IUCrData

ISSN 2414-3146

Received 31 October 2017 Accepted 10 November 2017

Edited by H. Ishida, Okayama University, Japan

Keywords: crystal structure; pyrazole; *trans*anethole,diaryl nitrilimine; 1,3-dipolar cycloaddition.

CCDC reference: 1584986

Structural data: full structural data are available from iucrdata.iucr.org

5-(4-Methoxyphenyl)-4-methyl-1-phenyl-3-*p*-tolyl-1*H*-pyrazole

Yahya Ben Soumane,^a Mohamed Loughzail,^b* Abdesselam Baouid,^b El Mestafa El Hadrami,^a Abdeslam Ben Tama^a and Mohamed Driss^c

^aLaboratoire de Chimie Organique Appliquée, Departement de Chimie, Faculté des Sciences et Techniques, BP 2202, Université Sidi Mohamed Ben Abdellah, Fès, Morocco, ^bLaboratoire de Chimie Moléculaire, Département de Chimie, Faculté, des Sciences Semlalia, BP 2390, Université Cadi Ayyad, 40001, Marrakech, Morocco, and ^cLaboratoire de Matériaux et Cristallochimie, Faculté des Sciences de Tunis, Université de Tunis ElManar, 2092 ElManar II, Tunis, Tunisia. *Correspondence e-mail: loughzail@gmail.com

The title compound, $C_{24}H_{22}N_2O$, crystallizes with two independent molecules (*A* and *B*) in the asymmetric unit. The phenyl, *p*-tolyl and *p*-methoxyphenyl rings are inclined to the pyrazole ring by 42.5 (2), 17.68 (19) and 52.20 (19)°, respectively, in molecule *A*, and by 39.5 (2), 40.77 (19) and 59.76 (18)°, respectively, in molecule *B*. In the asymmetric unit, the pyrarole ring of molecule *A* makes a dihedral angle of 3.7 (2)° with that of molecule *B*. In the crystal, the two independent molecules are linked to each other by a $C-H \cdots O$ hydrogen bond.

Structure description

Trans-anethole {systematic name: 1-methoxy-4-[(E)-prop-1-en-1-yl]benzene} is an active ingredient of the essential oil of anise and the source of the aniseed scent. It has antigenotoxic (Abraham *et al.*, 2001), gastroprotective and antioxidative (Freire *et al.*, 2005), and antimicrobial and antiviral (Astani *et al.*, 2010) properties. The molecule has a double bond in the aromatic portion, which confers some reactivity. In this work, we focused our efforts on the preparation of new pentagonal heterocyclic systems by the 1,3-dipolar cycloaddition reaction from *trans*-anethole and diarylnitrilimine.

The molecular structure of the title compound is illustrated in Fig. 1. The main geometric features are in good agreement with those observed in a similar compound (Loughzail *et al.*, 2014). In the crystal, the two crystallographically independent molecules are linked to each other into a dimer *via* a $C-H\cdots O$ hydrogen bond (C50-H50 \cdots O1ⁱ; Table 1 and Fig. 2).

Figure 1

The asymmetric unit of the title compound with the atom-labelling scheme and 30% probability ellipsoids for non-H atoms.

Synthesis and crystallization

Triethylamine (9 mmol) dissolved in dichloromethane (5 ml) was added dropwise to a solution of anethole (6.74 mmol) and the precursor diarylnitrilimine (6.74 mmol) (Huisgen *et al.*, 1962) in dichloromethane (20 ml). After stirring for one day at room temperature, the mixture was washed several times with water (25 ml). The organic layers were separated, dried by anhydrous sodium sulfate, filtered and evaporated. The residue was purified in a silica gel column (eluent: hexane-ethyl acetate $2:98 \nu/\nu$). We have isolated two products 1 and 2. Only the compound 2 is treated in this work. Single crystals of the title compound were obtained from a mixed solution of hexane and ethyl acetate $(2:98 \nu/\nu)$ at room temperature.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

Figure 2

A partial packing diagram of the title compound viewed down the *a* axis, showing the $C-H\cdots O$ hydrogen bonds as blue lines.

Table 1	
Hydrogen-bond geometr	y (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
$C50-H50\cdotsO1^{i}$	0.93	2.44	3.327 (4)	160

Symmetry code: (i) $x + \frac{1}{2}, -y + \frac{3}{2}, -z$.

Table 2

Exp	eri	me	ntai	aeı	ans

Crystal data	
Chemical formula	$C_{24}H_{22}N_2O$
$M_{\rm r}$	354.43
Crystal system, space group	Orthorhombic, $P2_12_12_1$
Temperature (K)	293
a, b, c (Å)	11.615 (5), 17.562 (4), 18.847 (8)
$V(Å^3)$	3844 (2)
Ζ	8
Radiation type	Μο Κα
$\mu (\mathrm{mm}^{-1})$	0.08
Crystal size (mm)	$0.30 \times 0.25 \times 0.22$
Data collection	
Diffractometer	Bruker X8 APEX
Absorption correction	Multi-scan (<i>SADABS</i> ; Bruker, 2009)
T_{\min}, T_{\max}	0.441, 0.981
No. of measured, independent and	9494, 7577, 4885
observed $[I > 2\sigma(I)]$ reflections	
R _{int}	0.029
$(\sin \theta / \lambda)_{\text{max}} (\text{\AA}^{-1})$	0.625
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.045, 0.117, 1.00
No. of reflections	7577
No. of parameters	494
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$	0.16, -0.17

Computer programs: APEX2 and SAINT (Bruker, 2009), SHELXS2014 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), ORTEP-3 for Windows (Farrugia, 2012) and publCIF (Westrip, 2010).

