

ISSN 2414-3146

Received 14 October 2017 Accepted 21 October 2017

Edited by J. Simpson, University of Otago, New Zealand

Keywords: crystal structure; hydantoin; imidazolidine-2,4-dione; hydrogen bonding; C— $H \cdots \pi$ (ring) interactions.

CCDC reference: 1581286

Structural data: full structural data are available from iucrdata.iucr.org

3-Methyl-5,5-diphenylimidazolidine-2,4-dione

Walid Guerrab,^a* Rachida Akrad,^a Mhammed Ansar,^a Jamal Taoufik,^a Joel T. Mague^b and Youssef Ramli^a

^aLaboratory of Medicinal Chemistry, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat, Morocco, and ^bDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA. *Correspondence e-mail: gerrab_walid@yahoo.com

In the title molecule, $C_{16}H_{14}N_2O_2$, the imidazolidine-2,4-dione ring carries two phenyl substituents at the 5-position inclined to the five-membered ring plane by 59.17 (6) and 53.21 (6)°. In the crystal, the molecules form chains parallel to the *a*-axis direction through N-H···O hydrogen bonds. These chains are linked into a three-dimensional network of molecules stacked along *a* through C-H··· π (ring) interactions.

Structure description

Hydantoin, also known as imidazolidin-2,4-dione, is an important nucleus found in numerous natural products and in several clinically important medicines. One the best known examples of such a derivative is phenytoine (5,5-diphenylimidazolidine-2,4-dion), a drug widely prescribed as an anticonvulsant agent and for the treatment of many other diseases including HIV (Weichet, 1974; Havera & Strycker, 1976; Khodair *et al.*, 1997; Thenmozhiyal *et al.*, 2004). As a continuation of our work in this area (Ramli *et al.*, 2017*a,b*; Akrad *et al.* 2017), the compound *N*-methyl-5,5-diphenylimidazolidine-2,4-dion (Fig. 1) was prepared and its crystal structure is reported here.

The C1,N2,C3,N1,C2 imidazolidine-2,4-dione ring carries two phenyl substituents on C1. These are inclined to the five-membered ring plane by 59.17 (6)° (C5–C10) and 53.21 (6)° (C11–C16). In the crystal, molecules forms chains parallel to the *a*-axis direction through N2–H2···O1 hydrogen bonds. These chains form a three-dimensional network of molecules stacked along *a* through a series of C–H··· π interactions, Table 1, Figs. 2 and 3.

Figure 1

The title molecule with the labelling scheme and 50% probability displacement ellipsoids.

Figure 2

 $C\!-\!H\!\cdots\!\pi(\text{ring})$ contacts in the title structure, shown as green dashed lines.

Figure 3

Packing of the title compound viewed along the *b*-axis direction, with $N-H\cdots O$ hydrogen drawn as blue dashed lines.

Table 1			
Hydrogen-bond	geometry	(Å,	°).

Cg2 and Cg3 are the centroids of the C5–C10 and C11–C16 rings, respectively.

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
N2-H2···O1 ⁱ	0.928 (19)	1.922 (19)	2.8482 (13)	175.9 (16)
$C4-H4E\cdots Cg3$ $C8-H8\cdots Cg3^{iii}$	0.98 0.922 (19)	2.87 2.915 (19)	3.3885(14) 3.7061(14)	131 144.7 (14)
$C13-H15\cdots Cg2^{iv}$	0.997 (19)	2.809 (19)	139.8 (14)	3.6255 (15)

Symmetry codes: (i) x + 1, y, z; (ii) $x - \frac{3}{2}, -y - \frac{1}{2}, z - \frac{3}{2}$; (iii) $x - \frac{1}{2}, -y - \frac{1}{2}, z - \frac{1}{2}$; (iv) $-x + \frac{3}{2}, y + \frac{1}{2}, -z + \frac{1}{2}$.

Table 2Experimental details.

