

ISSN 2414-3146

Received 10 November 2017 Accepted 17 November 2017

Edited by W. T. A. Harrison, University of Aberdeen, Scotland

Keywords: crystal structure; thiazolidine; envelope pucker; C—H···O interactions; weak aromatic interactions.

CCDC reference: 1586333

Structural data: full structural data are available from iucrdata.iucr.org

rac-cis-5-Methyl-2,3-diphenyl-1,3-thiazolidin-4-one

Hemant P. Yennawar,^a John Tierney^b and Lee J. Silverberg^{c*}

^aDepartment of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA, ^bPennsylvania State University, Brandywine Campus, 312 Main Building, Brandywine, PA 19063, USA, and ^cPennsylvania State University, Schuylkill Campus, 200 University Drive, Schuylkill Haven, PA 17972, USA. *Correspondence e-mail: ljs43@psu.edu

In the racemic title compound, $C_{16}H_{15}NOS$, the thiazolidine ring adopts an envelope conformation, with the S atom as the flap. The dihedral angles between the heterocycle (all atoms) and pendant C- and N-bound benzene rings are 69.75 (14) and 56.56 (11)°, respectively; the aromatic rings are almost orthogonal to each other, with a dihedral angle of 76.04 (14)° between them. In the crystal, molecules are linked by weak C-H···O hydrogen bonds to generate [101] chains, with alternating molecules being enantiomers. A weak C-H··· π interaction is also observed.

Structure description

1,3-Thiazolidin-4-ones are of great interest due to their high and diverse biological activity (Jain *et al.*, 2012). 5-Methyl-2,3-diaryl-1,3-thiazolidinones are readily available by use of thiolactic acid in the preparation (Patel *et al.*, 1976) and show antimicrobial activity (Piscopo *et al.*, 1988; Piscopo, Diurno, Gagliardi, Mazzoni, Parrilli & Veneruso, 1989; Piscopo, Diurno, Gagliardi, Mazzoni, De Franceso & Veneruso, 1989; Piscopo, Diurno, Gagliardi, Mazzoni & Veneruso, 1989). However, while the crystal structures of a number of 5-methyl-1,3-thiazolidin-4-ones have been reported (Rang *et al.*, 1997; Özturk *et al.*, 2000; Dandia *et al.*; 2006; Yalçin *et al.*, 2008; Akkurt *et al.*, 2010, 2011, 2012; Ostapiuk *et al.*, 2012; Jiang *et al.*, 2012), only two of them were 2,3-diaryl substituted (Özturk *et al.*, 2000; Dandia *et al.*; 2006).

Herein, we report the synthesis and crystal structure of the *cis* isomer of *rac*-5-methyl-2,3-diphenyl-1,3-thiazolidin-4-one. Woolston *et al.* (1993) have reported observing a 3:1 *cis:trans* ratio in the product, although the method of isolation was not specified. We have previously reported the structure of 2,3-diphenyl-1,3-thiazolidin-4-one (Yennawar *et al.*, 2014). The most closely related 5-methyl compound whose crystal structure is known is

Table	1					
Hydro	gen-bo	nd ge	omet	ry (Å	, °).	
~ • •				~	~ ~	

Cg3 is the centroid of the C11–C16 ring.

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$C13-H13\cdotsO1^{i}$ $C3-H3\cdots Cg3^{ii}$	0.93	2.51	3.366 (3)	154
	0.98	2.90	3.783 (3)	151

Symmetry codes: (i) x - 1, $-y + \frac{1}{2}$, $z - \frac{1}{2}$; (ii) x, $-y + \frac{1}{2}$, $z + \frac{1}{2}$.

the 3-(*p*-chlorophenyl)-2-(8-quinolinyl) compound of Özturk *et al.* (2000), which displayed an envelope conformation for the thiazolidinone ring.

