
Temperature (K)	293
a, b, c (Å)	24.8766 (14), 6.1117 (4), 7.9388 (4)
$V(\text{\AA}^3)$	1207.00 (12)
Ζ	4
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	0.08
Crystal size (mm)	$0.30 \times 0.25 \times 0.20$
Data collection	
Diffractometer	Bruker Kappa APEXII CCD
Absorption correction	Multi-scan (<i>SADABS</i> ; Bruker, 2004)
T_{\min}, T_{\max}	0.976, 0.984
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	20282, 2385, 1692
R _{int}	0.055
$(\sin \theta / \lambda)_{\max} (\mathring{A}^{-1})$	0.617
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.039, 0.099, 1.11
No. of reflections	2385
No. of parameters	230
No. of restraints	99
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({\rm e} {\rm \AA}^{-3})$	0.13, -0.11
Absolute structure	Flack x determined using 675 quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$ (Parsons <i>et al</i> , 2013)
Absolute structure parameter	0.3 (5)

Computer programs: APEX2, SAINT and XPREP (Bruker, 2004), SHELXS97 and SHELXL97 (Sheldrick, 2008) and ORTEP-3 for Windows (Farrugia, 2012).

Figure 2 The crystal packing of the title compound, viewed along the b axis with hydrogen bonds indicated by dashed lines.

yellow block-like crystals of the title compound (m.p. 70° C, yield 82%).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. The atoms of the hydroxy piperidine ring and the methyl group of methylphenyl ring are disordered over two sets of sites with refined occupancies of 0.754 (5) and 0.246 (5).

Acknowledgements

The authors thank the Central Instrumentation Facility, Queen Mary's College, Chennai-4 for computing facility and the SAIF, IIT, Madras, for the X-ray data collection facility.

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Das, S. & Brahmachari, G. (2013). J. Org. Biomol. Chem. 1, 33-46.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.
- Prathebha, K., Reuben Jonathan, D., Revathi, B. K., Sathya, S. & Usha, G. (2015). *Acta Cryst.* E71, 039–040.
- Ravindernath, A. & Reddy, M. S. (2017). Arabian J. Chem. 10, s1172s1179.
- Revathi, B. K., Reuben Jonathan, D., Kalai Sevi, K., Dhanalakshmi, K. & Usha, G. (2015). Acta Cryst. E71, 0817–0818.
- Revathi, B. K., Reuben Jonathan, D., Sathya, S., Prathebha, K. & Usha, G. (2015). *Acta Cryst.* E71, o359–o360.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

full crystallographic data

IUCrData (2017). 2, x171493 [https://doi.org/10.1107/S2414314617014936]

(3-Hydroxypiperidin-1-yl)(4-methylphenyl)methanone

S. Gomathi, D. Reuben Jonathan, U. Mohamooda Sumaya, E. R. A. Dravida Thendral and G.

Usha

(3-Hydroxypiperidin-1-yl)(4-methylphenyl)methanone

Crystal data

C₁₃H₁₇NO₂ $M_r = 219.28$ Orthorhombic, *Pca2*₁ Hall symbol: P 2c -2ac a = 24.8766 (14) Å b = 6.1117 (4) Å c = 7.9388 (4) Å V = 1207.00 (12) Å³ Z = 4

Data collection

Bruker Kappa APEXII CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω and \ f scan Absorption correction: multi-scan (SADABS; Bruker, 2004) $T_{\min} = 0.976, T_{\max} = 0.984$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.039$ $wR(F^2) = 0.099$ S = 1.112385 reflections 230 parameters 99 restraints Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites F(000) = 472 $D_x = 1.207 \text{ Mg m}^{-3}$ Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 2385 reflections $\theta = 0.8 - 0.7^{\circ}$ $\mu = 0.08 \text{ mm}^{-1}$ T = 293 KBlock, yellow $0.30 \times 0.25 \times 0.20 \text{ mm}$

20282 measured reflections 2385 independent reflections 1692 reflections with $I > 2\sigma(I)$ $R_{int} = 0.055$ $\theta_{max} = 26.0^{\circ}, \ \theta_{min} = 3.3^{\circ}$ $h = -30 \rightarrow 30$ $k = -7 \rightarrow 7$ $l = -9 \rightarrow 9$