Crystal data	
Chemical formula	$C_{16}H_{14}N_2O_2$
M _r	266.29
Crystal system, space group	Monoclinic, $P2_1/n$
Temperature (K)	150
a, b, c (Å)	6.2328 (3), 15.7965 (7), 13.4448 (6)
β (°)	95.256 (1)
$V(Å^3)$	1318.16 (10)
Ζ	4
Radiation type	Cu Ka
$\mu (\text{mm}^{-1})$	0.73
Crystal size (mm)	$0.27 \times 0.17 \times 0.11$
Data collection	
Diffractometer	Bruker D8 VENTURE PHOTON
	100 CMOS
Absorption correction	Multi-scan (<i>SADABS</i> ; Bruker, 2016)
T_{\min}, T_{\max}	0.84, 0.93
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	10021, 2636, 2455
R _{int}	0.029
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.625
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.037, 0.094, 1.07
No. of reflections	2636
No. of parameters	226
H-atom treatment	H atoms treated by a mixture of
	independent and constrained refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ (e \ {\rm \AA}^{-3})$	0.22, -0.16

Computer programs: *APEX3* and *SAINT* (Bruker, 2016), *SHELXT* (Sheldrick, 2015*a*), *SHELXL2016* (Sheldrick, 2015*b*), *DIAMOND* (Brandenburg & Putz, 2012) and *SHELXTL* (Sheldrick, 2008).

Synthesis and crystallization

To a solution of 5,5-diphenylimidazolidine-2,4-dione (1 g, 3.96 mmol) was added one equivalent of methyl bromide (0.37 g) in absolute DMF and the solution was heated under reflux for 3 h in the presence of 1.3 equivalents of K_2CO_3 . The reaction mixture was filtered while hot, and the solvent was distilled off under reduced pressure. The residue obtained was dried and recrystallized from ethanol solution.

Refinement

С

Crystal data, data collection and structure refinement details are summarized in Table 2. The C4 methyl group is rotationally disordered over two sets of sites of equal occupancy.

Acknowledgements

The support of NSF–MRI Grant No. 1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged.

References

- Akrad, R., Mague, J. T., Guerrab, W., Taoufik, J., Ansar, M. & Ramli, Y. (2017). *IUCrData*, **2**, x170033.
- Brandenburg, K. & Putz, H. (2012). *DIAMOND*. Crystal Impact GbR, Bonn, Germany.

- Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Havera, H. J. & Strycker, W. G. (1976). US Patent 3 904 909.
- Khodair, A. I., el-Subbagh, H. I. & el-Emam, A. A. (1997). *Boll. Chim. Farm.* **136**, 561–567.
- Ramli, Y., Akrad, R., Guerrab, W., Taoufik, J., Ansar, M. & Mague, J. T. (2017*a*). *IUCrData*, **2**, x170098.
- Ramli, Y., Guerrab, W., Moussaif, A., Taoufik, J., Essassi, E. M. & Mague, J. T. (2017b). *IUCrData*, **2**, x171041.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Thenmozhiyal, J. C., Wong, P. T. H. & Chui, W.-K. (2004). J. Med. Chem. 47, 1527–1535.
- Weichet, B. L. (1974). Czech Patent 151,744-747.

full crystallographic data

IUCrData (2017). 2, x171534 [https://doi.org/10.1107/S2414314617015346]

3-Methyl-5,5-diphenylimidazolidine-2,4-dione

Walid Guerrab, Rachida Akrad, Mhammed Ansar, Jamal Taoufik, Joel T. Mague and Youssef Ramli

3-Methyl-5,5-diphenylimidazolidine-2,4-dione

Crystal data

 $C_{16}H_{14}N_2O_2$ $M_r = 266.29$ Monoclinic, $P2_1/n$ a = 6.2328 (3) Å b = 15.7965 (7) Å c = 13.4448 (6) Å $\beta = 95.256$ (1)° V = 1318.16 (10) Å³ Z = 4

Data collection

Bruker D8 VENTURE PHOTON 100 CMOS diffractometer
Radiation source: INCOATEC IμS micro-focus source
Mirror monochromator
Detector resolution: 10.4167 pixels mm⁻¹ ω scans
Absorption correction: multi-scan (SADABS; Bruker, 2016)

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.037$ $wR(F^2) = 0.094$ S = 1.072636 reflections 226 parameters 0 restraints Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map F(000) = 560 $D_x = 1.342 \text{ Mg m}^{-3}$ Cu Ka radiation, $\lambda = 1.54178 \text{ Å}$ Cell parameters from 8452 reflections $\theta = 3.3-74.3^{\circ}$ $\mu = 0.73 \text{ mm}^{-1}$ T = 150 KBlock, colourless $0.27 \times 0.17 \times 0.11 \text{ mm}$