Acknowledgements

The authors express their thanks to Professor M. Berraho and Professor E. Soumhi for their valuable contribution in order to finalize this paper.

References

- Abraham, S. K. (2001). Food Chem. Toxicol. 39, 493-498.
- Astani, A., Reichling, R. & Schnitzler, P. (2010). *Phytother. Res.* 24, 673–679.
- Bruker. (2009). *APEX2*, *SAINT* and *SADABS*. Bruker AXS Inc., Madison, Wisconsin, USA.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Freire, R. S., Morais, S. M., Catunda-Junior, F. E. A. & Pinheiro, D. C. S. N. (2005). *Bioorg. Med. Chem.* 13, 4353–4358.
- Huisgen, R., Seidel, M., Wallbillich, G. & Knupfer, H. (1962). *Tetrahedron*, **17**, 3–29.
- Loughzail, M., Baouid, A., Fernandes, J. A., Driss, M. & Soumhi, E. H. (2014). *Acta Cryst.* E70, o126.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

full crystallographic data

IUCrData (2017). **2**, x171626 [https://doi.org/10.1107/S2414314617016261]

5-(4-Methoxyphenyl)-4-methyl-1-phenyl-3-p-tolyl-1H-pyrazole

Yahya Ben Soumane, Mohamed Loughzail, Abdesselam Baouid, El Mestafa El Hadrami, Abdeslam Ben Tama and Mohamed Driss

 $D_{\rm x} = 1.225 {\rm Mg} {\rm m}^{-3}$

 $0.30 \times 0.25 \times 0.22 \text{ mm}$

 $\theta_{\text{max}} = 26.4^{\circ}, \ \theta_{\text{min}} = 2.1^{\circ}$

7577 independent reflections

4885 reflections with $I > 2\sigma(I)$

 $\theta = 2.1 - 26.4^{\circ}$

 $\mu = 0.08 \text{ mm}^{-1}$ T = 293 K

Box, white

 $R_{\rm int} = 0.029$

 $h = -5 \rightarrow 14$

 $k = -21 \rightarrow 16$

 $l = -8 \rightarrow 23$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 7577 reflections

5-(4-Methoxyphenyl)-4-methyl-1-phenyl-3-p-tolyl-1H-pyrazole

Crystal data

 $C_{24}H_{22}N_{2}O$ $M_{r} = 354.43$ Orthorhombic, $P2_{1}2_{1}2_{1}$ a = 11.615 (5) Å b = 17.562 (4) Å c = 18.847 (8) Å $V = 3844 (2) \text{ Å}^{3}$ Z = 8 F(000) = 1504

Data collection

Bruker X8 APEX diffractometer Radiation source: fine-focus sealed X-ray tube φ and ω scans Absorption correction: multi-scan (SADABS; Bruker, 2009) $T_{\min} = 0.441, T_{\max} = 0.981$ 9494 measured reflections

Refinement

Refinement on F^2	H-atom parameters constrained
Least-squares matrix: full	$w = 1/[\sigma^2(F_o^2) + (0.0611P)^2 + 0.0246P]$
$R[F^2 > 2\sigma(F^2)] = 0.045$	where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.117$	$(\Delta/\sigma)_{\rm max} < 0.001$
S = 1.00	$\Delta \rho_{\rm max} = 0.16 \text{ e } \text{\AA}^{-3}$
7577 reflections	$\Delta \rho_{\rm min} = -0.17 \text{ e } \text{\AA}^{-3}$
494 parameters	Extinction correction: SHELXL2016
0 restraints	(Sheldrick, 2015),
Hydrogen site location: inferred from	$Fc^* = kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
neighbouring sites	Extinction coefficient: 0.0037 (7)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.3907 (2)	0.61275 (12)	0.07832 (13)	0.0600 (7)	
02	0.6071 (2)	0.44506 (13)	0.18934 (14)	0.0618 (7)	
N1	0.1252 (2)	0.20939 (14)	0.10883 (13)	0.0459 (7)	
N2	0.1370 (2)	0.28613 (14)	0.10968 (14)	0.0450 (7)	
N3	0.8590 (2)	0.85027 (14)	0.12709 (13)	0.0436 (6)	
N4	0.8512 (2)	0.77294 (13)	0.12969 (13)	0.0414 (6)	
C1	0.3896 (4)	0.6563 (2)	0.1417 (2)	0.0702 (11)	
H1A	0.417712	0.706600	0.131989	0.105*	
H1B	0.437952	0.632338	0.176426	0.105*	
H1C	0.312272	0.659319	0.159469	0.105*	
C2	0.3526 (3)	0.53972 (17)	0.08170 (17)	0.0445 (8)	
C3	0.3190 (3)	0.50307 (18)	0.14364 (16)	0.0451 (8)	
H3	0.322648	0.528430	0.186900	0.054*	
C4	0.2804 (3)	0.42947 (18)	0.14076 (16)	0.0443 (8)	
H4	0.257938	0.405475	0.182511	0.053*	
C5	0.2740 (3)	0.38955 (18)	0.07710 (16)	0.0437 (7)	
C6	0.3081 (3)	0.42728 (19)	0.01563 (17)	0.0525 (9)	
H6	0.304020	0.402153	-0.027736	0.063*	
C7	0.3475 (3)	0.50075 (19)	0.01787 (17)	0.0535 (9)	
H7	0.370943	0.524624	-0.023734	0.064*	
C8	0.2350 (3)	0.30971 (18)	0.07626 (16)	0.0461 (8)	
C9	0.2886 (3)	0.2449 (2)	0.05149 (17)	0.0487 (8)	
C10	0.4015 (4)	0.2431 (2)	0.0128 (2)	0.0820 (14)	
H10A	0.394819	0.210908	-0.028235	0.123*	
H10B	0.460165	0.223427	0.043604	0.123*	
H10C	0.421641	0.293692	-0.001873	0.123*	
C11	0.2172 (3)	0.18364 (18)	0.07349 (16)	0.0440 (8)	
C12	0.2317 (3)	0.10019 (18)	0.06841 (15)	0.0438 (8)	
C13	0.3356 (3)	0.0659 (2)	0.05164 (19)	0.0574 (9)	
H13	0.397459	0.095733	0.037359	0.069*	
C14	0.1405 (3)	0.05216 (19)	0.08543 (19)	0.0549 (9)	
H14	0.068522	0.073049	0.094795	0.066*	
C15	0.3483 (3)	-0.0120 (2)	0.05586 (19)	0.0580 (9)	
H15	0.419332	-0.033240	0.044624	0.070*	
C16	0.1545 (3)	-0.0256 (2)	0.08871 (18)	0.0566 (9)	
H16	0.091462	-0.055996	0.099709	0.068*	
C17	0.2599 (3)	-0.05963 (19)	0.07607 (17)	0.0516 (9)	
C18	0.2776 (4)	-0.1432 (2)	0.0865 (2)	0.0686 (11)	
H18A	0.207149	-0.169697	0.076515	0.103*	
H18B	0.300122	-0.152720	0.134700	0.103*	
H18C	0.336832	-0.160790	0.055011	0.103*	
C19	0.0522 (3)	0.32924 (18)	0.14675 (17)	0.0449 (8)	
C20	0.0128 (3)	0.3022 (2)	0.21083 (17)	0.0551 (9)	
H20	0.040889	0.256601	0.228984	0.066*	
C21	0.0098 (3)	0.39652 (18)	0.11932 (19)	0.0551 (9)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