H-atom parameters constrained
$$\begin{split} & w = 1/[\sigma^2(F_o^2) + (0.0468P)^2 + 0.0531P] \\ & \text{where } P = (F_o^2 + 2F_c^2)/3 \\ (\Delta/\sigma)_{\text{max}} < 0.001 \\ \Delta\rho_{\text{max}} = 0.13 \text{ e } \text{Å}^{-3} \\ \Delta\rho_{\text{min}} = -0.11 \text{ e } \text{Å}^{-3} \\ & \text{Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4} \\ & \text{Extinction coefficient: } 0.141 (11) \\ & \text{Absolute structure: Flack x determined using 675 quotients } [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al. (2013) \\ & \text{Absolute structure parameter: } 0.3 (5) \end{split}$$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F² against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F², conventional R-factors R are based on F, with F set to zero for negative F². The threshold expression of F² > 2sigma(F²) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F² are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H atoms were positioned geometrically and treated as riding on their parent atoms and refined with, C—H distance of 0.93–0.98 Å, O—H of 0.82 Å with $U_{iso}(H)=1.5 U_{eq}(c-methyl)$, and $U_{iso}(H)=1.2Ueq(C)$ for other H atoms.

 $U_{\rm iso}^*/U_{\rm eq}$ Occ. (<1) х v Ζ -0.4020(4)C3 0.18222 (11) 1.0752 (3) 0.0762 (7) H3 0.1791 -0.53881.1256 0.091* C4 0.13647 (8) -0.2764(3)1.0519(3) 0.0670(6) H4 0.1032 -0.32741.0885 0.080* C5 0.14041 (8) -0.0763(3)0.9743(2)0.0576(5)C6 0.19040 (9) -0.0040(4)0.9234(3)0.0701 (6) 0.084* H6 0.1935 0.1314 0.8708 C7 0.23570 (8) -0.1285(4)0.9492(3)0.0748 (6) 0.090* H7 -0.07650.2690 0.9145 C8 0.09139 (9) 0.0653 (3) 0.9589(3)0.0666 (6) C2 0.23190 (9) -0.3301(4)0.0733 (7) 1.0261(3)C1 0.2817 (3) -0.4667(13)1.0622 (13) 0.116 (3) 0.754(5)-0.44720.174* H1A 0.3073 0.9729 0.754 (5) H1B 0.2719 -0.61831.0694 0.174* 0.754(5)H1C 0.2974 -0.42081.1669 0.174* 0.754(5)C9 0.02203 (13) 0.2386 (6) 0.7818 (4) 0.0590 (8) 0.754(5)H9A 0.0114 0.2993 0.8897 0.071* 0.754(5)H9B -0.00850.1612 0.7347 0.071* 0.754(5)C10 0.03892(17)0.4199 (6) 0.6648(5)0.0643 (10) 0.754 (5) H10A 0.0666 0.5071 0.7187 0.077* 0.754 (5) H10B 0.0084 0.5144 0.6428 0.077* 0.754(5)0.06016 (18) C11 0.3312 (8) 0.4998(5)0.0669 (12) 0.754 (5) H11A 0.0312 0.2601 0.4389 0.080* 0.754(5)H11B 0.4511 0.4313 0.080* 0.754(5)0.0734 C12 0.10493 (16) 0.1694(7)0.5298(4)0.0621 (9) 0.754(5)H12 0.1339 0.2492 0.5867 0.075* 0.754(5)C13 0.08638 (13) -0.0078(5)0.6499(3)0.0529 (8) 0.754(5)H13A 0.0579 -0.09230.5978 0.063* 0.754(5)H13B 0.1160 -0.10600.6740 0.063* 0.754 (5) N1 0.06702 (11) 0.8051 (3) 0.0498(7)0.754(5)0.0872 (5) 01 0.0701 (2) 0.1339(12)1.0822(7)0.0802 (15) 0.754(5)O2 0.12710 (16) 0.0789 (9) 0.3835 (4) 0.1091 (16) 0.754(5)H2 0.1294 0.3007 0.164* 0.1118 0.754 (5) C1′ 0.2820(6) -0.480(4)1.037(3)0.095 (7) 0.246 (5)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