The title compound (Fig. 1) shows an envelope conformation for the five-membered 1,3-thiazolidin-4-one ring with substitutions at the 2, 3, and 5 ring positions. The phenyl rings at the 2 and 3 positions are close to orthogonal to each other with a dihedral angle of 76.04 (14)° between their planes. In the arbitrarily chosen asymmetric molecule (Fig. 1), C1 and C3 have S and R configurations, respectively, but crystal symmetry generates a racemic mixture. In the extended structure (Fig. 2), the oxygen atom connected to the 4 position of the heterocycle accepts a $C-H\cdots O$ interaction (Table 1) arising from a phenyl ring at the 3 position of a symmetryrelated enantiomer, resulting in a chain-link in the [101] direction. A weak $C-H\cdots O$ interaction (Table 1) is also observed.

Synthesis and crystallization

0.05 mol of *N*-benzylideneaniline and a slight excess of thiolactic acid were dissolved in 60 ml of toluene in a 100 ml round-

Figure 1

The molecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level.

Table 2	
Experimental details.	
Crystal data	
Chemical formula	C ₁₆ H ₁₅ NOS
$M_{ m r}$	269.35
Crystal system, space group	Monoclinic, $P2_1/c$
Temperature (K)	298
a, b, c (Å)	6.2271 (16), 22.531 (6), 9.937 (3)
β (°)	96.545 (4)
$V(Å^3)$	1385.1 (6)
Ζ	4
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	0.23
Crystal size (mm)	$0.15 \times 0.1 \times 0.09$
Data collection	
Diffractometer	Bruker SAINT CCD area detector
Absorption correction	Multi-scan (SADABS; Bruker,
	2001)
T_{\min}, T_{\max}	0.838, 0.9
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	10624, 3360, 2378
R _{int}	0.037
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.668
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.063, 0.171, 1.04
No. of reflections	3360
No. of parameters	173
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({ m e} { m \AA}^{-3})$	0.46, -0.18

Computer programs: *SMART* and *SAINT* (Bruker, 2001), *SHELXS97* and *SHELXL97* (Sheldrick, 2008), *OLEX2* (Dolomanov *et al.*, 2009) and *publCIF* (Westrip, 2010).

Figure 2 Packing diagra

Packing diagram of the title compound, with red dotted lines representing $C-H\cdots O$ contacts forming chains propagating in the [101] direction.

bottomed flask. The flask was connected to a Dean–Stark trap and condenser and refluxed for 6 h. After cooling, the excess thiolactic acid was neutralized with 5% aqueous NaHCO₃ solution. The toluene layer was removed under vacuum on a rotary evaporator. The product was recrystallized from 95% ethanol solution: m.p. 391–393 K (no literature reports). Crystals for X-ray diffraction studies were grown by slow evaporation from ethanol solution. Only the *cis* isomer was isolated.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

Funding information

We thank Penn State Schuylkill for financial support and National Science Foundation (grant No. CHEM-0131112) for the X-ray diffractometer.

References

- Akkurt, M., Çelik, Í., Demir, H., Özkırımlı, S. & Büyükgüngör, O. (2011). Acta Cryst. E67, o293–o294.
- Akkurt, M., Gürsoy, E., Güzeldemirci, N. U., Türktekin-Çelikesir, S. & Tahir, M. N. (2012). Acta Cryst. E68, 01505–01506.
- Akkurt, M., Nassozi, M., Kocabalkanlı, A., Khan, I. U. & Sharif, S. (2010). Acta Cryst. E66, 0882.

- Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Dandia, A., Singh, R., Khaturia, S., Mérienne, C., Morgant, G. & Loupy, A. (2006). *Bioorg. Med. Chem.* 14, 2409–2417.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Jain, A. K., Vaidya, A., Ravichandran, V., Kashaw, S. K. & Agrawal, R. K. (2012). Bioorg. Med. Chem. 20, 3378–3395.
- Jiang, J.-R., Xu, F., Ke, Z.-L. & Li, L. (2012). Acta Cryst. E68, 034.
- Ostapiuk, Y. V., Obushak, M. K., Matiychuk, V. S., Naskrent, M. & Gzella, A. K. (2012). *Tetrahedron Lett.* **53**, 543–545.
- Özturk, S., Aygün, M., Öcal, N., Yolacan, C. III & Fun, H.-K. (2000). NCS, **215**, 526–528.
- Patel, D. R., Satpanthi, P. S., Patel, P. B. & Trivedi, J. J. (1976). J. Inst. Chem. (India), 48(6), 305–308.
- Piscopo, E., Diurno, M. V., Gagliardi, R., Mazzoni, O. & Aliberti, F. (1988). Boll. Soc. Ital. Biol. Sper. 64, 153–158.
- Piscopo, E., Diurno, M. V., Gagliardi, R., Mazzoni, O., de Francesco, F. M. & Veneruso, G. (1989). *Boll. Soc. Ital. Biol. Sper.* **65**, 535–541.
- Piscopo, E., Diurno, M. V., Gagliardi, R., Mazzoni, O., Parrilli, C. & Veneruso, G. (1989). Boll. Soc. Ital. Biol. Sper. 65, 131–136.
- Piscopo, E., Diurno, M. V., Gagliardi, R., Mazzoni, O. & Veneruso, G. (1989). Boll. Soc. Ital. Biol. Sper. 65, 853–859.
- Rang, K., Liao, F.-L., Sandström, J. & Wang, S.-L. (1997). Chirality, 9, 568–577.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
- Woolston, C. R. J., Lee, J. B. & Swinbourne, J. (1993). Magn. Reson. Chem. **31**, 348–351.
- Yalçın, Ş. P., Akkurt, M., Şahin, E., Güzel, Ö., Salman, A. & İhan, E. (2008). Acta Cryst. E64, o1919.
- Yennawar, H. P., Tierney, J. & Silverberg, L. J. (2014). Acta Cryst. E70, 0847.

full crystallographic data

IUCrData (2017). 2, x171662 [https://doi.org/10.1107/S2414314617016625]

rac-cis-5-Methyl-2,3-diphenyl-1,3-thiazolidin-4-one

Hemant P. Yennawar, John Tierney and Lee J. Silverberg

rac-cis-5-Methyl-2,3-diphenyl-1,3-thiazolidin-4-one

Crystal data

C₁₆H₁₅NOS $M_r = 269.35$ Monoclinic, $P2_1/c$ a = 6.2271 (16) Å*b* = 22.531 (6) Å c = 9.937 (3) Å $\beta = 96.545 \ (4)^{\circ}$ V = 1385.1 (6) Å³ Z = 4

Data collection

Bruker SAINT CCD area detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator phi and ω scans Absorption correction: multi-scan (SADABS; Bruker, 2001) $T_{\rm min} = 0.838, T_{\rm max} = 0.9$

Refinement

Refinement on F^2 Secondary atom site location: difference Fourier Least-squares matrix: full map $R[F^2 > 2\sigma(F^2)] = 0.063$ Hydrogen site location: inferred from $wR(F^2) = 0.171$ neighbouring sites S = 1.04H-atom parameters constrained 3360 reflections $w = 1/[\sigma^2(F_0^2) + (0.0811P)^2 + 0.3983P]$ where $P = (F_0^2 + 2F_c^2)/3$ 173 parameters 0 restraints $(\Delta/\sigma)_{\rm max} = 0.001$ Primary atom site location: structure-invariant $\Delta \rho_{\rm max} = 0.46 \ {\rm e} \ {\rm \AA}^{-3}$ direct methods $\Delta \rho_{\rm min} = -0.18 \ {\rm e} \ {\rm \AA}^{-3}$

Special details

Experimental. The data collection nominally covered a full sphere of reciprocal space by a combination of 4 sets of ω scans each set at different φ and/or 2θ angles and each scan (30 s exposure) covering -0.300° degrees in ω . The crystal to detector distance was 5.82 cm.