H21	0.035792	0.414732	0.075852	0.066*
C22	-0.0685 (3)	0.3431 (2)	0.2479 (2)	0.0675 (11)
H22	-0.094828	0.325044	0.291347	0.081*
C23	-0.0719 (3)	0.4363 (2)	0.1575 (2)	0.0664 (11)
H23	-0.100984	0.481672	0.139356	0.080*
C24	-0.1109(3)	0.4100 (2)	0.2216 (2)	0.0713 (12)
H24	-0.165644	0.437435	0.247008	0.086*
C31	0.5970 (4)	0.39782 (19)	0.1281 (2)	0.0701 (11)
H31A	0.569242	0.348494	0.141874	0.105*
H31B	0 670928	0 392678	0 105867	0.105*
H31C	0.543837	0.420494	0.095265	0.105*
C32	0.543057 0.6434(3)	0.51809(18)	0.079203 0.17963 (17)	0.0466 (8)
C32	0.6434(3)	0.51009(10)	0.11367(17)	0.0400(8) 0.0473(8)
U22	0.652377	0.53078 (17)	0.072428	0.0473 (8)
C24	0.032377	0.522015	0.072420	0.037°
C34	0.0993 (3)	0.02321(17)	0.10999 (10)	0.0404 (8)
П34	0.711752	0.040939	0.003029	0.030
C35	0./185 (3)	0.66915 (17)	0.17020 (15)	0.0399 (7)
C36	0.6979(3)	0.63489 (19)	0.23567 (16)	0.0501 (8)
H36	0.709410	0.662726	0.277048	0.060*
C37	0.6610 (3)	0.5608 (2)	0.24019 (18)	0.0534 (9)
H37	0.647678	0.539093	0.284466	0.064*
C38	0.7539 (3)	0.74977 (18)	0.16443 (15)	0.0416 (7)
C39	0.6965 (3)	0.81413 (19)	0.18527 (16)	0.0452 (8)
C40	0.5837 (3)	0.8173 (2)	0.2233 (2)	0.0630 (10)
H40A	0.581630	0.861504	0.253183	0.095*
H40B	0.574666	0.772371	0.251761	0.095*
H40C	0.522278	0.820008	0.189263	0.095*
C41	0.7656 (3)	0.87515 (17)	0.16080 (15)	0.0407 (7)
C42	0.7479 (3)	0.95839 (17)	0.16699 (15)	0.0429 (8)
C43	0.6422 (3)	0.9920 (2)	0.1569 (2)	0.0575 (9)
H43	0.578354	0.961348	0.148218	0.069*
C44	0.8406 (3)	1.00620 (19)	0.18066 (17)	0.0496 (8)
H44	0.913078	0.985398	0.188486	0.060*
C45	0.6285 (3)	1.0697 (2)	0.15938 (19)	0.0622 (10)
H45	0.555578	1.090348	0.152831	0.075*
C46	0.8263 (3)	1.0847 (2)	0.18279 (19)	0.0571 (10)
H46	0.889482	1.115594	0.192148	0.069*
C47	0 7200 (4)	1 1177 (2)	0.17129(19)	0.0589(10)
C48	0.7200(1) 0.7046(5)	1.1177(2) 1 2031(2)	0.1712(1)	0.0909(10) 0.0912(15)
H48A	0.7040(3)	1.2031 (2)	0.211073	0.137*
1140A	0.743077	1.224071	0.173644	0.137*
	0.024030	1.213023	0.173044	0.137*
C40	0.730124	1.223720	0.128029	0.137
C49	0.9373(3)	0.72000(17) 0.75276(10)	0.09003(17)	0.0410(0)
	0.9043 (3)	0.73370(19)	0.05283(17)	0.0303 (8)
H3U	0.957752	0.798040	0.012419	
	0.9805 (3)	0.66320 (19)	0.12800 (19)	0.0548 (9)
H51	0.952290	0.647393	0.171771	0.066*
C52	1.0688 (3)	0.7114 (2)	-0.0003(2)	0.0598 (10)

