ISSN 2414-3146

Received 25 October 2017 Accepted 27 November 2017

Edited by R. J. Butcher, Howard University, USA

Keywords: crystal structure; cobaltoceniumsulfonate; zwitterion; dediazoniation.

CCDC reference: 1562754

Structural data: full structural data are available from iucrdata.iucr.org

Stefan Vanicek, Klaus Wurst and Benno Bildstein*

University of Innsbruck, Faculty of Chemistry and Pharmacy, Innrain 80–82, 6020 Innsbruck, Austria. *Correspondence e-mail: benno.bildstein@uibk.ac.at

The title compound, $[Co(C_5H_5)(C_5H_4O_3S)]$, was synthesized by dediazoniation of cobaltoceniumdiazonium bis(hexafluoridophosphate) with CuCl and SO₂, crystallizing as yellow platelets. Structurally, a regular cobaltocenium sandwich moiety is observed containing coplanar cyclopentadienyl rings and displaying unexceptional carbon–cobalt [2.0230 (16)–2.0452 (14) Å] and carbon–carbon [1.410 (3)–1.431 (3) Å] bond distances. In this mesoionic molecule, the cationic cobaltoceniumyl part is connected to its anionic sulfonate part by a carbon– sulfur single bond of 1.7717 (15) Å.

Structure description

The title compound (Fig. 1) is the first and only sulfonic acid derivative in the compound class of cobaltocenium salts. As a result of the strongly electron-withdrawing cationic cobaltocenium moiety, the corresponding sulfonic acid is fully dissociated, thereby stabilizing the title compound as its zwitterionic cobaltoceniumsulfonate.

Structurally, a regular cobaltocenium sandwich moiety is observed containing coplanar cyclopentadienyl rings and displaying unexceptional carbon–cobalt [2.0230 (16)–2.0452 (14) Å] and carbon–carbon [1.410 (3)–1.431 (3) Å] bond distances. The structural properties of the sulfonate group are also unexceptional, showing a tetrahedral sulfonate functional group with sulfur–oxygen bond distances [1.4402 (12)–1.4499 (14) Å] and oxygen–sulfur–oxygen angles [113.04 (9)–114.09 (9)°] in line with expectations. In this mesoionic molecule, the cationic cobaltoceniumyl part is connected to its anionic sulfonate part by a carbon–sulfur single bond of 1.7717 (15) Å. The arrangement of molecular entities in the unit cell is shown in Fig. 2.

Figure 1

The structure of the title compound, with displacement ellipsoids drawn at the 50% probability level for non-H atoms.

Figure 2

The arrangement of molecular entities of the zwitterionic title compound in the unit cell. [Symmetry codes: (A) x, y, z; (B) 1 - x, 1 - y, 1 - z; (C) $\frac{3}{2} - x, y - \frac{1}{2}, \frac{1}{2} - z$; (D) $x - \frac{1}{2}, \frac{3}{2} - y, \frac{1}{2} + z$.]

Synthesis and crystallization

Cobaltoceniumsulfonate was obtained by a Sandmeyer-type chlorosulfo-dediazoniation reaction of cobaltoceniumdiazonium bis(hexafluoridophosphate) (Vanicek *et al.*, 2016) with sulfur dioxide in the presence of cupric chloride in hydrochloric acid according to literature (Hoffman, 1981), followed by aqueous workup. From the resulting product mixture

Table 1	
Experimental details.	
Crystal data	
Chemical formula	$[Co(C_5H_5)(C_5H_4O_3S)]$
M _r	268.16
Crystal system, space group	Monoclinic, $P2_1/n$
Temperature (K)	193
a, b, c (Å)	7.6234 (4), 13.1489 (6), 9.6785 (5)
β (°)	94.206 (1)
$V(Å^3)$	967.55 (8)
Ζ	4
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	1.97
Crystal size (mm)	$0.18 \times 0.14 \times 0.14$
Data collection	
Diffractometer	Bruker D8 QUEST PHOTON 100
Absorption correction	Multi-scan (<i>SADABS</i> ; Bruker, 2014)
T_{\min}, T_{\max}	0.676, 0.790
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	22746, 2116, 2032
R _{int}	0.025
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.639
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.020, 0.054, 1.08
No. of reflections	2116
No. of parameters	136
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({ m e} { m \AA}^{-3})$	0.24, -0.43

