

ISSN 2414-3146

Received 2 November 2017 Accepted 6 November 2017

Edited by M. Bolte, Goethe-Universität Frankfurt, Germany

Keywords: crystal structure; pyridine; tosyl oxime; hydrogen bonding.

CCDC reference: 1584082

Structural data: full structural data are available from iucrdata.iucr.org

(E)-1-(Pyridin-4-yl)propan-1-one O-tosyl oxime

Michael Eitel,^a Dieter Schollmeyer^b and Pierre Koch^{a*}

^aInstitute of Pharmaceutical Sciences, Department of Pharmaceutical and Medicinal Chemistry, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany, and ^bDepartment of Organic Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, D-55099 Mainz, Germany. *Correspondence e-mail: pierre.koch@uni-tuebingen.de

The title compound, $C_{15}H_{16}N_2O_3S$, was obtained by the reaction of (*E*)-1-(pyridin-4-yl)propan-1-one oxime and *para*-toluenesulfonic acid. The pyridine ring makes a dihedral angle of 54.70 (10)° with the benzene ring. In the crystal, molecules are linked by $C-H \cdot \cdot \cdot O$ hydrogen bonds, forming a chain along the *c*-axis direction.

Structure description

The title compound (Fig. 1) was synthesized by the reaction of (E)-1-(pyridin-4yl)propan-1-one oxime and *para*-toluenesulfonyl chloride. For the crystal structure of the starting material, see Eitel *et al.* (2016). The pyridine ring makes dihedral angles of 54.70 (10) and 14.06 (17)° with the benzene ring and the oxime plane, respectively. The dihedral angle between the benzene ring and the oxime plane is 68.38 (17)°. The orientation of the benzene ring is stabilized by an intramolecular C–H···O contact (Table 1).

In the crystal, molecules are linked by $C-H\cdots O$ hydrogen bonds, forming a chain along the *c*-axis direction (Table 1, Fig. 2).

Synthesis and crystallization

para-Toluenesulfonyl chloride (6.76 g, 35.48 mmol) was added to a solution of (E)-4-propionylpyridine oxime (4.44 g, 29.56 mmol) in anhydrous pyridine (20 ml). After reaction for 21.5 h at 298 K, the solution was diluted with ice–water (100 ml) and stirred for a further 3 h. The resulting white solid was filtered off, washed with cold water and dried under vacuum (yield: 78%, 7.05 g). Crystals of the title compound suitable for

Table 1 Hydrogen-bond geor	metry (Å, °).						
$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$			
$C2-H2\cdots O13^i$	0.94	2.53	3.138 (3)	122			
$C3-H3\cdots O13^{i}$	0.94	2.58	3.171 (3)	122			
C20-H20···O14	0.94	2.56	2.929 (3)	104			
Symmetry code: (i) x , $-y$	$z + \frac{3}{2}, z + \frac{1}{2}.$						
Table 2Experimental details							
Crystal data							
Chemical formula		C ₁₅ H	$I_{16}N_2O_3S$				
M _r Cructal system space	aroun	504.3 Mon	oolinio P2 / a				
Temperature (K)	group	213	ochinic, $r Z_1/c$				
a, b, c (Å)	14.93	149385(12),106630(7)					
		9.7	7701 (7)	(1)			
β (°)		100.0	100.044 (6)				
$V(Å^3)$	1532.4 (2)						
Z	4						
Radiation type (mm^{-1})		Cu K	ία				
μ (mm) Crystal size (mm)		1.98	1.98 0.16 × 0.09 × 0.04				
Crystal size (IIIII)		0.10	X 0.09 X 0.04				
Data collection		CTO.					
Absorption correction		Inter	E IPDS 21 tration (Y-RED	32: Stoe & Cie			
riosorption correction	L .	20	2006)				
No. of measured, inder observed $[I > 2\sigma(I)]$	pendent and reflections	1027	3, 2695, 1913				
R _{int}		0.049)				
$(\sin \theta / \lambda)_{max} (\text{\AA}^{-1})$		0.599)				
Refinement							
$R[F^2 > 2\sigma(F^2)], wR(F$	$S^{2}), S$	0.037	7, 0.098, 0.98				
No. of reflections		2695					
No. of parameters		192					
H-atom treatment		H-at	om parameters	constrained			
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ (e \ A^{-5})$		0.16,	0.16, -0.36				

Computer programs: X-AREA and X-RED32 (Stoe & Cie, 2006), SIR2004 (Burla et al., 2005) and SHELXL2013 (Sheldrick, 2015).