data reports

H52	1.099358	0.727963	-0.043213	0.072*
C53	1.0642 (3)	0.6211 (2)	0.0934 (2)	0.0643 (10)
H53	1.090963	0.576157	0.113607	0.077*
C54	1.1081 (3)	0.6450 (2)	0.0298 (2)	0.0649 (11)
H54	1.164328	0.616321	0.006960	0.078*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0741 (16)	0.0462 (14)	0.0597 (14)	-0.0098 (13)	-0.0039 (14)	0.0067 (11)
O2	0.0678 (16)	0.0454 (14)	0.0721 (16)	-0.0050 (13)	0.0089 (14)	0.0112 (12)
N1	0.0503 (16)	0.0393 (16)	0.0480 (15)	0.0027 (13)	-0.0005 (14)	-0.0044 (12)
N2	0.0473 (17)	0.0444 (16)	0.0434 (15)	0.0020 (13)	0.0024 (13)	-0.0037 (12)
N3	0.0492 (16)	0.0400 (15)	0.0415 (14)	0.0016 (13)	0.0025 (13)	0.0003 (11)
N4	0.0463 (16)	0.0366 (15)	0.0412 (14)	0.0029 (12)	0.0019 (13)	0.0002 (11)
C1	0.086 (3)	0.046 (2)	0.078 (3)	-0.007(2)	-0.008(2)	-0.0056 (19)
C2	0.0439 (18)	0.0408 (19)	0.0489 (18)	0.0001 (15)	-0.0064 (16)	0.0034 (15)
C3	0.0548 (19)	0.0447 (19)	0.0358 (16)	-0.0002 (16)	-0.0025 (15)	-0.0022 (14)
C4	0.0505 (19)	0.0479 (19)	0.0346 (15)	-0.0001 (16)	0.0016 (15)	0.0025 (14)
C5	0.0467 (18)	0.0467 (18)	0.0378 (16)	-0.0006 (16)	-0.0011 (16)	0.0010 (14)
C6	0.065 (2)	0.056 (2)	0.0366 (17)	-0.0001 (19)	0.0025 (16)	-0.0025 (15)
C7	0.066 (2)	0.053 (2)	0.0418 (18)	-0.002 (2)	0.0053 (18)	0.0086 (15)
C8	0.056 (2)	0.0486 (19)	0.0340 (15)	-0.0028 (17)	0.0000 (16)	-0.0028 (14)
C9	0.055 (2)	0.048 (2)	0.0431 (17)	0.0005 (18)	0.0046 (17)	-0.0057 (15)
C10	0.086 (3)	0.062 (3)	0.098 (3)	-0.006(2)	0.048 (3)	-0.012 (2)
C11	0.0502 (19)	0.0447 (18)	0.0372 (16)	0.0029 (17)	-0.0023 (16)	-0.0043 (14)
C12	0.0494 (19)	0.0464 (19)	0.0355 (16)	0.0019 (17)	0.0002 (16)	-0.0042 (13)
C13	0.054 (2)	0.056 (2)	0.062 (2)	-0.0011 (19)	0.0084 (19)	-0.0053 (18)
C14	0.049 (2)	0.053 (2)	0.062 (2)	0.0038 (17)	0.0077 (19)	-0.0031 (17)
C15	0.054 (2)	0.058 (2)	0.061 (2)	0.015 (2)	0.0041 (19)	-0.0093 (18)
C16	0.059 (2)	0.049 (2)	0.061 (2)	-0.0015 (18)	0.0105 (19)	-0.0041 (18)
C17	0.063 (2)	0.049 (2)	0.0431 (18)	0.004 (2)	-0.0049 (18)	-0.0082 (15)
C18	0.082 (3)	0.055 (2)	0.068 (2)	0.013 (2)	0.005 (2)	-0.004 (2)
C19	0.0393 (17)	0.047 (2)	0.0485 (19)	0.0030 (15)	-0.0057 (15)	-0.0079 (15)
C20	0.0467 (19)	0.066 (2)	0.052 (2)	0.0113 (19)	0.0012 (18)	-0.0035 (18)
C21	0.055 (2)	0.052 (2)	0.059 (2)	0.0073 (18)	-0.0079 (19)	-0.0030 (17)
C22	0.057 (2)	0.089 (3)	0.057 (2)	0.010 (2)	0.005 (2)	-0.010 (2)
C23	0.054 (2)	0.054 (2)	0.091 (3)	0.0135 (19)	-0.013 (2)	-0.009(2)
C24	0.045 (2)	0.085 (3)	0.083 (3)	0.015 (2)	0.000 (2)	-0.024 (2)
C31	0.071 (3)	0.042 (2)	0.098 (3)	-0.0032 (19)	0.010 (2)	-0.002(2)
C32	0.0457 (19)	0.0405 (19)	0.0535 (19)	0.0045 (16)	0.0050 (17)	0.0078 (16)
C33	0.054 (2)	0.0426 (19)	0.0457 (18)	-0.0001 (16)	0.0017 (16)	0.0001 (14)
C34	0.056 (2)	0.047 (2)	0.0360 (17)	-0.0026 (16)	0.0025 (15)	0.0023 (14)
C35	0.0389 (17)	0.0427 (19)	0.0379 (16)	-0.0009 (15)	0.0009 (14)	0.0014 (13)
C36	0.061 (2)	0.052 (2)	0.0368 (17)	0.0026 (18)	0.0015 (16)	0.0007 (15)
C37	0.060 (2)	0.058 (2)	0.0428 (17)	0.0002 (19)	0.0076 (17)	0.0102 (16)
C38	0.0443 (18)	0.0461 (18)	0.0345 (16)	-0.0003 (17)	-0.0035 (14)	-0.0010 (14)
C39	0.0431 (18)	0.053 (2)	0.0391 (16)	-0.0016 (17)	-0.0024 (15)	-0.0105 (15)