Computer programs: *APEX2* and *SAINT* (Bruker, 2014), *SHELXT2014* (Sheldrick, 2015*a*), *SHELXL2014* (Sheldrick, 2015*b*), *ORTEP-3 for Windows* (Farrugia, 2012) and *Mercury* (Macrae *et al.*, 2008).

containing various cobaltocenium compounds according to ¹H and ¹³C NMR analysis, single crystals of the title compound were obtained at room temperature from a mixture of acetonitrile and water.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1.

Funding information

The presented work was supported by the Austrian Science Fund (FWF), P 30221-NBL.

References

- Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Hoffman, R. V. (1981). Org. Synth. 60, 121-126.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Vanicek, S., Kopacka, H., Wurst, K., Müller, T., Hassenrück, C., Winter, R. F. & Bildstein, B. (2016). Organometallics, 35, 2101– 2109.

full crystallographic data

IUCrData (2017). 2, x171703 [https://doi.org/10.1107/S2414314617017035]

Cobaltoceniumsulfonate

Stefan Vanicek, Klaus Wurst and Benno Bildstein

Cobaltoceniumsulfonate

Crystal data [Co(C₅H₅)(C₅H₄O₃S)] $M_r = 268.16$ Monoclinic, $P2_1/n$ a = 7.6234 (4) Å b = 13.1489 (6) Å c = 9.6785 (5) Å $\beta = 94.206$ (1)° V = 967.55 (8) Å³ Z = 4

Data collection

Bruker D8 QUEST PHOTON 100 diffractometer Radiation source: Incoatec Microfocus Multi layered optics monochromator Detector resolution: 10.4 pixels mm⁻¹ φ and ω scans Absorption correction: multi-scan (DIFABS; Walker & Stuart, 1983) $T_{min} = 0.676, T_{max} = 0.790$

Refinement

Refinement on F^2 Hydrogen site location: inferred from Least-squares matrix: full neighbouring sites $R[F^2 > 2\sigma(F^2)] = 0.020$ H-atom parameters constrained $wR(F^2) = 0.054$ $w = 1/[\sigma^2(F_o^2) + (0.0286P)^2 + 0.5214P]$ S = 1.08where $P = (F_0^2 + 2F_c^2)/3$ 2116 reflections $(\Delta/\sigma)_{\rm max} = 0.001$ $\Delta \rho_{\rm max} = 0.24 \text{ e } \text{\AA}^{-3}$ 136 parameters $\Delta \rho_{\rm min} = -0.43 \ {\rm e} \ {\rm \AA}^{-3}$ 0 restraints

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Hydrogen atoms were located in the difference Fourier syntheses and included and refined as riding atoms in their calculated positions.

F(000) = 544 $D_x = 1.841 \text{ Mg m}^{-3}$ Mo K\alpha radiation, \lambda = 0.71073 \mathbf{A} Cell parameters from 9062 reflections $\theta = 2.6-27.5^{\circ}$ $\mu = 1.97 \text{ mm}^{-1}$ T = 193 KPlatelet, yellow $0.18 \times 0.14 \times 0.14 \text{ mm}$

22746 measured reflections 2116 independent reflections 2032 reflections with $I > 2\sigma(I)$ $R_{int} = 0.025$ $\theta_{max} = 27.0^\circ, \ \theta_{min} = 2.6^\circ$ $h = -9 \rightarrow 9$ $k = -16 \rightarrow 16$ $l = -12 \rightarrow 12$