 $T_{\min} = 0.84, T_{\max} = 0.93$ 10021 measured reflections 2636 independent reflections 2455 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.029$ $\theta_{\text{max}} = 74.3^{\circ}, \theta_{\text{min}} = 4.3^{\circ}$ $h = -7 \rightarrow 7$ $k = -18 \rightarrow 15$ $l = -16 \rightarrow 16$

Hydrogen site location: mixed H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0432P)^2 + 0.4502P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.22$ e Å⁻³ $\Delta\rho_{min} = -0.16$ e Å⁻³ Extinction correction: *SHELXL2016* (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4} Extinction coefficient: 0.0076 (7)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. The methyl group is rotationally disordered over two approximately equal sites. These hydrogen atoms were included as riding contributions with an HFIX 123 instruction.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
01	0.13255 (13)	0.20890 (6)	0.18291 (6)	0.0256 (2)	
O2	0.66323 (15)	0.11602 (7)	-0.00232 (7)	0.0357 (3)	
N1	0.35876 (15)	0.15080 (7)	0.07600 (7)	0.0229 (2)	
N2	0.67715 (16)	0.19646 (6)	0.14190 (7)	0.0223 (2)	
H2	0.826 (3)	0.1992 (11)	0.1523 (13)	0.040 (4)*	
C1	0.52715 (17)	0.22587 (7)	0.21171 (8)	0.0191 (2)	
C2	0.31218 (18)	0.19529 (7)	0.15712 (8)	0.0202 (2)	
C3	0.58171 (19)	0.15088 (8)	0.06526 (9)	0.0237 (3)	
C4	0.2018 (2)	0.11254 (9)	0.00207 (10)	0.0327 (3)	
H4A	0.277440	0.083919	-0.049134	0.049*	0.5
H4B	0.114417	0.071292	0.034962	0.049*	0.5
H4C	0.108029	0.156724	-0.029217	0.049*	0.5
H4D	0.055817	0.124037	0.020207	0.049*	0.5
H4E	0.218840	0.136665	-0.063888	0.049*	0.5
H4F	0.225229	0.051233	0.000291	0.049*	0.5
C5	0.57456 (18)	0.18436 (7)	0.31480 (8)	0.0204 (3)	
C6	0.7833 (2)	0.19301 (8)	0.36193 (9)	0.0243 (3)	
H6	0.890 (3)	0.2240 (10)	0.3288 (12)	0.036 (4)*	
C7	0.8360 (2)	0.15792 (8)	0.45565 (9)	0.0296 (3)	
H7	0.987 (3)	0.1627 (10)	0.4875 (12)	0.035 (4)*	
C8	0.6822 (2)	0.11504 (9)	0.50429 (10)	0.0318 (3)	
H8	0.716 (3)	0.0918 (11)	0.5667 (14)	0.044 (5)*	
C9	0.4749 (2)	0.10690 (9)	0.45810 (10)	0.0313 (3)	
H9	0.361 (3)	0.0771 (11)	0.4909 (13)	0.040 (4)*	
C10	0.4207 (2)	0.14135 (8)	0.36395 (9)	0.0258 (3)	
H10	0.275 (3)	0.1368 (10)	0.3333 (12)	0.034 (4)*	
C11	0.52751 (18)	0.32217 (7)	0.22487 (8)	0.0202 (2)	
C12	0.6895 (2)	0.37174 (8)	0.19058 (9)	0.0274 (3)	
H12	0.257 (3)	0.3252 (10)	0.3030 (12)	0.032 (4)*	
C13	0.6913 (2)	0.45887 (9)	0.20707 (11)	0.0349 (3)	
H13	0.254 (3)	0.4735 (11)	0.3275 (12)	0.039 (4)*	
C14	0.5318 (2)	0.49661 (8)	0.25678 (10)	0.0328 (3)	
H14	0.537 (3)	0.5566 (13)	0.2694 (13)	0.047 (5)*	
C15	0.3708 (2)	0.44727 (8)	0.29156 (10)	0.0295 (3)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