C40	0.052 (2)	0.065 (2)	0.072 (2)	-0.006 (2)	0.012 (2)	-0.021 (2)
C41	0.0440 (18)	0.0439 (19)	0.0342 (15)	0.0019 (16)	-0.0043 (15)	-0.0039 (13)
C42	0.0502 (19)	0.0434 (19)	0.0352 (16)	0.0036 (16)	0.0014 (15)	-0.0048 (13)
C43	0.051 (2)	0.055 (2)	0.066 (2)	0.0045 (19)	-0.0041 (19)	-0.0040 (17)
C44	0.051 (2)	0.048 (2)	0.0499 (19)	0.0069 (17)	0.0033 (17)	-0.0034 (15)
C45	0.059 (2)	0.058 (2)	0.070 (2)	0.015 (2)	0.002 (2)	0.0017 (19)
C46	0.067 (2)	0.048 (2)	0.057 (2)	-0.0054 (19)	0.002 (2)	-0.0076 (17)
C47	0.076 (3)	0.043 (2)	0.057 (2)	0.009 (2)	0.011 (2)	-0.0014 (16)
C48	0.118 (4)	0.047 (2)	0.109 (4)	0.013 (3)	0.017 (3)	-0.001 (2)
C49	0.0397 (17)	0.0391 (18)	0.0465 (18)	-0.0001 (14)	-0.0010 (15)	-0.0040 (14)
C50	0.055 (2)	0.0459 (19)	0.0504 (19)	0.0017 (18)	0.0050 (18)	-0.0004 (16)
C51	0.053 (2)	0.050 (2)	0.062 (2)	0.0086 (18)	0.0002 (19)	0.0055 (17)
C52	0.051 (2)	0.068 (3)	0.060(2)	-0.001 (2)	0.0128 (19)	-0.0093 (19)
C53	0.054 (2)	0.050(2)	0.089 (3)	0.0123 (19)	-0.001 (2)	0.003 (2)
C54	0.048 (2)	0.062 (2)	0.085 (3)	0.009 (2)	0.010 (2)	-0.014 (2)

Geometric parameters (Å, °)

01—C1	1.418 (4)	C22—H22	0.9300
O1—C2	1.358 (4)	C23—C24	1.371 (5)
O2—C31	1.427 (4)	С23—Н23	0.9300
O2—C32	1.362 (4)	C24—H24	0.9300
N1-C11	1.337 (4)	C31—H31A	0.9600
N2—N1	1.355 (3)	C31—H31B	0.9600
N2-C8	1.365 (4)	C31—H31C	0.9600
N4—N3	1.362 (3)	C32—C37	1.381 (5)
N4—C38	1.367 (4)	C32—C33	1.389 (4)
C1—H1A	0.9600	С33—Н33	0.9300
C1—H1B	0.9600	C34—C33	1.375 (4)
C1—H1C	0.9600	C34—C35	1.390 (4)
C3—C4	1.369 (4)	C34—H34	0.9300
C3—C2	1.389 (4)	C35—C38	1.478 (4)
С3—Н3	0.9300	C36—C37	1.374 (5)
C4—C5	1.392 (4)	C36—C35	1.393 (4)
C4—H4	0.9300	C36—H36	0.9300
С5—С6	1.392 (4)	С37—Н37	0.9300
С6—Н6	0.9300	C38—C39	1.370 (4)
С7—С2	1.385 (4)	C39—C40	1.494 (5)
С7—С6	1.370 (4)	C40—H40A	0.9600
С7—Н7	0.9300	C40—H40B	0.9600
C8—C5	1.473 (4)	C40—H40C	0.9600
С8—С9	1.379 (4)	C41—N3	1.331 (4)
C9—C10	1.501 (5)	C41—C39	1.416 (4)
C10—H10A	0.9600	C42—C43	1.376 (5)
C10—H10B	0.9600	C42—C44	1.389 (5)
C10—H10C	0.9600	C42—C41	1.481 (4)
С11—С9	1.420 (5)	C43—C45	1.375 (5)
C12—C13	1.385 (5)	C43—H43	0.9300