	X	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Co1	0.72231 (2)	0.58762 (2)	0.24293 (2)	0.01743 (8)	
S1	0.83395 (5)	0.69190 (3)	0.55827 (4)	0.02232 (10)	
01	0.76626 (18)	0.67652 (11)	0.69286 (13)	0.0405 (3)	
O2	1.00545 (15)	0.64785 (10)	0.54789 (15)	0.0381 (3)	
03	0.81863 (18)	0.79505 (9)	0.50811 (15)	0.0398 (3)	
C1	0.8206 (2)	0.68857 (14)	0.10960 (19)	0.0355 (4)	
H1	0.7914	0.7586	0.1010	0.043*	
C2	0.7347 (2)	0.60824 (16)	0.03566 (17)	0.0367 (4)	
H2	0.6381	0.6148	-0.0315	0.044*	
C3	0.8179 (2)	0.51592 (14)	0.07925 (18)	0.0357 (4)	
H3	0.7868	0.4497	0.0466	0.043*	
C4	0.9564 (2)	0.54022 (14)	0.18074 (18)	0.0323 (4)	
H4	1.0340	0.4931	0.2279	0.039*	
C5	0.9578 (2)	0.64712 (14)	0.19881 (18)	0.0322 (4)	
Н5	1.0368	0.6844	0.2600	0.039*	
C6	0.54570 (19)	0.66101 (12)	0.35710 (15)	0.0222 (3)	
H6	0.5113	0.7304	0.3503	0.027*	
C7	0.4639 (2)	0.57829 (13)	0.28320 (16)	0.0260 (3)	
H7	0.3653	0.5829	0.2176	0.031*	
C8	0.5545 (2)	0.48737 (12)	0.32406 (15)	0.0252 (3)	
H8	0.5264	0.4209	0.2908	0.030*	
C9	0.69493 (19)	0.51320 (11)	0.42370 (15)	0.0209 (3)	
H9	0.7769	0.4673	0.4684	0.025*	
C10	0.68939 (18)	0.62079 (11)	0.44371 (14)	0.0187 (3)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Col	0.01734 (12)	0.01810 (12)	0.01726 (11)	-0.00121 (7)	0.00411 (7)	-0.00056 (6)
S 1	0.02178 (18)	0.01959 (18)	0.02482 (18)	0.00203 (13)	-0.00344 (14)	-0.00436 (13)
O1	0.0459 (8)	0.0523 (8)	0.0231 (6)	-0.0119 (6)	0.0008 (5)	-0.0104 (5)
O2	0.0212 (6)	0.0373 (7)	0.0541 (8)	0.0067 (5)	-0.0086 (5)	-0.0140 (6)
O3	0.0454 (8)	0.0187 (6)	0.0526 (8)	-0.0002 (5)	-0.0145 (6)	-0.0005(5)
C1	0.0388 (10)	0.0295 (8)	0.0406 (10)	0.0021 (7)	0.0199 (8)	0.0123 (7)
C2	0.0333 (9)	0.0581 (11)	0.0195 (7)	-0.0007 (8)	0.0080 (7)	0.0048 (7)
C3	0.0426 (10)	0.0357 (9)	0.0314 (8)	-0.0064 (8)	0.0200 (7)	-0.0119 (7)
C4	0.0258 (8)	0.0370 (9)	0.0360 (9)	0.0071 (7)	0.0153 (7)	0.0050 (7)
C5	0.0247 (8)	0.0383 (9)	0.0352 (9)	-0.0103 (7)	0.0120 (6)	-0.0022 (7)
C6	0.0177 (7)	0.0285 (8)	0.0208 (7)	0.0049 (6)	0.0036 (5)	0.0003 (5)
C7	0.0163 (7)	0.0404 (9)	0.0213 (7)	-0.0040 (6)	0.0026 (5)	0.0017 (6)
C8	0.0267 (8)	0.0261 (7)	0.0233 (7)	-0.0102 (6)	0.0055 (6)	-0.0005 (6)
C9	0.0231 (7)	0.0207 (7)	0.0192 (6)	-0.0007(5)	0.0035 (5)	0.0017 (5)
C10	0.0182 (7)	0.0205 (7)	0.0176 (6)	0.0021 (5)	0.0028 (5)	-0.0003 (5)

Geometric parameters (Å, °)