F(000) = 568 $D_{\rm x} = 1.292 {\rm Mg m^{-3}}$ Mo *K* α radiation, $\lambda = 0.71073$ Å Cell parameters from 2561 reflections $\theta = 2.3 - 25.6^{\circ}$ $\mu = 0.23 \text{ mm}^{-1}$ T = 298 KBlock, colorless $0.15 \times 0.1 \times 0.09 \text{ mm}$

10624 measured reflections 3360 independent reflections 2378 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.037$ $\theta_{\text{max}} = 28.3^{\circ}, \ \theta_{\text{min}} = 1.8^{\circ}$ $h = -8 \rightarrow 7$ $k = -30 \rightarrow 29$ $l = -12 \rightarrow 13$

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \text{sigma}(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

	x	y	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
S1	0.41425 (13)	0.39324 (4)	1.01291 (7)	0.0782 (3)
01	0.7411 (3)	0.29432 (8)	0.80393 (16)	0.0588 (5)
N1	0.4230 (3)	0.34551 (7)	0.77525 (17)	0.0393 (4)
C1	0.2685 (4)	0.37863 (10)	0.8464 (2)	0.0476 (5)
H1	0.1414	0.3540	0.8557	0.057*
C2	0.5992 (3)	0.32204 (10)	0.8504 (2)	0.0440 (5)
C3	0.5912 (4)	0.33075 (12)	1.0016 (2)	0.0568 (6)
Н3	0.5222	0.2958	1.0365	0.068*
C4	0.8088 (5)	0.33802 (15)	1.0804 (3)	0.0754 (8)
H4A	0.8720	0.3747	1.0556	0.113*
H4B	0.9003	0.3056	1.0608	0.113*
H4C	0.7939	0.3384	1.1755	0.113*
C5	0.1991 (4)	0.43677 (10)	0.7778 (2)	0.0490 (6)
C6	-0.0051 (5)	0.45857 (14)	0.7878 (4)	0.0784 (9)
H6	-0.1011	0.4371	0.8341	0.094*
C7	-0.0674 (6)	0.51299 (16)	0.7282 (5)	0.0978 (12)
H7	-0.2034	0.5285	0.7374	0.117*
C8	0.0701 (6)	0.54313 (13)	0.6571 (4)	0.0914 (11)
H8	0.0259	0.5785	0.6144	0.110*
C9	0.2736 (6)	0.52196 (13)	0.6475 (4)	0.0880 (10)
H9	0.3688	0.5433	0.6005	0.106*
C10	0.3364 (5)	0.46888 (11)	0.7080 (3)	0.0674 (7)
H10	0.4748	0.4545	0.7012	0.081*
C11	0.3725 (3)	0.33221 (8)	0.6344 (2)	0.0364 (4)
C12	0.1711 (3)	0.31056 (9)	0.5866 (2)	0.0461 (5)
H12	0.0676	0.3043	0.6456	0.055*
C13	0.1239 (4)	0.29816 (10)	0.4495 (3)	0.0549 (6)
H13	-0.0110	0.2830	0.4171	0.066*
C14	0.2734 (5)	0.30799 (11)	0.3619 (2)	0.0587 (7)
H14	0.2396	0.3002	0.2700	0.070*
C15	0.4750 (5)	0.32947 (11)	0.4101 (3)	0.0589 (6)
H15	0.5777	0.3356	0.3505	0.071*
C16	0.5252 (4)	0.34184 (10)	0.5455 (2)	0.0471 (5)
H16	0.6610	0.3566	0.5774	0.057*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