H1′1	0.3139	-0.3949	1.0188	0.142*	0.246 (5)
H1′2	0.2796	-0.5919	0.9519	0.142*	0.246 (5)
H1′3	0.2835	-0.5473	1.1460	0.142*	0.246 (5)
C9′	0.0545 (5)	0.363 (2)	0.7878 (13)	0.081 (4)	0.246 (5)
H9′1	0.0743	0.4953	0.7602	0.097*	0.246 (5)
H9′2	0.0362	0.3883	0.8940	0.097*	0.246 (5)
C10′	0.0136 (5)	0.325 (3)	0.6554 (15)	0.081 (4)	0.246 (5)
H10C	-0.0066	0.4583	0.6364	0.097*	0.246 (5)
H10D	-0.0114	0.2131	0.6933	0.097*	0.246 (5)
C11′	0.0396 (6)	0.251 (3)	0.4900 (19)	0.087 (5)	0.246 (5)
H11C	0.0121	0.2065	0.4106	0.104*	0.246 (5)
H11D	0.0596	0.3717	0.4407	0.104*	0.246 (5)
C12′	0.0770 (6)	0.062 (2)	0.5267 (15)	0.083 (4)	0.246 (5)
H12′	0.0547	-0.0547	0.5744	0.100*	0.246 (5)
C13′	0.1182 (4)	0.1118 (19)	0.6524 (12)	0.071 (3)	0.246 (5)
H13C	0.1417	0.2262	0.6103	0.085*	0.246 (5)
H13D	0.1398	-0.0174	0.6734	0.085*	0.246 (5)
N1′	0.0927 (4)	0.1837 (17)	0.8095 (9)	0.064 (3)	0.246 (5)
O1′	0.0737 (10)	0.179 (4)	1.098 (3)	0.110 (8)	0.246 (5)
O2′	0.1012 (5)	-0.0230 (18)	0.3875 (13)	0.084 (3)	0.246 (5)
H2′	0.0802	-0.0193	0.3079	0.126*	0.246 (5)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C3	0.1035 (19)	0.0606 (13)	0.0644 (13)	0.0231 (12)	-0.0065 (13)	0.0065 (11)
C4	0.0729 (13)	0.0679 (14)	0.0601 (12)	0.0152 (10)	0.0062 (10)	0.0074 (10)
C5	0.0705 (13)	0.0611 (12)	0.0413 (9)	0.0178 (10)	0.0010 (9)	0.0032 (9)
C6	0.0805 (14)	0.0612 (11)	0.0686 (14)	0.0120 (11)	0.0052 (11)	0.0074 (10)
C7	0.0665 (13)	0.0795 (16)	0.0784 (14)	0.0045 (12)	-0.0032 (12)	-0.0057 (12)
C8	0.0769 (13)	0.0750 (14)	0.0477 (11)	0.0262 (11)	0.0040 (11)	0.0086 (10)
C2	0.0765 (16)	0.0815 (16)	0.0618 (14)	0.0287 (13)	-0.0157 (11)	-0.0186 (12)
C1	0.126 (6)	0.120 (6)	0.100 (5)	0.078 (5)	-0.028 (3)	-0.044 (4)
C9	0.0543 (17)	0.071 (2)	0.0519 (17)	0.0210 (15)	0.0023 (13)	0.0046 (14)
C10	0.075 (2)	0.059 (2)	0.059 (2)	0.0239 (16)	-0.0076 (18)	0.0038 (17)
C11	0.075 (3)	0.080(2)	0.0464 (19)	0.0186 (19)	-0.0010 (17)	0.0135 (17)
C12	0.062 (2)	0.086 (2)	0.0380 (16)	0.0183 (17)	0.0000 (13)	0.0011 (16)
C13	0.0557 (16)	0.0535 (17)	0.0494 (16)	0.0130 (14)	-0.0132 (12)	-0.0121 (13)
N1	0.0508 (15)	0.0529 (15)	0.0457 (12)	0.0118 (12)	-0.0007 (11)	0.0038 (11)
01	0.082 (2)	0.119 (4)	0.040 (2)	0.046 (2)	0.0107 (16)	0.002 (2)
O2	0.096 (3)	0.186 (5)	0.0448 (12)	0.071 (3)	0.0066 (16)	-0.003 (2)
C1′	0.041 (8)	0.153 (18)	0.090 (12)	0.015 (7)	-0.032 (7)	0.037 (11)
C9′	0.097 (8)	0.083 (7)	0.062 (6)	0.046 (6)	-0.020 (5)	-0.015 (5)
C10′	0.077 (8)	0.108 (9)	0.058 (6)	0.033 (6)	-0.016 (6)	-0.015 (7)
C11′	0.092 (9)	0.108 (10)	0.060 (6)	0.050 (8)	-0.019 (6)	-0.009 (7)
C12′	0.096 (8)	0.093 (8)	0.062 (6)	0.043 (7)	-0.019 (6)	-0.019 (6)
C13′	0.079 (7)	0.069 (6)	0.064 (6)	0.016 (6)	0.007 (5)	0.000 (5)
N1′	0.075 (6)	0.076 (6)	0.040 (4)	0.028 (5)	-0.014 (4)	-0.015 (4)