Co1—C4	2.0230 (16)	C2—C3	1.419 (3)
Co1—C3	2.0245 (16)	С2—Н2	0.9500
Co1-C10	2.0251 (14)	C3—C4	1.425 (3)
Co1—C9	2.0288 (14)	С3—Н3	0.9500
Co1—C5	2.0320 (16)	C4—C5	1.416 (3)
Col—Cl	2.0323 (16)	C4—H4	0.9500
Co1—C2	2.0333 (16)	С5—Н5	0.9500
Co1—C8	2.0345 (15)	C6—C7	1.421 (2)
Co1—C7	2.0399 (15)	C6—C10	1.431 (2)
Col—C6	2.0452 (14)	С6—Н6	0.9500
S1—O2	1.4402 (12)	C7—C8	1.422 (2)
S1—O3	1.4425 (12)	С7—Н7	0.9500
S1—O1	1.4499 (14)	C8—C9	1.429 (2)
S1—C10	1.7717 (15)	С8—Н8	0.9500
C1—C2	1.410 (3)	C9—C10	1.4289 (19)
C1—C5	1.416 (3)	С9—Н9	0.9500
C1—H1	0.9500		
C4—Co1—C3	41.22 (8)	Co1—C1—H1	126.4
C4—Co1—C10	121.73 (7)	C1—C2—C3	108.00 (16)
C3—Co1—C10	158.16 (7)	C1—C2—Co1	69.67 (10)
C4—Co1—C9	104.88 (7)	C3—C2—Co1	69.20 (10)
C3—Co1—C9	121.06 (7)	C1—C2—H2	126.0
C10—Co1—C9	41.28 (5)	C3—C2—H2	126.0
C4—Co1—C5	40.89 (7)	Co1—C2—H2	126.7
C3—Co1—C5	68.94 (7)	C2—C3—C4	107.79 (16)
C10—Co1—C5	106.99 (7)	C2—C3—Co1	69.86 (10)
C9—Co1—C5	121.02 (7)	C4—C3—Co1	69.33 (9)
C4—Co1—C1	68.77 (7)	С2—С3—Н3	126.1
C3—Co1—C1	68.70 (7)	С4—С3—Н3	126.1
C10—Co1—C1	123.10 (7)	Co1—C3—H3	126.3
C9—Co1—C1	158.23 (7)	C5—C4—C3	107.83 (16)
C5—Co1—C1	40.76 (8)	C5—C4—Co1	69.90 (9)
C4—Co1—C2	69.01 (7)	C3—C4—Co1	69.45 (10)
C3—Co1—C2	40.95 (8)	C5—C4—H4	126.1
C10—Co1—C2	159.39 (7)	C3—C4—H4	126.1
C9—Co1—C2	158.48 (7)	Col—C4—H4	126.1
C5—Co1—C2	68.64 (7)	C1—C5—C4	107.95 (16)
C1—Co1—C2	40.58 (8)	C1—C5—Co1	69.63 (9)
C4—Co1—C8	120.58 (7)	C4—C5—Co1	69.22 (9)
C3—Co1—C8	105.84 (7)	C1—C5—H5	126.0
C10—Co1—C8	69.11 (6)	C4—C5—H5	126.0
C9—Co1—C8	41.17 (6)	Co1—C5—H5	126.7
C5—Co1—C8	157.06 (7)	C7—C6—C10	107.52 (13)
C1—Co1—C8	160.03 (7)	C7—C6—Co1	69.45 (9)
C2—Co1—C8	122.90 (7)	C10-C6-Co1	68.66 (8)

