ISSN 2414-3146

Received 25 September 2017 Accepted 7 October 2017

Edited by A. J. Lough, University of Toronto, Canada

Keywords: crystal structure; Cu–MOF; glutarate; 1,4-bis(pyridin-4-yl)butane.

CCDC reference: 1578612

Structural data: full structural data are available from iucrdata.iucr.org

Two-dimensional structure of poly[[[μ_2 -1,4-bis-(pyridin-4-yl)butane]bis(μ_4 -pentanedioato)-dicopper(II)] acetonitrile disolvate]

Do Nam Lee^a and Youngmee Kim^b*

^aIngenium College of Liberal Arts (Chemistry), Kwangwoon University, Seoul 01897, Republic of Korea, and ^bDepartment of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Republic of Korea. *Correspondence e-mail: ymeekim@ewha.ac.kr

In the title compound, {[$Cu_2(\mu_4-C_5H_6O_4)_2(\mu_2-C_{14}H_{16}N_2)$]·2CH₃CN}_n, the Cu₂ dinuclear units are connected by glutartate ligands, forming one-dimensional double chains. These chains, are in turn bridged by 1,4-bis(pyridin-4-yl)butane ligands to form a two-dimensional layer structure parallel to (112). The carboxylate groups of the glutarate ligand bridge two copper(II) ions, forming a paddle-wheel-type Cu₂(CO₂)₄ dinuclear secondary building unit. A crystal-lographic inversion centre is located midway between two Cu^{II} ions, with a Cu···Cu distance of 2.639 (3) Å. The coordination geometry of the unique Cu^{II} ion is slightly disorted square pyramidal, formed by four equatorial carboxylate O atoms and an axial pyridyl N atom.

Structure description

Metal–organic frameworks (MOFs) have been constructed using metal ions and polytopic bridging ligands, and MOFs usually provide high surfaces and large pore volumes, and are thereby suitable for various advanced applications, such as selective gas sorption, heterogeneous catalysis, separation, sensors, drug delivery and biological imaging. Flexible dicarboxylates, as well as rigid aromatic dicarboxylates, have been used for the synthesis of MOFs, and flexible dicarboxylates, *e.g.* α, ω -alkanedicarboxylates, have been shown to be particularly suitable as ligands in MOFs of various topologies. Recently, various MOFs containing these α, ω -alkane(or alkene)dicarboxylate ligands have been reported (Hyun *et al.*, 2013; Hwang *et al.*, 2012, 2013; Lee *et al.*, 2014; Kim *et al.*, 2017), athough they are less frequently employed in MOFs than aromatic dicarboxylates. We report herein the crystal structure of poly[[[μ_2 -1,4-bis(pyridin-4-yl)butane]bis(μ_4 -pentanedioato)dicopper(II)] acetonitrile disolvate].

A fragment of the title compound, showing displacement ellipsoids at the 30% probability level. [Symmetry codes: (i) 1 - x, 1 - y, 2 - z; (ii) 1 - x, -y, 2 - z; (iii) 3 - x, 1 - y, 1 - z.]

A fragment of the two-dimensional title compound is shown in Fig. 1. The Cu₂ dinuclear units are connected by glutartate ligands, forming one-dimensional double chains, and these chains are bridged by 1,4-bis(pyridin-4-yl)butane ligands to form a two-dimensional layer structure parallel to (112) (Fig. 2). The carboxylate groups of the glutarate ligands bridge two Cu^{II} ions, forming a paddle-wheel-type Cu₂(CO₂)₄ dinuclear secondary building unit. A crystallographic inver-

Figure 2

Two-dimensional structure of the title compound. The acetonitrile solvent molecules have been omitted for clarity.