data reports

01′	0.188 (15)	0.085 (8)	0.057 (8)	0.075 (8)	-0.027 (7)	-0.036 (6)	
O2′	0.100 (8)	0.097 (7)	0.054 (4)	0.045 (5)	-0.003 (5)	-0.024 (4)	

Geometric parameters (Å, °)

C3—C2	1.368 (3)	C11—H11B	0.9700
C3—C4	1.385 (3)	C12—O2	1.399 (5)
С3—Н3	0.9300	C12—C13	1.515 (5)
C4—C5	1.373 (3)	C12—H12	0.9800
C4—H4	0.9300	C13—N1	1.444 (3)
C5—C6	1.380 (3)	C13—H13A	0.9700
C5—C8	1.500 (3)	C13—H13B	0.9700
C6—C7	1.375 (3)	O2—H2	0.8200
С6—Н6	0.9300	C1′—H1′1	0.9600
C7—C2	1.379 (3)	C1′—H1′2	0.9600
С7—Н7	0.9300	C1′—H1′3	0.9600
C8—O1	1.189 (5)	C9′—N1′	1.463 (11)
C8—N1	1.370 (3)	C9′—C10′	1.481 (14)
C8—O1′	1.37 (2)	С9′—Н9′1	0.9700
C8—N1′	1.390 (9)	С9′—Н9′2	0.9700
C2—C1	1.522 (5)	C10′—C11′	1.531 (15)
C2—C1′	1.551 (13)	C10'—H10C	0.9700
C1—H1A	0.9600	C10'—H10D	0.9700
C1—H1B	0.9600	C11′—C12′	1.512 (14)
C1—H1C	0.9600	C11′—H11C	0.9700
C9—N1	1.464 (3)	C11′—H11D	0.9700
C9—C10	1.506 (5)	C12′—O2′	1.362 (15)
С9—Н9А	0.9700	C12′—C13′	1.463 (14)
С9—Н9В	0.9700	C12'—H12'	0.9800
C10-C11	1.513 (5)	C13'—N1'	1.467 (11)
C10—H10A	0.9700	C13'—H13C	0.9700
C10—H10B	0.9700	C13'—H13D	0.9700
C11—C12	1.508 (5)	O2′—H2′	0.8200
C11—H11A	0.9700		
C2—C3—C4	121.7 (2)	C11—C12—C13	110.1 (3)
С2—С3—Н3	119.1	O2—C12—H12	106.8
С4—С3—Н3	119.1	C11—C12—H12	106.8
C5—C4—C3	119.7 (2)	C13—C12—H12	106.8
С5—С4—Н4	120.2	N1—C13—C12	110.6 (3)
C3—C4—H4	120.2	N1—C13—H13A	109.5
C4—C5—C6	118.73 (18)	C12—C13—H13A	109.5
C4—C5—C8	119.50 (18)	N1—C13—H13B	109.5
C6—C5—C8	121.60 (18)	С12—С13—Н13В	109.5
C7—C6—C5	121.2 (2)	H13A—C13—H13B	108.1
С7—С6—Н6	119.4	C8—N1—C13	125.0 (2)
С5—С6—Н6	119.4	C8—N1—C9	120.8 (2)
C6—C7—C2	120.3 (2)	C13—N1—C9	113.7 (2)