data reports

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.0871 (6)	0.1043 (6)	0.0412 (4)	0.0397 (4)	-0.0008 (3)	-0.0177 (3)
01	0.0519 (10)	0.0811 (12)	0.0429 (9)	0.0258 (8)	0.0034 (7)	0.0011 (8)
N1	0.0373 (9)	0.0469 (9)	0.0335 (9)	0.0062 (7)	0.0036 (7)	-0.0016 (7)
C1	0.0421 (12)	0.0592 (13)	0.0418 (12)	0.0086 (10)	0.0067 (9)	-0.0020 (10)
C2	0.0423 (12)	0.0532 (12)	0.0357 (11)	0.0045 (9)	0.0017 (9)	0.0013 (9)
C3	0.0554 (15)	0.0754 (16)	0.0396 (12)	0.0111 (12)	0.0050 (11)	0.0025 (11)
C4	0.0681 (18)	0.114 (2)	0.0408 (14)	0.0151 (16)	-0.0070 (13)	-0.0096 (14)
C5	0.0447 (12)	0.0516 (13)	0.0492 (13)	0.0081 (10)	-0.0018 (10)	-0.0094 (10)
C6	0.0573 (17)	0.0719 (18)	0.106 (3)	0.0172 (14)	0.0090 (16)	-0.0056 (17)
C7	0.071 (2)	0.077 (2)	0.140 (4)	0.0350 (18)	-0.011 (2)	-0.007 (2)
C8	0.102 (3)	0.0477 (15)	0.116 (3)	0.0148 (17)	-0.024 (2)	-0.0010 (16)
C9	0.104 (3)	0.0518 (16)	0.108 (3)	0.0031 (16)	0.010(2)	0.0053 (16)
C10	0.0656 (17)	0.0515 (14)	0.085 (2)	0.0066 (12)	0.0094 (15)	0.0011 (13)
C11	0.0397 (11)	0.0332 (9)	0.0355 (10)	0.0045 (8)	0.0005 (8)	0.0008 (8)
C12	0.0404 (12)	0.0484 (12)	0.0484 (13)	0.0003 (9)	-0.0005 (10)	0.0058 (9)
C13	0.0519 (14)	0.0490 (12)	0.0580 (15)	-0.0020 (10)	-0.0183 (12)	-0.0003 (11)
C14	0.0752 (18)	0.0578 (14)	0.0395 (12)	0.0074 (12)	-0.0096 (12)	-0.0077 (10)
C15	0.0683 (17)	0.0684 (15)	0.0415 (13)	0.0031 (12)	0.0130 (12)	-0.0035 (11)
C16	0.0452 (12)	0.0560 (13)	0.0396 (11)	-0.0043 (10)	0.0031 (10)	-0.0019 (10)

Atomic displacement parameters $(Å^2)$

Geometric parameters (Å, °)

S1—C1	1.824 (2)	С7—Н7	0.9300
S1—C3	1.799 (3)	С7—С8	1.354 (5)
O1—C2	1.216 (3)	C8—H8	0.9300
N1-C1	1.461 (3)	C8—C9	1.367 (5)
N1-C2	1.362 (3)	С9—Н9	0.9300
N1-C11	1.431 (3)	C9—C10	1.375 (4)
C1—H1	0.9800	C10—H10	0.9300
C1—C5	1.517 (3)	C11—C12	1.379 (3)
C2—C3	1.521 (3)	C11—C16	1.387 (3)
С3—Н3	0.9800	C12—H12	0.9300
C3—C4	1.495 (4)	C12—C13	1.389 (3)
C4—H4A	0.9600	C13—H13	0.9300
C4—H4B	0.9600	C13—C14	1.363 (4)
C4—H4C	0.9600	C14—H14	0.9300
C5—C6	1.377 (3)	C14—C15	1.379 (4)
C5—C10	1.367 (4)	C15—H15	0.9300
С6—Н6	0.9300	C15—C16	1.375 (3)
C6—C7	1.397 (5)	C16—H16	0.9300
C3—S1—C1	92.68 (11)	С6—С7—Н7	120.0
C2—N1—C1	117.80 (17)	C8—C7—C6	120.0 (3)
C2—N1—C11	121.92 (17)	C8—C7—H7	120.0
C11—N1—C1	119.78 (16)	С7—С8—Н8	119.7