data reports

H15	0.809 (3)	0.4931 (12)	0.1821 (14)	0.050 (5)*
C16	0.3694 (2)	0.36034 (8)	0.27661 (9)	0.0246 (3)
H16	0.807 (3)	0.3452 (11)	0.1544 (12)	0.038 (4)*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0165 (4)	0.0345 (5)	0.0258 (4)	-0.0012 (3)	0.0014 (3)	-0.0014 (3)
O2	0.0294 (5)	0.0497 (6)	0.0285 (5)	-0.0012 (4)	0.0061 (4)	-0.0156 (4)
N1	0.0190 (5)	0.0295 (5)	0.0197 (5)	-0.0030 (4)	-0.0007 (4)	-0.0035 (4)
N2	0.0165 (5)	0.0309 (5)	0.0194 (5)	0.0003 (4)	0.0016 (4)	-0.0044 (4)
C1	0.0156 (5)	0.0240 (6)	0.0177 (5)	0.0000 (4)	0.0011 (4)	-0.0006 (4)
C2	0.0187 (5)	0.0232 (6)	0.0182 (5)	-0.0010 (4)	0.0000 (4)	0.0017 (4)
C3	0.0215 (6)	0.0285 (6)	0.0211 (6)	-0.0002 (4)	0.0021 (4)	-0.0020 (4)
C4	0.0284 (7)	0.0433 (8)	0.0251 (6)	-0.0095 (5)	-0.0042 (5)	-0.0069 (5)
C5	0.0222 (6)	0.0203 (5)	0.0183 (5)	0.0025 (4)	0.0010 (4)	-0.0014 (4)
C6	0.0234 (6)	0.0270 (6)	0.0221 (6)	0.0009 (5)	-0.0006 (4)	-0.0008 (4)
C7	0.0319 (7)	0.0320 (7)	0.0234 (6)	0.0041 (5)	-0.0055 (5)	-0.0025 (5)
C8	0.0446 (8)	0.0304 (7)	0.0193 (6)	0.0048 (5)	-0.0019 (5)	0.0022 (5)
C9	0.0378 (7)	0.0320 (7)	0.0247 (6)	-0.0010 (5)	0.0064 (5)	0.0042 (5)
C10	0.0243 (6)	0.0293 (6)	0.0236 (6)	-0.0001 (5)	0.0013 (5)	0.0017 (5)
C11	0.0206 (5)	0.0237 (6)	0.0157 (5)	-0.0004 (4)	-0.0020 (4)	0.0008 (4)
C12	0.0279 (6)	0.0286 (7)	0.0259 (6)	-0.0033 (5)	0.0044 (5)	0.0020 (5)
C13	0.0405 (8)	0.0284 (7)	0.0364 (7)	-0.0084 (6)	0.0059 (6)	0.0040 (5)
C14	0.0448 (8)	0.0219 (7)	0.0308 (7)	-0.0005 (5)	-0.0015 (6)	0.0008 (5)
C15	0.0343 (7)	0.0279 (7)	0.0257 (6)	0.0056 (5)	0.0003 (5)	-0.0025 (5)
C16	0.0251 (6)	0.0269 (6)	0.0216 (6)	0.0003 (5)	0.0012 (4)	-0.0004 (4)

Geometric parameters (Å, °)

01—C2	1.2211 (14)	С6—Н6	0.969 (17)
O2—C3	1.2130 (15)	C7—C8	1.386 (2)
N1—C2	1.3513 (15)	С7—Н7	0.999 (17)
N1—C3	1.4102 (15)	C8—C9	1.387 (2)
N1—C4	1.4603 (15)	C8—H8	0.922 (19)
N2—C3	1.3497 (15)	C9—C10	1.3908 (18)
N2—C1	1.4600 (14)	С9—Н9	0.987 (17)
N2—H2	0.928 (19)	C10—H10	0.965 (16)
C1-C11	1.5314 (16)	C11—C12	1.3894 (16)
C1—C5	1.5374 (15)	C11—C16	1.3944 (16)
C1—C2	1.5450 (15)	C12—C13	1.3940 (19)
C4—H4A	0.9800	C12—H16	1.007 (17)
C4—H4B	0.9800	C13—C14	1.383 (2)
C4—H4C	0.9800	C13—H15	0.997 (19)
C4—H4D	0.9800	C14—C15	1.386 (2)
C4—H4E	0.9800	C14—H14	0.96 (2)
C4—H4F	0.9800	C15—C16	1.3878 (18)
C5—C10	1.3905 (17)	С15—Н13	0.999 (16)