С6—С7—Н7	119.9	C12—O2—H2	109.5
С2—С7—Н7	119.9	C2—C1′—H1′1	109.5
O1—C8—N1	120.1 (3)	C2—C1′—H1′2	109.5
O1—C8—O1′	11.4 (14)	H1′1—C1′—H1′2	109.5
N1—C8—O1′	121.5 (11)	C2—C1′—H1′3	109.5
O1—C8—N1′	121.9 (5)	H1'1—C1'—H1'3	109.5
N1—C8—N1′	36.8 (4)	H1′2—C1′—H1′3	109.5
01′—C8—N1′	115.3 (11)	N1′—C9′—C10′	114.2 (9)
01	119.9 (3)	N1′—C9′—H9′1	108.7
N1-C8-C5	119.25 (19)	C10'-C9'-H9'1	108.7
01' - C8 - C5	119.20 (13)	N1′—C9′—H9′2	108.7
N1' - C8 - C5	110.5 (4)	C10'-C9'-H9'2	108.7
C_{3} C_{2} C_{7}	118 40 (19)	H9'1 - C9' - H9'2	107.6
C_{3} C_{2} C_{1}	1204(5)	C9'-C10'-C11'	1114(10)
C_{7} C_{2} C_{1}	120.1(5)	$C_{0}^{0} - C_{10}^{0} - H_{10}^{0} - H_{1$	109.3
C_{3} C_{2} C_{1}'	121.2(0) 121.3(0)	C11'-C10'-H10C	109.3
C_{7} C_{2} C_{1}'	121.5(0) 1100(0)	C_{0}^{0} $-C_{10}^{0}$ $-H_{10}^{0}$	109.3
$C_{1} = C_{2} = C_{1}$	81(13)	$C_{11'}$ $C_{10'}$ H_{10D}	109.5
$C_1 = C_2 = C_1$	100 5	H_{10} C_{10} H_{10}	109.5
$C_2 = C_1 = H_1 R$	109.5	$C_{12'}$ $C_{11'}$ $C_{10'}$	100.0 108.5(11)
$C_2 = C_1 = H_1C$	109.5	$C_{12} = C_{11} = C_{10}$	110.5 (11)
$V_2 = C_1 = H_1 C_2$	109.3		110.0
N1 = C9 = C10 N1 = C9 = H9A	109.2 (2)	C10 - C11 - H11D	110.0
$\begin{array}{ccc} \mathbf{N} & -\mathbf{C} & \mathbf{N} \\ \mathbf{C} & \mathbf{D} & \mathbf{C} & \mathbf{H} \\ \mathbf{O} & \mathbf{A} \end{array}$	109.8	$C_{12} = C_{11} = H_{11}$	110.0
C10 - C9 - H9A	109.8		110.0
N1 - C9 - H9B	109.8	$\frac{1}{1} = \frac{1}{1} = \frac{1}$	108.4
$U_{10} = C_{9} = H_{9}B$	109.8	02 - C12 - C13	108.8(10)
H9A - C9 - H9B	108.3	02 - C12 - C11	114.1(11) 112.8(11)
$C_{2} = C_{10} = C_{11}$	111.0 (3)	C13 - C12 - C11	113.8 (11)
C_{11} C_{10} H_{10A}	109.3	$O_2^{} C_{12}^{} H_{12}^{}$	106.5
C_{11} C_{10} H_{10} H_{10}	109.3	C13 - C12 - H12	100.5
CII CIO HIOD	109.3	$C12^{\circ}$ $H12^{\circ}$	100.5
CII—CIO—HI0B	109.3	C12' - C13' - N1'	109.8 (8)
HI0A—CI0—HI0B	108.0	C12'-C13'-H13C	109.7
C12-C11-C10	110.9 (3)	NI' - CI3' - HI3C	109.7
C12—C11—H11A	109.5	C12'—C13'—H13D	109.7
Cl0—Cl1—HIIA	109.5	NI'—C13'—H13D	109.7
C12—C11—H11B	109.5	H13C—C13'—H13D	108.2
C10—C11—H11B	109.5	C8—N1′—C9′	118.4 (8)
H11A—C11—H11B	108.1	C8—N1′—C13′	125.4 (7)
02	114.8 (3)	C9'—N1'—C13'	114.0 (8)
O2—C12—C13	111.1 (3)	C12'—O2'—H2'	109.5
C2—C3—C4—C5	1.4 (3)	N1′—C8—N1—C13	82.2 (6)
C3—C4—C5—C6	-0.9(3)	C5—C8—N1—C13	-3.4 (4)
C3—C4—C5—C8	-176.20 (19)	O1—C8—N1—C9	15.1 (6)
C4—C5—C6—C7	0.0 (3)	O1′—C8—N1—C9	1.9 (13)
C8—C5—C6—C7	175.2 (2)	N1′—C8—N1—C9	-89.1 (6)
C5—C6—C7—C2	0.3 (3)	C5—C8—N1—C9	-174.6 (2)