S1—C1—H1	109.9	C7—C8—C9	120.5 (3)
N1-C1-S1	104.13 (14)	С9—С8—Н8	119.7
N1—C1—H1	109.9	С8—С9—Н9	120.2
N1—C1—C5	113.16 (18)	C8—C9—C10	119.5 (3)
C5—C1—S1	109.79 (16)	С10—С9—Н9	120.2
C5—C1—H1	109.9	C5—C10—C9	121.2 (3)
01—C2—N1	124.5 (2)	C5-C10-H10	119.4
O1—C2—C3	123.3 (2)	С9—С10—Н10	119.4
N1—C2—C3	112.13 (19)	C12—C11—N1	120.07 (18)
S1—C3—H3	108.1	C12—C11—C16	119.9 (2)
C2—C3—S1	104.59 (16)	C16—C11—N1	120.02 (19)
С2—С3—Н3	108.1	C11—C12—H12	120.3
C4—C3—S1	114.0 (2)	C11—C12—C13	119.4 (2)
C4—C3—C2	113.7 (2)	C13—C12—H12	120.3
С4—С3—Н3	108.1	C12—C13—H13	119.7
C3—C4—H4A	109.5	C14—C13—C12	120.7 (2)
C3—C4—H4B	109.5	C14—C13—H13	119.7
C3—C4—H4C	109.5	C13—C14—H14	120.1
H4A—C4—H4B	109.5	C13—C14—C15	119.8 (2)
H4A—C4—H4C	109.5	C15—C14—H14	120.1
H4B—C4—H4C	109.5	C14—C15—H15	119.8
C6—C5—C1	119.6 (2)	C16—C15—C14	120.5 (2)
C10-C5-C1	121.5 (2)	C16—C15—H15	119.8
C10—C5—C6	118.9 (2)	C11—C16—H16	120.1
C5—C6—H6	120.1	C15—C16—C11	119.7 (2)
C5—C6—C7	119.8 (3)	C15—C16—H16	120.1
С7—С6—Н6	120.1		
S1—C1—C5—C6	-94.9 (3)	C2-N1-C11-C12	125.9 (2)
S1—C1—C5—C10	83.8 (3)	C2-N1-C11-C16	-54.9 (3)
O1—C2—C3—S1	160.9 (2)	C3—S1—C1—N1	-24.32 (17)
O1—C2—C3—C4	35.9 (4)	C3—S1—C1—C5	-145.76 (17)
N1-C1-C5-C6	149.2 (2)	C5—C6—C7—C8	2.2 (5)
N1-C1-C5-C10	-32.1 (3)	C6—C5—C10—C9	-0.4 (4)
N1-C2-C3-S1	-23.0 (2)	C6—C7—C8—C9	-2.7 (6)
N1—C2—C3—C4	-148.0 (2)	C7—C8—C9—C10	1.6 (6)
N1-C11-C12-C13	179.64 (18)	C8—C9—C10—C5	-0.1 (5)
N1-C11-C16-C15	-179.4 (2)	C10—C5—C6—C7	-0.6 (4)
C1—S1—C3—C2	26.91 (18)	C11—N1—C1—S1	-172.77 (15)
C1—S1—C3—C4	151.7 (2)	C11—N1—C1—C5	-53.6 (3)
C1—N1—C2—O1	-178.9 (2)	C11—N1—C2—O1	9.2 (3)
C1—N1—C2—C3	5.0 (3)	C11—N1—C2—C3	-166.80 (19)
C1—N1—C11—C12	-45.7 (3)	C11—C12—C13—C14	-1.0 (3)
C1—N1—C11—C16	133.4 (2)	C12-C11-C16-C15	-0.3 (3)
C1—C5—C6—C7	178.1 (3)	C12—C13—C14—C15	1.2 (4)
C1C5C10C9	-179.1 (3)	C13—C14—C15—C16	-0.9 (4)
C2—N1—C1—S1	15.2 (2)	C14—C15—C16—C11	0.5 (4)
C2—N1—C1—C5	134.4 (2)	C16—C11—C12—C13	0.5 (3)

Hydrogen-bond geometry (Å, °)

Cg3 is the centroid of the C11–C16 ring.

<i>D</i> —H··· <i>A</i>	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
C13—H13…O1 ⁱ	0.93	2.51	3.366 (3)	154
С3—Н3…Сg3 ^{іі}	0.98	2.90	3.783 (3)	151

Symmetry codes: (i) *x*-1, -*y*+1/2, *z*-1/2; (ii) *x*, -*y*+1/2, *z*+1/2.