C12—C14	1.391 (5)	C44—C46	1.389 (5)
C12—C11	1.478 (4)	C44—H44	0.9300
C13—C15	1.377 (5)	C45—C47	1.375 (5)
C13—H13	0.9300	C45—H45	0.9300
C14-C16	1 376 (5)	C46—C47	1 380 (5)
C14—H14	0.9300	C_{46} H46	0.9300
C_{15} C_{17}	1 378 (5)	C47 - C48	1.510(5)
C15H15	0.9300	$C48 - H48 \Delta$	0.9600
C_{16}	1 383 (5)	C48 - H48B	0.9600
C16 H16	0.0300	C_{48} HASC	0.9600
$C_{10} = 1110$	1 405 (5)	$C_{48} = 1148C$	1.376(4)
C_{18} H_{18A}	0.9600	$C_{49} = C_{51}$	1.376 (4)
C19 H19D	0.9000	C49 = C50	1.380 (4)
	0.9000	C49 - 104	1.420 (4)
C10_C20	0.9000	C_{50} U_{50}	1.380 (3)
C19 - C20	1.370 (4)	C50—H50	0.9300
C19—C21	1.381 (4)	C51_C53	1.385 (5)
C19—N2	1.426 (4)	C51—H51	0.9300
C20—C22	1.377 (5)	C52—C54	1.376 (5)
C20—H20	0.9300	С52—Н52	0.9300
C21—C23	1.380 (5)	C53—C54	1.368 (5)
C21—H21	0.9300	С53—Н53	0.9300
C22—C24	1.367 (5)	С54—Н54	0.9300
C2	117.8 (3)	C24—C23—H23	119.5
C41—N3—N4	104.8 (3)	C21—C23—H23	119.5
C32—O2—C31	117.7 (3)	C22—C24—C23	119.3 (4)
C11—N1—N2	105.2 (3)	C22—C24—H24	120.3
N1—N2—C8	112.4 (3)	C23—C24—H24	120.3
N1—N2—C19	117.6 (3)	O2—C31—H31A	109.5
N3—N4—C38	111.7 (2)	O2—C31—H31B	109.5
N3—N4—C49	118.6 (3)	H31A—C31—H31B	109.5
C38—N4—C49	129.7 (2)	02—C31—H31C	109.5
C8—N2—C19	129.9 (3)	H31A—C31—H31C	109.5
01—C1—H1A	109.5	H31B—C31—H31C	109.5
01-C1-H1B	109.5	02-C32-C37	116.5 (3)
01-C1-H1C	109.5	02-C32-C33	1241(3)
H1A—C1—H1B	109.5	$C_{37} - C_{32} - C_{33}$	121.1(3) 1194(3)
H1A - C1 - H1C	109.5	C_{34} C_{33} C_{32}	119.1 (3)
H1B-C1-H1C	109.5	C34—C33—H33	120.4
$01 - C^2 - C^7$	116.1 (3)	C32_C33_H33	120.4
01 - 02 - 07	110.1(3) 124.7(3)	$C_{32} = C_{33} = 1135$	120.4 122.4(3)
C_{7} C_{2} C_{3}	124.7(3) 110.2(3)	$C_{33} = C_{34} = C_{35}$	112.4 (5)
$C_{1} = C_{2} = C_{3}$	119.2(3)	$C_{35} = C_{34} = H_{34}$	118.8
$C_{4} = C_{3} = C_{2}$	119.7 (5)	C_{34} C_{35} C_{36}	1171(3)
$C_{1} = C_{2} = C_{1}$	120.1	C_{34} C_{35} C_{30}	11/.1(3) 1210(2)
$C_2 = C_3 = 115$	120.1 121.8(2)	$C_{34} - C_{33} - C_{30}$	121.0(3) 121.8(3)
$C_3 = C_4 = C_3$	110 1	$C_{30} - C_{35} - C_{36}$	121.0(3) 121.2(3)
C_{3}	119.1	$C_{27} = C_{26} = U_{26}$	121.2 (3)
UJ-U4-I14	117.1	U3/-U30-II30	119.4