C4—C5—C8—O1	63.9 (5)	C12—C13—N1—C8	-112.6(4)
C6-C5-C8-O1	-111.3 (5)	C12—C13—N1—C9	59.2 (4)
C4—C5—C8—N1	-106.4 (3)	C10—C9—N1—C8	114.0 (4)
C6—C5—C8—N1	78.4 (3)	C10—C9—N1—C13	-58.2 (4)
C4—C5—C8—O1'	77.0 (13)	N1′—C9′—C10′—C11′	-50.2 (19)
C6-C5-C8-O1'	-98.2 (12)	C9'—C10'—C11'—C12'	51.2 (19)
C4—C5—C8—N1'	-146.0 (5)	C10'—C11'—C12'—O2'	177.8 (13)
C6—C5—C8—N1'	38.8 (6)	C10'—C11'—C12'—C13'	-56.6 (19)
C4—C3—C2—C7	-1.1 (3)	O2'—C12'—C13'—N1'	-174.5 (10)
C4—C3—C2—C1	176.7 (4)	C11′—C12′—C13′—N1′	57.1 (17)
C4—C3—C2—C1′	-174.0 (12)	O1—C8—N1′—C9′	-18.1 (12)
C6—C7—C2—C3	0.2 (3)	N1—C8—N1′—C9′	80.7 (10)
C6C7C1	-177.6 (4)	O1′—C8—N1′—C9′	-28.7 (16)
C6—C7—C2—C1′	173.2 (12)	C5—C8—N1′—C9′	-167.5 (8)
N1-C9-C10-C11	54.8 (5)	O1—C8—N1′—C13′	179.8 (9)
C9-C10-C11-C12	-54.5 (5)	N1—C8—N1′—C13′	-81.4 (10)
C10-C11-C12-O2	-179.9 (4)	O1′—C8—N1′—C13′	169.2 (14)
C10-C11-C12-C13	53.9 (5)	C5—C8—N1′—C13′	30.3 (12)
O2—C12—C13—N1	176.0 (3)	C10'—C9'—N1'—C8	-112.8 (14)
C11—C12—C13—N1	-55.7 (4)	C10'-C9'-N1'-C13'	51.3 (17)
O1-C8-N1-C13	-173.6 (5)	C12'—C13'—N1'—C8	109.9 (14)
O1'-C8-N1-C13	173.2 (13)	C12'—C13'—N1'—C9'	-52.9 (14)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	D—H··· A
C9—H9 <i>B</i> ···O1 ⁱ	0.97	2.66	3.598 (7)	163
O2—H2…O1 ⁱⁱ	0.82	2.02	2.802 (7)	159
O2'—H2'…O1' ⁱⁱ	0.82	2.07	2.70 (3)	134

Symmetry codes: (i) –*x*, –*y*, *z*–1/2; (ii) *x*, *y*, *z*–1.