X-ray determination were obtained by slow evaporation of a solution of the solid in methanol at 298 K.

¹H NMR (400 MHz, DMSO- d_6) δ 0.99 (t, ³J = 7.6 Hz, 3H), 2.41 (s, 3H), 2.81 (q, ³J = 7.6 Hz, 2H), 7.50 (d, ³J = 8.1 Hz, 2H), 7.56 (d, ³J = 5.8 Hz, 2H), 7.91 (d, ³J = 8.3 Hz, 2H), 8.67 (d, ³J = 5.8 Hz, 2H); ¹³C NMR (100 MHz, DMSO- d_6) δ 10.6, 20.5, 21.1, 121.1, 128.5, 130.1, 131.6, 139.5, 145.7, 150.5, 167.5.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

Figure 1

Molecular structure of the title compound with the atom labelling and displacement ellipsoids drawn at the 50% probability level. The intramolecular $C-H\cdots O$ contact is drawn with a dashed line.

Figure 2

Partial packing diagram viewed along the *a* axis. Intramolecular C– $H \cdots O$ hydrogen bonds are shown with open dashed bonds. Intermolecular hydrogen bonds are indicated by dashed lines.

References

- Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.
- Eitel, M., Schollmeyer, D. & Koch, P. (2016). IUCrData, 1, x160803.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Stoe & Cie (2006). *X-AREA* and *X-RED32*. Stoe & Cie, Darmstadt, Germany.

full crystallographic data

IUCrData (2017). 2, x171602 [https://doi.org/10.1107/S2414314617016029]

(E)-1-(Pyridin-4-yl)propan-1-one O-tosyl oxime

Michael Eitel, Dieter Schollmeyer and Pierre Koch

(E)-1-(Pyridin-4-yl)propan-1-one O-tosyl oxime

Crystal data

 $\begin{array}{l} C_{15}H_{16}N_{2}O_{3}S\\ M_{r}=304.36\\ \text{Monoclinic, }P2_{1}/c\\ a=14.9385\ (12)\ \text{\AA}\\ b=10.6630\ (7)\ \text{\AA}\\ c=9.7701\ (7)\ \text{\AA}\\ \beta=100.044\ (6)^{\circ}\\ V=1532.4\ (2)\ \text{\AA}^{3}\\ Z=4 \end{array}$

Data collection

STOE IPDS 2T diffractometer Radiation source: Incoatec microSource Cu X-ray mirror monochromator Detector resolution: 6.67 pixels mm⁻¹ rotation method scans Absorption correction: integration (X-RED32; Stoe & Cie, 2006)

Refinement

0	
Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.037$	H-atom parameters constrained
$wR(F^2) = 0.098$	$w = 1/[\sigma^2(F_o^2) + (0.059P)^2]$
S = 0.98	where $P = (F_0^2 + 2F_c^2)/3$
2695 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
192 parameters	$\Delta ho_{ m max} = 0.16 \ { m e} \ { m \AA}^{-3}$
0 restraints	$\Delta ho_{ m min} = -0.36 \ m e \ m \AA^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

F(000) = 640 $D_x = 1.319 \text{ Mg m}^{-3}$ Cu K\alpha radiation, \lambda = 1.54178 Å Cell parameters from 11862 reflections $\theta = 3.0-67.8^{\circ}$ $\mu = 1.98 \text{ mm}^{-1}$ T = 213 KPlate, colourless $0.16 \times 0.09 \times 0.04 \text{ mm}$