Table 1	
Experimental details.	
Crystal data	
Chemical formula	$[Cu_2(C_5H_6O_4)_2(C_{14}H_{16}N_2)]$ -
	$2C_2H_3N$
M _r	681.67
Crystal system, space group	Triclinic, P1
Temperature (K)	170
a, b, c (Å)	7.7525 (11), 7.9962 (11), 12.8132 (18)
α, β, γ (°)	87.867 (2), 81.875 (2), 82.674 (2)
$V(Å^3)$	779.76 (19)
Z	1
- Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	1 42
Crystal size (mm)	$0.21 \times 0.10 \times 0.07$
erystar size (min)	0.21 × 0.10 × 0.07
Data collection	
Diffractometer	Bruker APEX CCD
Absorption correction	Multi-scan (<i>SADABS</i> ; Bruker,
T T	1997)
I_{\min}, I_{\max}	0.804, 0.910
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	4341, 2979, 1863
R _{int}	0.062
$(\sin \theta / \lambda)_{\text{max}} (\text{\AA}^{-1})$	0.617
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.047, 0.108, 0.89
No. of reflections	2979
No. of parameters	191
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}$, $\Delta \rho_{\rm min}$ (e Å ⁻³)	0.95, -0.38
$r \max r \min \langle r \rangle /$	· · · · · · · · · · · · · · · · · · ·

Computer programs: *SMART* (Bruker, 1997), *SAINT* (Bruker, 1997), *SHELXS97* (Sheldrick, 2008), *SHELXL2013* (Sheldrick, 2015), *DIAMOND* (Brandenburg & Berndt, 1998) and *SHELXTL* (Sheldrick, 2008).

sion centre is located midway between two Cu^{II} ions, with a $Cu \cdots Cu$ distance of 2.639 (3) Å. The coordination geometry of the unique Cu^{II} ion is slightly distorted square-pyramidal, constructed by four equatorial carboxylate O atoms and an axial pyridyl N atom.

Synthesis and crystallization

Glutaric acid (0.1 mmol, 13.3 mg) and $Cu(NO_3)_2 \cdot H_2O$ (0.1 mmol, 23.7 mg) were dissolved in 4 ml H₂O and carefully layered by a 4 ml acetonitrile solution of 1,4-bis(pyridin-4-yl)butane (0.2 mmol, 42.5 mg). Suitable crystals of the title compound were obtained within a few weeks.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1.

Funding information

This work was supported by the Basic Science Research Program of the National Research Foundation of Korea (NRF-2017R1D1A1A02017607) and by Kwangwoon University in the year 2017.

References

- Brandenburg, K. & Berndt, M. (1998). *DIAMOND*. Crystal Impact GbR, Bonn, Germany.
- Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Hwang, I. H., Bae, J. M., Kim, W.-S., Jo, Y. D., Kim, C., Kim, Y., Kim, S.-J. & Huh, S. (2012). *Dalton Trans.* 41, 12759–12763.
- Hwang, I. H., Kim, H.-Y., Lee, M. M., Na, Y. J., Kim, J. H., Kim, H.-C., Kim, C., Huh, S., Kim, Y. & Kim, S.-J. (2013). *Cryst. Growth Des.* 13, 4815–4823.
- Hyun, M. Y., Hwang, I. H., Lee, M. M., Kim, H., Kim, K. B., Kim, C.,
- Kim, H.-Y., Kim, Y. & Kim, S.-J. (2013). Polyhedron, 53, 166–171.
- Kim, H.-C., Huh, S., Kim, J. Y., Moon, H. R., Lee, D. N. & Kim, Y. (2017). CrystEngComm, **19**, 99–109.

Lee, M. M., Kim, H.-Y., Hwang, I. H., Bae, J. M., Kim, C., Yo, C.-H., Kim, Y. & Kim, S.-J. (2014). *Bull. Korean Chem. Soc.* **35**, 1777–1783.

- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.

full crystallographic data

IUCrData (2017). **2**, x171448 [https://doi.org/10.1107/S2414314617014481]

Two-dimensional structure of poly[[[μ_2 -1,4-bis(pyridin-4-yl)butane]bis(μ_4 -pentanedioato)dicopper(II)] acetonitrile disolvate]

Z = 1F(000) = 352

 $D_{\rm x} = 1.452 \text{ Mg m}^{-3}$

 $0.21 \times 0.10 \times 0.07 \text{ mm}$

 $\theta = 2.2 - 26.2^{\circ}$

 $\mu = 1.42 \text{ mm}^{-1}$ T = 170 K

Block, blue

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 2966 reflections

Do Nam Lee and Youngmee Kim

Poly[[$[\mu_2-1,4-bis(pyridin-4-yl)butane]bis(\mu_4-pentanedioato)dicopper(II)$] acetonitrile disolvate]

Crystal data

 $[Cu_{2}(C_{5}H_{6}O_{4})_{2}(C_{14}H_{16}N_{2})]_{2}C_{2}H_{3}N$ $M_{r} = 681.67$ Triclinic, $P\overline{1}$ a = 7.7525 (11) Å b = 7.9962 (11) Å c = 12.8132 (18) Å $a = 87.867 (2)^{\circ}$ $\beta = 81.875 (2)^{\circ}$ $\gamma = 82.674 (2)^{\circ}$ $V = 779.76 (19) \text{ Å}^{3}$

Data collection

Bruker APEX CCD	2979 independent reflections
diffractometer	1863 reflections with $I > 2\sigma(I)$
φ and ω scans	$R_{\rm int} = 0.062$
Absorption correction: multi-scan	$\theta_{\rm max} = 26.0^\circ, \ \theta_{\rm min} = 2.6^\circ$
(SADABS; Bruker, 1997)	$h = -9 \rightarrow 9$
$T_{\min} = 0.804, \ T_{\max} = 0.910$	$k = -9 \longrightarrow 9$
4341 measured reflections	$l = -15 \rightarrow 11$

Refinement

Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.047$	H-atom parameters constrained
$vR(F^2) = 0.108$	$w = 1/[\sigma^2(F_o^2) + (0.0347P)^2]$
S = 0.89	where $P = (F_o^2 + 2F_c^2)/3$
2979 reflections	$(\Delta/\sigma)_{\rm max} = 0.002$
191 parameters	$\Delta ho_{ m max} = 0.95 \ { m e} \ { m \AA}^{-3}$
) restraints	$\Delta \rho_{\min} = -0.38 \text{ e} \text{ Å}^{-3}$
$\begin{aligned} &[F^2 > 2\sigma(F^2)] = 0.047 \\ &vR(F^2) = 0.108 \\ &S = 0.89 \\ &2979 \text{ reflections} \\ &191 \text{ parameters} \\ &D \text{ restraints} \end{aligned}$	H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0347P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\text{max}} = 0.002$ $\Delta\rho_{\text{max}} = 0.95 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{\text{min}} = -0.38 \text{ e } \text{Å}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	r	12	7	<i>[]</i> */ <i>[</i>]
 Cu1	$\frac{1}{0.62490(7)}$	<u> </u>	0 92000 (4)	0.0290(2)
011	0.52490(7) 0.5339(4)	0.3241(4)	0.92000 (4)	0.0412 (8)
012	0.5559(4)	0.3241(4) 0.7057(4)	1.0021(2)	0.0412 (0)
021	0.7596 (4)	0.7097(1) 0.3508(4)	1.0021(2) 1.0043(2)	0.0404(8)
022	0.4478(4)	0.5500(1) 0.6742(4)	0.8592(2)	0.0381(8)
N31	0.8414(5)	0.5712(1)	0.0352(2) 0.7959(3)	0.0331(9)
C11	0.6111(5) 0.4123(6)	0.3371(1) 0.2480(5)	0.9120(4)	0.0306(10)
C12	0.3767 (6)	0.2100(5) 0.0878(5)	0.9120(1) 0.8647(4)	0.0380(11)
H12A	0.4735	-0.0019	0.8752	0.046*
H12R	0.3788	0.0019	0.7877	0.046*
C13	0.2032(5)	0.0246 (5)	0.9092(4)	0.0347(11)
H13A	0.1965	0.0125	0.9868	0.042*
H13R	0.1051	0.1095	0.8937	0.042*
C21	0.7012 (6)	0.1099	1 0915 (4)	0.042
C22	0.7012(0) 0.8184(6)	0.2000(5) 0.1436(5)	1.0919(4) 1.1359(3)	0.0343(11)
H22A	0.7890	0.1389	1 2136	0.041*
H22R H22B	0.9424	0.1650	1 1189	0.041*
C31	1,0050 (6)	0.1050 0.4805(5)	0.8086 (3)	0.0336(11)
H31	1.0250	0.4252	0.8735	0.040*
C32	1.1470 (6)	0.4962 (6)	0.7344(4)	0.040
H32	1.1470 (0)	0.4501	0.7344 (4)	0.045*
C33	1.1231 (6)	0.5799 (6)	0.7479 0.6399 (4)	0.0396 (12)
C34	0.9544(6)	0.5799(0) 0.6400(7)	0.6355(1)	0.0550(12)
H34	0.9313	0.6981	0.5625	0.067*
C35	0.8182 (6)	0.6158 (6)	0.5025 0.7042 (4)	0.007
H35	0.7020	0.6571	0.6923	0.056*
C36	1.2771(7)	0.6114 (7)	0.5565 (4)	0.050 0.0684(17)
H36A	1.2771 (7)	0.6280	0.4876	0.082*
H36B	1 3180	0.0200	0.5729	0.082*
C37	1.5100	0.4809(7)	0.5723 0.5443 (4)	0.0622 (16)
H37A	1.3902	0.3717	0.5311	0.075*
H37B	1.3902	0.4690	0.6111	0.075*
N1S	1.1372 (9)	0.4890	0.6005 (5)	0.105 (2)
CIS	1.1972(9) 1.0053(11)	0.0854(8)	0.6009(5) 0.6449(6)	0.077(2)
C2S	0.8316 (9)	0.0004(0) 0.0014(0)	0.7021 (6)	0.077(2)
H2S1	0.7528	0.0535	0.6569	0.160*
H2S2	0.7891	0.2073	0.7238	0.160*
H2S3	0.8342	0.0174	0.7230	0.160*
11205	0.0012	0.01/7	0.7077	0.100