C4—C5—C6	117.5 (3)	С35—С36—Н36	119.4
C4—C5—C8	120.3 (3)	C36—C37—C32	120.6 (3)
C6—C5—C8	122.1 (3)	С36—С37—Н37	119.7
C7—C6—C5	121.2 (3)	С32—С37—Н37	119.7
С7—С6—Н6	119.4	N4—C38—C39	107.1 (3)
С5—С6—Н6	119.4	N4—C38—C35	123.4 (3)
C6-C7-C2	120.4 (3)	C39—C38—C35	129.3 (3)
С6—С7—Н7	119.8	C38—C39—C41	104.8 (3)
C2—C7—H7	119.8	C38—C39—C40	126.5 (3)
$N_2 - C_8 - C_9$	106 4 (3)	C41 - C39 - C40	128.7(3)
$N_2 - C_8 - C_5$	122.7(3)	C39—C40—H40A	109 5
C9-C8-C5	130.6(3)	C39—C40—H40B	109.5
C_{8} C_{9} C_{11}	105.3(3)	H40A - C40 - H40B	109.5
C_{8} C_{9} C_{10}	105.5(3) 125.2(3)	C39 - C40 - H40C	109.5
$C_{11} - C_{9} - C_{10}$	129.2(3) 129.5(3)	H40A - C40 - H40C	109.5
C9-C10-H10A	109.5	H40B-C40-H40C	109.5
C9-C10-H10B	109.5	N3_C41_C39	107.5 111.7(3)
$H_{10A} = C_{10} = H_{10B}$	109.5	N3 C41 C42	111.7(3) 118.3(3)
C_{0} C_{10} H_{10} H_{10}	109.5	$C_{30} C_{41} C_{42}$	110.3(3) 1300(3)
	109.5	$C_{3}^{43} = C_{41}^{42} = C_{42}^{44}$	130.0(3) 117.2(3)
H10R C10 H10C	109.5	$C_{43} = C_{42} = C_{44}$	117.3(3) 1224(3)
N1 C11 C9	110.8 (2)	$C_{43} = C_{42} = C_{41}$	122.7(3) 120.3(3)
N1 = C11 = C12	110.0(3) 117.2(3)	$C_{44} = C_{42} = C_{41}$	120.3(3) 121.6(3)
$N_{1} = C_{11} = C_{12}$	117.5(3) 121.7(2)	$C_{45} = C_{45} = C_{42}$	121.0(3)
C_{9} C_{12} C_{12} C_{14}	131.7(3) 116.9(2)	$C_{43} = C_{43} = H_{43}$	119.2
C13 - C12 - C14	110.0(3)	$C42 - C43 - \Pi43$	119.2
C13 - C12 - C11	123.1(3)	C42 - C44 - C40	120.9 (5)
C14 - C12 - C11	119.9 (3)	C42 - C44 - H44	119.0
C15 - C13 - C12	120.8 (4)	C40 - C44 - H44	119.0 121.7(4)
C12—C13—H13	119.6	C47 - C45 - C43	121.7 (4)
C12—C13—H13	119.0	C42 = C45 = H45	119.2
C16 - C14 - C12	121.5 (3)	C43—C45—H45	119.2
C16—C14—H14	119.3	C47 - C46 - C44	121.3 (4)
C12—C14—H14	119.3	C4/—C46—H46	119.4
C13 - C15 - C17	122.6 (3)	C44—C46—H46	119.4
С13—С15—Н15	118.7	C45 - C47 - C46	117.4 (3)
С17—С15—Н15	118.7	C45-C47-C48	121.1 (4)
C14—C16—C17	121.7 (4)	C46—C47—C48	121.6 (4)
C14—C16—H16	119.1	C47—C48—H48A	109.5
С17—С16—Н16	119.1	C47—C48—H48B	109.5
C15—C17—C16	116.4 (3)	H48A—C48—H48B	109.5
C15—C17—C18	122.0 (3)	C47—C48—H48C	109.5
C16—C17—C18	121.6 (4)	H48A—C48—H48C	109.5
C17—C18—H18A	109.5	H48B—C48—H48C	109.5
C17—C18—H18B	109.5	C51—C49—C50	120.5 (3)
H18A—C18—H18B	109.5	C51—C49—N4	121.2 (3)
C17—C18—H18C	109.5	C50—C49—N4	118.3 (3)
H18A—C18—H18C	109.5	C52—C50—C49	119.3 (3)
H18B—C18—H18C	109.5	С52—С50—Н50	120.3