data reports

C5—C6 C6—C7	1.4004 (16) 1.3883 (17)	C16—H12	0.987 (16)
C2—N1—C3	111.64 (9)	H4E—C4—H4F	109.5
C_2 N1-C4	125.77 (10)	C10-C5-C6	119.02 (11)
C_3 —N1—C4	122.41 (10)	C10-C5-C1	123.56(10)
$C_3 - N_2 - C_1$	113.40 (9)	C6-C5-C1	117.39 (10)
C3-N2-H2	120.4(10)	C7-C6-C5	120.30(12)
C1 - N2 - H2	125.4(10)	C7—C6—H6	120.30(12) 120.2(10)
N_{2} C_{1} C_{11}	113 33 (9)	C5-C6-H6	120.2(10) 1195(10)
N_2 C_1 C_5	113.33(9)	$C_{8}^{-}C_{7}^{-}C_{6}^{-}$	119.3(10) 120.47(12)
$C_{11} - C_{1} - C_{5}$	108 75 (9)	C8-C7-H7	120.47(12) 119.9(9)
$N_2 - C_1 - C_2$	100.75(9)	C6-C7-H7	119.5 (9)
$C_{11} - C_{1} - C_{2}$	110.95 (9)	C7 - C8 - C9	119.0(5)
C_{5} C_{1} C_{2}	112 43 (9)	C7-C8-H8	120.9(11)
$01 - C^2 - N1$	126.24 (10)	C9-C8-H8	119.8 (11)
01 - C2 - C1	126.01 (10)	C8-C9-C10	120.64(12)
N1 - C2 - C1	107 75 (9)	$C_8 = C_9 = H_9$	120.04(12) 121.3(10)
02-03-N2	107.73(0) 128.93(11)	C_{10} C_{9} H_{9}	121.3(10) 118.0(10)
02 - C3 - N1	126.99 (11)	C_{5}	120.22(12)
N2-C3-N1	106.97 (10)	C_{5} C_{10} H_{10}	120.22(12) 119.7(9)
N1-C4-H4A	109.5	C9-C10-H10	120.0(9)
N1—C4—H4B	109.5	C_{12} C_{11} C_{16}	120.0(9) 119 35 (11)
H4A - C4 - H4B	109.5	C_{12} C_{11} C_{10}	120.99 (10)
N1—C4—H4C	109.5	C_{16}	120.99(10) 119.57(10)
H4A - C4 - H4C	109.5	$C_{11} - C_{12} - C_{13}$	119.97(10) 119.94(12)
H4B-C4-H4C	109.5	$C_{11} - C_{12} - H_{16}$	120.6(10)
N1—C4—H4D	109.5	C13 - C12 - H16	120.0(10) 119.5(10)
H4A - C4 - H4D	141 1	C14 - C13 - C12	120.47(12)
H4B—C4—H4D	56.3	C14 - C13 - H15	120.47(12) 1210(11)
H4C - C4 - H4D	56.3	C_{12} C_{13} H_{15}	121.0(11) 1186(11)
N1—C4—H4F	109 5	C13 - C14 - C15	119.71 (12)
H4A-C4-H4E	56.3	C13—C14—H14	119.71(12)
H4B-C4-H4E	141 1	C15—C14—H14	120.6(11)
H4C-C4-H4E	56.3	C14-C15-C16	120.18(12)
H4D—C4—H4E	109 5	C14—C15—H13	120.70(12)
N1—C4—H4F	109.5	C16—C15—H13	119.1 (10)
H4A—C4—H4F	56.3	C15—C16—C11	120.32 (12)
H4B—C4—H4F	56.3	C15—C16—H12	120.0 (9)
H4C—C4—H4F	141.1	C11—C16—H12	119.7 (9)
H4D—C4—H4F	109.5		
	10,10		
C3—N2—C1—C11	-122.82(11)	C2-C1-C5-C6	166.81 (10)
C3—N2—C1—C5	114.28 (11)	C10-C5-C6-C7	1.00 (17)
C3—N2—C1—C2	-4.69 (12)	C1—C5—C6—C7	179.22 (11)
C3—N1—C2—O1	176.95 (11)	C5—C6—C7—C8	-0.96 (19)
C4—N1—C2—O1	1.9 (2)	C6—C7—C8—C9	0.5 (2)
$C_3 = N_1 = C_2 = C_1$	-3.13(13)	C7-C8-C9-C10	-0.1(2)
	()		··· (-)