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
Cul	0.0282 (3)	0.0198 (3)	0.0365 (3)	-0.0045 (2)	0.0048 (2)	0.0014 (2)
011	0.045 (2)	0.0324 (18)	0.044 (2)	-0.0143 (16)	0.0101 (16)	-0.0085 (15)
O12	0.043 (2)	0.0332 (19)	0.045 (2)	-0.0158 (16)	0.0044 (16)	-0.0070 (15)

O21	0.0339 (19)	0.0395 (19)	0.043 (2)	0.0011 (15)	0.0032 (15)	0.0080 (15)
O22	0.0339 (19)	0.0339 (18)	0.0423 (19)	0.0012 (15)	0.0019 (15)	0.0093 (15)
N31	0.031 (2)	0.031 (2)	0.036 (2)	-0.0069 (18)	-0.0005 (18)	0.0012 (17)
C11	0.032 (3)	0.023 (2)	0.037 (3)	0.001 (2)	-0.007 (2)	0.000 (2)
C12	0.044 (3)	0.027 (3)	0.044 (3)	-0.010 (2)	-0.004 (2)	-0.004 (2)
C13	0.031 (3)	0.020 (2)	0.053 (3)	-0.001 (2)	-0.008 (2)	-0.005 (2)
C21	0.031 (3)	0.019 (2)	0.044 (3)	-0.008 (2)	-0.006 (2)	-0.003 (2)
C22	0.028 (3)	0.023 (2)	0.053 (3)	-0.006 (2)	-0.009 (2)	0.003 (2)
C31	0.031 (3)	0.031 (3)	0.037 (3)	-0.004 (2)	0.001 (2)	0.004 (2)
C32	0.027 (3)	0.039 (3)	0.046 (3)	-0.001 (2)	-0.002 (2)	-0.001 (2)
C33	0.036 (3)	0.036 (3)	0.043 (3)	-0.006 (2)	0.011 (2)	-0.001 (2)
C34	0.043 (3)	0.071 (4)	0.046 (3)	0.001 (3)	0.002 (3)	0.020 (3)
C35	0.025 (3)	0.062 (4)	0.050 (3)	0.002 (2)	-0.002 (2)	0.014 (3)
C36	0.051 (4)	0.074 (4)	0.071 (4)	-0.010 (3)	0.019 (3)	0.015 (3)
C37	0.044 (3)	0.076 (4)	0.058 (4)	-0.008 (3)	0.020 (3)	0.001 (3)
N1S	0.108 (5)	0.103 (5)	0.098 (5)	-0.003 (5)	-0.001 (4)	0.017 (4)
C1S	0.090 (6)	0.062 (4)	0.072 (5)	0.008 (4)	-0.004 (4)	0.004 (4)
C2S	0.102 (6)	0.084 (5)	0.125 (6)	0.007 (5)	-0.002 (5)	-0.003 (4)