10273 measured reflections 2695 independent reflections 1913 reflections with $I > 2\sigma(I)$ $R_{int} = 0.049$ $\theta_{max} = 67.5^\circ, \ \theta_{min} = 3.0^\circ$ $h = -16 \rightarrow 17$ $k = -12 \rightarrow 11$ $l = -11 \rightarrow 11$

	x	y	Z	$U_{\rm iso}$ */ $U_{\rm eq}$
C1	0.89270 (13)	0.47865 (18)	0.5899 (2)	0.0378 (4)
C2	0.85364 (15)	0.5811 (2)	0.6446 (2)	0.0508 (6)
H2	0.8009	0.6182	0.5945	0.061*
C3	0.89270 (16)	0.6283 (2)	0.7731 (2)	0.0564 (6)
Н3	0.8646	0.6973	0.8080	0.068*
N4	0.96781 (13)	0.58192 (18)	0.85057 (19)	0.0532 (5)
C5	1.00375 (15)	0.4829 (2)	0.7992 (2)	0.0523 (6)
Н5	1.0559	0.4470	0.8527	0.063*
C6	0.96963 (14)	0.4280 (2)	0.6714 (2)	0.0446 (5)
H6	0.9984	0.3576	0.6407	0.054*
C7	0.85434 (12)	0.42844 (18)	0.4487 (2)	0.0370 (4)
C8	0.88195 (13)	0.30317 (18)	0.3995 (2)	0.0427 (5)
H8A	0.9445	0.2846	0.4442	0.051*
H8B	0.8802	0.3062	0.2989	0.051*
C9	0.81924 (17)	0.1994 (2)	0.4332 (3)	0.0588 (6)
H9A	0.8192	0.1982	0.5325	0.088*
H9B	0.8406	0.1192	0.4048	0.088*
H9C	0.7580	0.2146	0.3839	0.088*
N10	0.79590 (11)	0.50387 (16)	0.37916 (16)	0.0414 (4)
O11	0.75806 (9)	0.44884 (12)	0.24519 (13)	0.0446 (4)
S12	0.69674 (4)	0.55354 (5)	0.15352 (5)	0.04410 (17)
O13	0.74961 (11)	0.66367 (15)	0.14888 (17)	0.0594 (4)
O14	0.66291 (11)	0.48672 (16)	0.02890 (14)	0.0575 (4)
C15	0.60796 (14)	0.58428 (18)	0.2447 (2)	0.0397 (5)
C16	0.61762 (15)	0.67382 (19)	0.3494 (2)	0.0487 (6)
H16	0.6721	0.7191	0.3730	0.058*
C17	0.54569 (16)	0.6953 (2)	0.4183 (2)	0.0533 (6)
H17	0.5523	0.7549	0.4902	0.064*
C18	0.46367 (15)	0.6310(2)	0.3839 (2)	0.0499 (5)
C19	0.45625 (16)	0.5429 (2)	0.2783 (2)	0.0534 (6)
H19	0.4013	0.4988	0.2531	0.064*
C20	0.52712 (15)	0.5181 (2)	0.2093 (2)	0.0491 (5)
H20	0.5209	0.4570	0.1390	0.059*
C21	0.38537 (18)	0.6580 (3)	0.4576 (3)	0.0722 (8)
H21A	0.4066	0.7077	0.5400	0.108*
H21B	0.3602	0.5797	0.4843	0.108*
H21C	0.3388	0.7041	0.3960	0.108*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0354 (10)	0.0375 (11)	0.0398 (10)	-0.0010 (8)	0.0050 (8)	0.0063 (8)
C2	0.0493 (12)	0.0450 (13)	0.0520 (13)	0.0080 (9)	-0.0081 (10)	-0.0068 (10)
C3	0.0612 (14)	0.0496 (14)	0.0524 (13)	0.0021 (11)	-0.0070 (11)	-0.0078 (10)
N4	0.0531 (11)	0.0562 (12)	0.0454 (10)	-0.0067 (9)	-0.0049 (9)	0.0039 (9)