C20—C19—C21	120.4 (3)	С49—С50—Н50	120.3
C20—C19—N2	118.5 (3)	C49—C51—C53	119.2 (3)
C21—C19—N2	121.2 (3)	C49—C51—H51	120.4
C19—C20—C22	119.5 (3)	С53—С51—Н51	120.4
С19—С20—Н20	120.2	C54—C52—C50	120.4 (4)
C22—C20—H20	120.2	С54—С52—Н52	119.8
C23—C21—C19	118.9 (4)	C50—C52—H52	119.8
C23—C21—H21	120.5	C54—C53—C51	120.7 (4)
C19—C21—H21	120.5	C54—C53—H53	119.6
C_{24} C_{22} C_{20}	120.8 (4)	C51-C53-H53	119.6
C_{24} C_{22} H_{22}	119.6	C_{53} C_{54} C_{52}	119.8 (4)
$C_{24} = C_{22} = H_{22}$	119.6	$C_{53} = C_{54} = 0.52$	120.1
$C_{20} = C_{22} = C_{21}$	121.0 (4)	C_{52} C_{54} H_{54}	120.1
024-025-021	121.0 (4)	032-034-1134	120.1
C1—O1—C2—C3	-4.0 (5)	C20—C22—C24—C23	0.1 (5)
C1—O1—C2—C7	175.7 (3)	C21—C23—C24—C22	-0.3(5)
C11—N1—N2—C8	-0.6(3)	C41—N3—N4—C38	0.2 (3)
$C_{11} = N_1 = N_2 = C_{19}$	-177.7(3)	C41—N3—N4—C49	179.3 (3)
N2—N1—C11—C9	0.0(3)	N4—N3—C41—C39	-0.2(3)
N2—N1—C11—C12	175.9 (3)	N4—N3—C41—C42	-179.7(3)
N1—N2—C8—C5	-172.8(3)	N3—N4—C38—C35	174.9 (3)
N1—N2—C8—C9	10(3)	N3—N4—C38—C39	-0.1(3)
C19 - N2 - C8 - C5	38(5)	C49 - N4 - C38 - C35	-41(5)
C19 - N2 - C8 - C9	177 6 (3)	C49 - N4 - C38 - C39	-1791(3)
N1 - N2 - C19 - C20	410(4)	$N_3 N_4 C_{49} C_{50}$	-390(4)
N1 - N2 - C19 - C20 N1 - N2 - C19 - C21	-1389(3)	$N_3 - N_4 - C_{49} - C_{51}$	140.3(3)
$C_8 N_2 C_{19} C_{20}$	-135.5(3)	C_{38} N/ C_{49} C_{50}	140.0(3)
$C_8 = N_2 = C_{19} = C_{20}$	133.3(3)	$C_{38} = N_{4} = C_{49} = C_{50}$	-40.8(5)
$C_{0} = N_{2} = C_{1}^{2} = C_{2}^{2}$	44.7(3)	$C_{30} = 104 = C_{49} = C_{31}$	40.8(3)
C_{1}^{-} C_{2}^{-} C_{3}^{-} C_{4}^{-}	-0.6(5)	02 - 032 - 033 - 034	-0.4(5)
$C_{-}C_{2}$	-0.0(3)	$C_{3} - C_{32} - C_{33} - C_{34}$	-0.4(3)
01 - 02 - 07 - 00	-1/8.7(5)	02 - 032 - 037 - 030	1/9.8(3)
$C_{3} - C_{2} - C_{7} - C_{6}$	1.0(5)	$C_{33} = C_{32} = C_{34} = C_{35}$	-0.1(5)
$C_{31} = 0_2 = C_{32} = C_{33}$	-1/5.1(5)	$C_{32} = C_{33} = C_{34} = C_{35}$	0.8(5)
$C_{31} = 0_{2} = C_{32} = C_{33}$	4.7 (5)	C_{33} C_{34} C_{35} C_{36}	-0.8(3)
$C_2 = C_3 = C_4 = C_5$	0.2(5)	$C_{33} - C_{34} - C_{35} - C_{38}$	-1/8.1(3)
C_{3} C_{4} C_{5} C_{8}	-0.2(5)	$C_{34} = C_{35} = C_{36} = C_{37}$	0.3(5)
03-04-05-08	1/8.3 (3)	$C_{38} = C_{35} = C_{36} = C_{37}$	1//.6(3)
C8-C5-C6-C7	-17/.9(3)	C34—C35—C38—N4	-58.1 (5)
C4—C5—C8—N2	49.4 (5)	$C_{34} - C_{35} - C_{38} - C_{39}$	115.8 (4)
C6—C5—C8—N2	-132.2 (3)	C36—C35—C38—N4	124.7 (3)
C6—C5—C8—C9	55.7 (5)	C36—C35—C38—C39	-61.4 (5)
C4—C5—C8—C9	-122.8 (4)	C35—C36—C37—C32	0.1 (5)
C4—C5—C6—C7	0.6 (5)	N4—C38—C39—C40	178.2 (3)
C5—C6—C7—C2	-1.0 (5)	N4—C38—C39—C41	0.0 (3)
C5—C8—C9—C10	-5.2 (6)	C35—C38—C39—C40	3.5 (5)
C5—C8—C9—C11	172.2 (3)	C35—C38—C39—C41	-174.7 (3)
N2-C8-C9-C11	-0.9 (3)	C38—C39—C41—N3	0.1 (4)
N2-C8-C9-C10	-178.3 (3)	C38—C39—C41—C42	179.6 (3)

C8—C9—C11—N1	0.6 (4)	C40—C39—C41—N3	-178.0 (3)
C10—C9—C11—C12	2.7 (6)	C40—C39—C41—C42	1.5 (6)
C8—C9—C11—C12	-174.5 (3)	N3—C41—C42—C43	137.5 (3)
C10—C9—C11—N1	177.9 (3)	N3—C41—C42—C44	-39.8 (4)
C9—C11—C12—C13	13.4 (5)	C39—C41—C42—C43	-41.9 (5)
C9—C11—C12—C14	-171.0 (3)	C39—C41—C42—C44	140.7 (3)
N1-C11-C12-C13	-161.5 (3)	C41—C42—C43—C45	-176.7 (3)
N1-C11-C12-C14	14.2 (4)	C44—C42—C43—C45	0.7 (5)
C11—C12—C14—C16	-172.9 (3)	C41—C42—C44—C46	176.5 (3)
C11—C12—C13—C15	172.2 (3)	C43—C42—C44—C46	-1.0 (5)
C14—C12—C13—C15	-3.6 (5)	C42—C43—C45—C47	0.7 (6)
C13—C12—C14—C16	3.0 (5)	C42—C44—C46—C47	-0.1 (5)
C12—C13—C15—C17	0.5 (5)	C43—C45—C47—C46	-1.8 (5)
C12—C14—C16—C17	0.7 (5)	C43—C45—C47—C48	177.6 (4)
C13—C15—C17—C18	-174.6 (3)	C44—C46—C47—C45	1.5 (5)
C13—C15—C17—C16	3.2 (5)	C44—C46—C47—C48	-177.8 (4)
C14—C16—C17—C15	-3.8 (5)	N4—C49—C50—C52	-179.2 (3)
C14—C16—C17—C18	174.0 (3)	C51—C49—C50—C52	1.5 (5)
N2-C19-C20-C22	179.5 (3)	N4—C49—C51—C53	178.4 (3)
C20-C19-C21-C23	0.5 (5)	C50—C49—C51—C53	-2.3 (5)
C21—C19—C20—C22	-0.7 (5)	C49—C50—C52—C54	0.0 (5)
N2-C19-C21-C23	-179.7 (3)	C49—C51—C53—C54	1.6 (5)
C19—C20—C22—C24	0.3 (5)	C50—C52—C54—C53	-0.7 (5)
C19—C21—C23—C24	0.0 (5)	C51—C53—C54—C52	-0.1 (5)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H··· <i>A</i>	D····A	<i>D</i> —H··· <i>A</i>
C50—H50…O1 ⁱ	0.93	2.44	3.327 (4)	160

Symmetry code: (i) x+1/2, -y+3/2, -z.