Geometric parameters (Å, °)

Cu1—O21	1.959 (3)	C22—H22A	0.9900
Cu1-011	1.970 (3)	C22—H22B	0.9900
Cu1—O22	1.976 (3)	C31—C32	1.364 (6)
Cu1-012	1.994 (3)	C31—H31	0.9500
Cu1—N31	2.163 (3)	C32—C33	1.386 (6)
Cu1—Cu1 ⁱ	2.6392 (11)	C32—H32	0.9500
011—C11	1.271 (5)	C33—C34	1.368 (6)
012-C11 ⁱ	1.251 (5)	C33—C36	1.526 (6)
O21—C21	1.263 (5)	C34—C35	1.376 (6)
O22-C21 ⁱ	1.245 (5)	C34—H34	0.9500
N31—C31	1.321 (5)	С35—Н35	0.9500
N31—C35	1.337 (5)	C36—C37	1.470 (7)
C11-012 ⁱ	1.251 (5)	C36—H36A	0.9900
C11—C12	1.510 (5)	C36—H36B	0.9900
C12—C13	1.525 (6)	C37—C37 ⁱⁱⁱ	1.508 (9)
C12—H12A	0.9900	C37—H37A	0.9900
C12—H12B	0.9900	С37—Н37В	0.9900
C13—C22 ⁱⁱ	1.521 (5)	N1S—C1S	1.094 (8)
C13—H13A	0.9900	C1S—C2S	1.435 (9)
C13—H13B	0.9900	C2S—H2S1	0.9800
C21-022 ⁱ	1.245 (5)	C2S—H2S2	0.9800
C21—C22	1.510 (5)	C2S—H2S3	0.9800
C22—C13 ⁱⁱ	1.521 (5)		
021 Cv1 011	99 10 (12)	C21 C22 C12ii	111 1 (2)
021 - Cu1 - 011	88.10 (13) 1(7.84 (12)	$C_{21} = C_{22} = C_{13}$	111.1 (3)
021 - Cu1 - 022	167.84 (12)	C21 - C22 - H22A	109.4
011—Cu1—022	90.17 (12)	C13"—C22—H22A	109.4