C4—Co1—C7	157.47 (7)	С7—С6—Н6	126.2
C3—Co1—C7	121.97 (7)	С10—С6—Н6	126.2
C10—Co1—C7	68.91 (6)	Co1—C6—H6	127.2
C9—Co1—C7	69.16 (6)	C6—C7—C8	108.50 (13)
C5—Co1—C7	160.70 (7)	C6—C7—Co1	69.85 (8)
C1—Co1—C7	124.53 (7)	C8—C7—Co1	69.37 (9)
C2—Co1—C7	108.17 (7)	С6—С7—Н7	125.8
C8—Co1—C7	40.85 (7)	С8—С7—Н7	125.8
C4—Co1—C6	159.40 (7)	Со1—С7—Н7	126.6
C3—Co1—C6	158.66 (7)	C7—C8—C9	108.21 (13)
C10—Co1—C6	41.16 (6)	C7—C8—Co1	69.78 (9)
C9—Co1—C6	69.40 (6)	C9—C8—Co1	69.20 (8)
C5—Co1—C6	123.96 (7)	С7—С8—Н8	125.9
C1—Co1—C6	108.84 (7)	С9—С8—Н8	125.9
C2—Co1—C6	123.38 (7)	Co1—C8—H8	126.7
C8—Co1—C6	68.87 (6)	C8—C9—C10	107.38 (13)
C7—Co1—C6	40.70 (6)	C8—C9—Co1	69.63 (8)
O2—S1—O3	113.96 (9)	C10—C9—Co1	69.22 (8)
O2—S1—O1	113.04 (9)	С8—С9—Н9	126.3
O3—S1—O1	114.09 (9)	С10—С9—Н9	126.3
O2—S1—C10	105.68 (7)	Со1—С9—Н9	126.4
O3—S1—C10	104.73 (7)	C9—C10—C6	108.39 (13)
O1—S1—C10	104.05 (7)	C9—C10—S1	125.74 (11)
C2—C1—C5	108.43 (16)	C6-C10-S1	125.87 (11)
C2-C1-Co1	69.75 (10)	C9—C10—Co1	69.50 (8)
C5—C1—Co1	69.61 (9)	C6-C10-Co1	70.17 (8)
C2—C1—H1	125.8	S1-C10-Co1	126.80 (8)
C5—C1—H1	125.8		
C5—C1—C2—C3	0.29 (19)	Co1—C8—C9—C10	59.15 (10)
Co1—C1—C2—C3	-58.76 (12)	C7—C8—C9—Co1	-59.05 (10)
C5-C1-C2-Co1	59.04 (12)	C8—C9—C10—C6	0.20 (16)
C1—C2—C3—C4	-0.12 (19)	Co1—C9—C10—C6	59.61 (10)
Co1—C2—C3—C4	-59.17 (11)	C8—C9—C10—S1	179.33 (11)
C1-C2-C3-Co1	59.05 (12)	Co1—C9—C10—S1	-121.26 (11)
C2—C3—C4—C5	-0.09 (18)	C8—C9—C10—Co1	-59.41 (10)
Co1—C3—C4—C5	-59.59 (11)	C7—C6—C10—C9	-0.42 (16)
C2—C3—C4—Co1	59.50 (12)	Co1—C6—C10—C9	-59.19 (10)
C2-C1-C5-C4	-0.34 (18)	C7—C6—C10—S1	-179.55 (11)
Co1—C1—C5—C4	58.79 (11)	Co1—C6—C10—S1	121.68 (12)
C2-C1-C5-Co1	-59.13 (12)	C7—C6—C10—Co1	58.77 (10)
C3—C4—C5—C1	0.26 (18)	O2—S1—C10—C9	39.68 (15)
Co1-C4-C5-C1	-59.05 (11)	O3—S1—C10—C9	160.34 (13)
C3—C4—C5—Co1	59.31 (11)	O1—S1—C10—C9	-79.61 (14)
C10—C6—C7—C8	0.49 (17)	O2—S1—C10—C6	-141.34 (13)
Co1—C6—C7—C8	58.77 (11)	O3—S1—C10—C6	-20.68 (15)
C10-C6-C7-Co1	-58.28 (10)	O1—S1—C10—C6	99.37 (14)
C6—C7—C8—C9	-0.37 (17)	O2—S1—C10—Co1	-50.30 (11)

data reports

Co1-C7-C8-C9	58.69 (10)	O3—S1—C10—Co1	70.37 (11)
C6—C7—C8—Co1	-59.06 (11)	O1—S1—C10—Co1	-169.58 (10)
C7—C8—C9—C10	0.10(17)		