$\begin{array}{c} C4-N1-C2-C1\\ N2-C1-C2-O1\\ C11-C1-C2-O1\\ C5-C1-C2-O1\\ N2-C1-C2-N1\\ C11-C1-C2-N1\\ C5-C1-C2-N1\\ C5-C1-C2-N1\\ C1-N2-C3-O2\\ C1-N2-C3-O2\\ C1-N2-C3-N1\\ C2-N1-C3-O2\\ C4-N1-C3-O2\\ C2-N1-C3-N2\\ C4-N1-C3-N2\\ N2-C1-C5-C10\\ C11-C1-C5-C10\\ C2-C1-C5-C10\\ N2-C1-C5-C6\\ C11-C1-C5-C6\\ C11-C1-C1-C5-C6\\ C11-C1-C1-C5-C6\\ C11-C1-C1-C5-C6\\ C11-C1-C1-C5-C6\\ C11-C1-C1-C5-C6\\ C11-C1-C1-C1-C5-C6\\ C11-C1-C1-C1-C5-C6\\ C11-C1-C1-C1-C1-C1-C1-C1-C1-C1-C1-C1-C1-$	$\begin{array}{c} -175.55\ (11)\\ -55.66\ (15)\\ 66.36\ (15)\\ 4.54\ (11)\\ 124.42\ (10)\\ -113.55\ (10)\\ -177.48\ (13)\\ 3.15\ (14)\\ -179.23\ (12)\\ -4.0\ (2)\\ 0.17\ (14)\\ 175.43\ (11)\\ -126.29\ (12)\\ 108.21\ (12)\\ -15.06\ (15)\\ 55.57\ (13)\\ (0.22\ (12)\\ (12)\\ (12)\ (12)\\ (12)\ (12)\\ (12)\ (12)\\ (12)\ (12)\ (12)\\ (12)\ (12)\ (12)\\ (12)\ (12)\ (12)\\ (12)\ (12)\ (12)\\ (12)\ (12)\ (12)\ (12)\\ (12)\ (12)\ (12)\ (12)\\ (12)\ (12)\ (12)\ (12)\ (12)\\ (12)\ (12)\ (12)\ (12)\ (12)\ (12)\\ (12)\ (1$	$\begin{array}{c} C1 - C5 - C10 - C9 \\ C8 - C9 - C10 - C5 \\ N2 - C1 - C11 - C12 \\ C5 - C1 - C11 - C12 \\ C2 - C1 - C11 - C12 \\ N2 - C1 - C11 - C16 \\ C5 - C1 - C11 - C16 \\ C5 - C1 - C11 - C16 \\ C16 - C11 - C12 - C13 \\ C13 - C14 - C15 \\ C13 - C14 - C15 - C16 \\ C14 - C15 - C16 - C11 \\ C12 - C11 - C16 - C15 \\ C1 - C11 - C16 - C15 \\ \end{array}$	$\begin{array}{c} -178.69(11)\\ 0.1(2)\\ -13.45(15)\\ 110.82(11)\\ -125.02(11)\\ 169.94(10)\\ -65.79(13)\\ 58.36(13)\\ -0.74(18)\\ -177.36(11)\\ -0.5(2)\\ 0.8(2)\\ 0.0(2)\\ -1.23(19)\\ 1.58(17)\\ 178.25(11)\end{array}$
C11—C1—C5—C6	-69.93 (12)		170.23 (11)

Hydrogen-bond geometry (Å, °)

Cg2 and Cg3 are the centroids of the C5–C10 and C11–C16 rings, respectively.

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
N2—H2···O1 ⁱ	0.928 (19)	1.922 (19)	2.8482 (13)	175.9 (16)
C4—H4 <i>E</i> ··· <i>Cg</i> 3 ⁱⁱ	0.98	2.87	3.5883 (14)	131
C8—H8···· <i>Cg</i> 3 ⁱⁱⁱ	0.922 (19)	2.915 (19)	3.7061 (14)	144.7 (14)
C13—H15···· <i>Cg</i> 2 ^{iv}	0.997 (19)	2.809 (19)	139.8 (14)	3.6255 (15)

Symmetry codes: (i) x+1, y, z; (ii) x-3/2, -y-1/2, z-3/2; (iii) x-1/2, -y-1/2, z-1/2; (iv) -x+3/2, y+1/2, -z+1/2.