C5	0.0438 (11)	0.0648 (16)	0.0445 (12)	-0.0008 (11)	-0.0029 (10)	0.0139 (11)
C6	0.0405 (11)	0.0498 (13)	0.0432 (11)	0.0056 (9)	0.0064 (9)	0.0107 (9)
C7	0.0348 (10)	0.0368 (11)	0.0396 (10)	0.0015 (8)	0.0073 (8)	0.0029 (8)
C8	0.0414 (11)	0.0405 (12)	0.0460 (12)	0.0071 (8)	0.0072 (9)	0.0013 (9)
C9	0.0687 (15)	0.0399 (13)	0.0725 (16)	0.0007 (11)	0.0256 (13)	0.0015 (11)
N10	0.0430 (9)	0.0414 (10)	0.0366 (9)	0.0012 (7)	-0.0021 (7)	-0.0042 (7)
011	0.0497 (8)	0.0421 (8)	0.0380 (7)	0.0065 (6)	-0.0030 (6)	-0.0032 (6)
S12	0.0470 (3)	0.0438 (3)	0.0385 (3)	0.0016 (2)	-0.0009 (2)	0.0049 (2)
013	0.0589 (10)	0.0530 (10)	0.0644 (10)	-0.0093 (7)	0.0053 (8)	0.0152 (8)
O14	0.0606 (9)	0.0725 (11)	0.0357 (8)	0.0066 (8)	-0.0019 (7)	-0.0085 (7)
C15	0.0439 (10)	0.0331 (11)	0.0382 (10)	0.0030 (8)	-0.0039 (8)	0.0026 (8)
C16	0.0495 (12)	0.0333 (11)	0.0575 (13)	0.0011 (9)	-0.0071 (10)	-0.0068 (10)
C17	0.0588 (13)	0.0425 (13)	0.0554 (14)	0.0104 (10)	0.0013 (11)	-0.0113 (10)
C18	0.0519 (12)	0.0478 (13)	0.0483 (12)	0.0140 (10)	0.0040 (10)	0.0084 (10)
C19	0.0456 (12)	0.0599 (15)	0.0522 (13)	-0.0089 (10)	0.0017 (10)	0.0020 (11)
C20	0.0541 (13)	0.0480 (13)	0.0419 (11)	-0.0076 (10)	-0.0012 (10)	-0.0076 (9)
C21	0.0684 (17)	0.0771 (19)	0.0743 (18)	0.0219 (14)	0.0213 (14)	0.0099 (14)

Geometric parameters (Å, °)

C1—C6	1.388 (3)	N10—O11	1.4557 (19)	
C1—C2	1.388 (3)	O11—S12	1.6129 (13)	
C1—C7	1.497 (3)	S12—O13	1.4204 (16)	
C2—C3	1.384 (3)	S12—O14	1.4250 (15)	
С2—Н2	0.9400	S12—C15	1.752 (2)	
C3—N4	1.334 (3)	C15—C16	1.388 (3)	
С3—Н3	0.9400	C15—C20	1.389 (3)	
N4—C5	1.323 (3)	C16—C17	1.383 (3)	
C5—C6	1.392 (3)	C16—H16	0.9400	
С5—Н5	0.9400	C17—C18	1.393 (3)	
С6—Н6	0.9400	C17—H17	0.9400	
C7—N10	1.290 (2)	C18—C19	1.386 (3)	
С7—С8	1.501 (3)	C18—C21	1.504 (3)	
С8—С9	1.522 (3)	C19—C20	1.376 (3)	
C8—H8A	0.9800	C19—H19	0.9400	
C8—H8B	0.9800	C20—H20	0.9400	
С9—Н9А	0.9700	C21—H21A	0.9700	
С9—Н9В	0.9700	C21—H21B	0.9700	
С9—Н9С	0.9700	C21—H21C	0.9700	
C6—C1—C2	116.52 (18)	N10-011-S12	108.31 (11)	
C6—C1—C7	122.35 (19)	O13—S12—O14	120.16 (10)	
C2C1C7	121.12 (16)	O13—S12—O11	108.96 (9)	
C3—C2—C1	119.8 (2)	O14—S12—O11	102.17 (9)	
С3—С2—Н2	120.1	O13—S12—C15	109.62 (10)	
C1—C2—H2	120.1	O14—S12—C15	109.92 (9)	
N4—C3—C2	124.0 (2)	O11—S12—C15	104.72 (8)	
N4—C3—H3	118.0	C16—C15—C20	120.4 (2)	