O21—Cu1—O12	91.43 (12)	C21—C22—H22B	109.4
O11—Cu1—O12	168.18 (12)	C13 ⁱⁱ —C22—H22B	109.4
O22—Cu1—O12	87.80 (12)	H22A—C22—H22B	108.0
O21—Cu1—N31	94.73 (13)	N31—C31—C32	124.2 (4)
O11—Cu1—N31	97.41 (12)	N31—C31—H31	117.9
O22—Cu1—N31	97.42 (13)	С32—С31—Н31	117.9
O12—Cu1—N31	94.39 (13)	C31—C32—C33	119.4 (4)
O21—Cu1—Cu1 ⁱ	82.35 (9)	С31—С32—Н32	120.3
O11—Cu1—Cu1 ⁱ	84.67 (9)	С33—С32—Н32	120.3
O22—Cu1—Cu1 ⁱ	85.51 (9)	C34—C33—C32	117.0 (4)
O12—Cu1—Cu1 ⁱ	83.57 (9)	C34—C33—C36	120.9 (4)
N31—Cu1—Cu1 ⁱ	176.38 (10)	C32—C33—C36	122.1 (5)
C11—O11—Cu1	123.1 (3)	C33—C34—C35	119.8 (4)
C11 ⁱ —O12—Cu1	123.7 (3)	С33—С34—Н34	120.1
C21—O21—Cu1	125.6 (3)	С35—С34—Н34	120.1
C21 ⁱ —O22—Cu1	121.4 (3)	N31—C35—C34	123.2 (4)
C31—N31—C35	116.3 (4)	N31—C35—H35	118.4
C31—N31—Cu1	121.7 (3)	С34—С35—Н35	118.4
C35—N31—Cu1	121.9 (3)	C37—C36—C33	117.4 (4)
O12 ⁱ —C11—O11	124.6 (4)	С37—С36—Н36А	108.0
O12 ⁱ —C11—C12	118.6 (4)	С33—С36—Н36А	108.0
O11—C11—C12	116.8 (4)	С37—С36—Н36В	108.0
C11—C12—C13	115.4 (4)	С33—С36—Н36В	108.0
C11—C12—H12A	108.4	H36A—C36—H36B	107.2
C13—C12—H12A	108.4	C36—C37—C37 ⁱⁱⁱ	113.3 (6)
C11—C12—H12B	108.4	С36—С37—Н37А	108.9
C13—C12—H12B	108.4	С37 ^{ііі} —С37—Н37А	108.9
H12A—C12—H12B	107.5	С36—С37—Н37В	108.9
C22 ⁱⁱ —C13—C12	112.7 (4)	С37 ^{ііі} —С37—Н37В	108.9
C22 ⁱⁱ —C13—H13A	109.0	Н37А—С37—Н37В	107.7
C12—C13—H13A	109.0	N1S—C1S—C2S	179.4 (10)
C22 ⁱⁱ —C13—H13B	109.0	C1S—C2S—H2S1	109.5
C12—C13—H13B	109.0	C1S—C2S—H2S2	109.5
H13A—C13—H13B	107.8	H2S1—C2S—H2S2	109.5
O22 ⁱ —C21—O21	124.9 (4)	C1S—C2S—H2S3	109.5
O22 ⁱ —C21—C22	117.9 (4)	H2S1—C2S—H2S3	109.5
O21—C21—C22	117.1 (4)	H2S2—C2S—H2S3	109.5
Cu1—O11—C11—O12 ⁱ	7.5 (6)	N31—C31—C32—C33	1.7 (7)
Cu1—O11—C11—C12	-170.5 (3)	C31—C32—C33—C34	-1.2 (7)
O12 ⁱ —C11—C12—C13	17.0 (6)	C31—C32—C33—C36	176.2 (4)
O11—C11—C12—C13	-164.8 (4)	C32—C33—C34—C35	0.0 (7)
C11—C12—C13—C22 ⁱⁱ	-175.8 (3)	C36—C33—C34—C35	-177.4 (5)
Cu1—O21—C21—O22 ⁱ	-5.5 (6)	C31—N31—C35—C34	-0.6 (7)
Cu1—O21—C21—C22	171.3 (2)	Cu1—N31—C35—C34	176.5 (4)
$O22^{i}$ — $C21$ — $C22$ — $C13^{ii}$	91.8 (5)	C33—C34—C35—N31	0.9 (8)
O21—C21—C22—C13 ⁱⁱ	-85.2 (5)	C34—C33—C36—C37	-147.8 (5)

data reports

C35—N31—C31—C32	-0.7 (6)	C32—C33—C36—C37	34.8 (8)
Cu1—N31—C31—C32	-177.8 (3)	C33—C36—C37—C37 ⁱⁱⁱ	176.6 (5)

Symmetry codes: (i) -x+1, -y+1, -z+2; (ii) -x+1, -y, -z+2; (iii) -x+3, -y+1, -z+1.