С2—С3—Н3	118.0	C16—C15—S12	120.83 (16)
C5—N4—C3	115.96 (19)	C20—C15—S12	118.73 (16)
N4—C5—C6	124.5 (2)	C17—C16—C15	118.9 (2)
N4—C5—H5	117.8	C17—C16—H16	120.6
С6—С5—Н5	117.8	C15—C16—H16	120.6
C1—C6—C5	119.2 (2)	C16—C17—C18	121.8 (2)
С1—С6—Н6	120.4	C16—C17—H17	119.1
С5—С6—Н6	120.4	C18—C17—H17	119.1
N10—C7—C1	112.18 (17)	C19—C18—C17	117.8 (2)
N10—C7—C8	125.77 (18)	C19—C18—C21	121.2 (2)
C1—C7—C8	122.04 (16)	C17—C18—C21	121.0 (2)
C7—C8—C9	111.33 (18)	C20-C19-C18	121.8 (2)
С7—С8—Н8А	109.4	С20—С19—Н19	119.1
С9—С8—Н8А	109.4	C18—C19—H19	119.1
С7—С8—Н8В	109.4	C19—C20—C15	119.4 (2)
С9—С8—Н8В	109.4	С19—С20—Н20	120.3
H8A—C8—H8B	108.0	С15—С20—Н20	120.3
С8—С9—Н9А	109.5	C18—C21—H21A	109.5
С8—С9—Н9В	109.5	C18—C21—H21B	109.5
Н9А—С9—Н9В	109.5	H21A—C21—H21B	109.5
С8—С9—Н9С	109.5	C18—C21—H21C	109.5
Н9А—С9—Н9С	109.5	H21A—C21—H21C	109.5
Н9В—С9—Н9С	109.5	H21B—C21—H21C	109.5
C7—N10—O11	110.08 (16)		
C6—C1—C2—C3	1.0 (3)	N10—O11—S12—O14	-178.64 (12)
C7—C1—C2—C3	-177.5 (2)	N10—O11—S12—C15	-64.00 (13)
C1—C2—C3—N4	0.5 (4)	O13—S12—C15—C16	-29.48 (19)
C2—C3—N4—C5	-1.7 (4)	O14—S12—C15—C16	-163.63 (16)
C3—N4—C5—C6	1.5 (3)	O11—S12—C15—C16	87.28 (17)
C2—C1—C6—C5	-1.3 (3)	O13—S12—C15—C20	149.92 (16)
C7—C1—C6—C5	177.30 (19)	O14—S12—C15—C20	15.77 (19)
N4—C5—C6—C1	0.0 (3)	O11—S12—C15—C20	-93.32 (16)
C6—C1—C7—N10	-166.03 (19)	C20-C15-C16-C17	0.4 (3)
C2—C1—C7—N10	12.5 (3)	S12—C15—C16—C17	179.80 (16)
C6—C1—C7—C8	14.8 (3)	C15—C16—C17—C18	-1.0 (3)
C2—C1—C7—C8	-166.7 (2)	C16—C17—C18—C19	0.6 (3)
N10—C7—C8—C9	-87.7 (3)	C16—C17—C18—C21	-178.4 (2)
C1—C7—C8—C9	91.4 (2)	C17—C18—C19—C20	0.4 (3)
C1—C7—N10—O11	-177.79 (15)	C21—C18—C19—C20	179.4 (2)
C8—C7—N10—O11	1.3 (3)	C18—C19—C20—C15	-1.0 (3)
C7—N10—O11—S12	-171.97 (13)	C16—C15—C20—C19	0.6 (3)
N10-011-S12-013	53.22 (14)	S12—C15—C20—C19	-178.83 (16)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
C2—H2…O13 ⁱ	0.94	2.53	3.138 (3)	122

				data reports
C3—H3…O13 ⁱ	0.94	2.58	3.171 (3)	122
C20—H20…O14	0.94	2.56	2.929 (3)	104

Symmetry code: (i) x, -y+3/2, z+1/2.