

ISSN 2414-3146

Received 23 October 2017 Accepted 2 November 2017

Edited by A. J. Lough, University of Toronto, Canada

Keywords: molecular salt; crystal structure; hydrogen bonding.

CCDC reference: 1583586

Structural data: full structural data are available from iucrdata.iucr.org

2-Amino-1-methyl-4-oxo-4,5-dihydro-1*H*-imidazol-3-ium 3-carboxy-4-hydroxybenzenesulfonate monohydrate

A. Malarkodi,^a S. Kalaiyarasi,^b K. S. Joseph Wilson,^a R. Mohan Kumar^{b*} and G. Chakkaravarthi^{c*}

^aDepartment of Physics, Arul Anandar College, Madurai 625 514, India, ^bDepartment of Physics, Presidency College, Chennai 600 005, India, and ^cDepartment of Physics, CPCL Polytechnic College, Chennai 600 068, India. *Correspondence e-mail: mohan66@hotmail.com, chakkaravarthi_2005@yahoo.com

The asymmetric unit of the title molecular salt, $C_4H_7N_3O^+ \cdot C_7H_5O_6S^- \cdot H_2O$, contains a 5-sulfosalicylate anion, a creatininium cation and a water molecule of crystallization. The cation is protonated at the imidazole N atom and the anion is deprotonated at the sulfonic acid group. The creatininium is disordered over two sets of sites with refined site occupancies of 0.771 (3) and 0.229 (3). The benzene ring is approximately orthogonal to the disordered five-membered rings [dihedral angles of 89.7 (2) and 88.3 (8)° for the major and minor occupancy components, respectively]. In the crystal, the ions are connected through pairs of N-H···O hydrogen bonds, generating an $R_2^2(8)$ ring-motif. An intraionic O-H···O hydrogen bond generates an S(6) graph-set motif. Weak C-H···O contacts link the ions and water molecule into a two-dimensional network parallel to (001). The structure was refined as a two-component twin.

Structure description

Creatine is extracted from several kinds of muscle and it is endogenously synthesized by the liver and pancreas in humans (Greenhaff *et al.*, 1993; Walker, 1979). We report herein the synthesis and the crystal structure of the title molecular salt (Fig. 1). Its geometric parameters agree well with those of reported similar structures (Thayanithi *et al.*, 2016; Jahubar Ali *et al.*, 2011).

The title compound contains a disordered creatininium cation,, with site occupancies of 0.771 (3) for the major component (C2A/N1A/C5A/N4A/C3A/O6A) and 0.229 (3) for

Table 1	
Hydrogen-bond geo	ometry (Å, °).

$D - H \cdot \cdot \cdot A$	$D-{\rm H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$O2 - H2B \cdots O3$	0.82(1)	2.13 (3)	2.799 (4)	139 (4) 146
$N1A - H1A \cdots O3^{i}$	0.82	2.00	2.844 (5)	146 168
$O2-H2A\cdots O5^{n}$ N8A-H8AA···O6A ⁱⁱ	0.82 (1) 0.86	1.99 (2) 2.07	2.780 (4) 2.917 (5)	161 (5) 168
$N8A - H8AB \cdots O5^{i}$ $O8 - H8 \cdots O2^{iii}$	0.86 0.82	1.94 1.85	2.788 (4) 2.616 (3)	170 155
$C6A - H6AB \cdots O4^{iv}$	0.96	2.44	3.194 (7)	135

Symmetry codes: (i) -x + 2, -y + 2, -z + 1; (ii) x + 1, y, z; (iii) $-x + 2, y - \frac{1}{2}, -z + \frac{3}{2}$; (iv) $x + 1, -y + \frac{3}{2}, z - \frac{1}{2}$.

minor component (C2*B*/N1*B*/C5*B*/N4*B*/C3*B*/O6*B*), a 5-sulfosalicylate anion and a water molecule in the asymmetric unit. The cation is protonated at the imidizole N atom and the anion is deprotonated at the sulfonic acid group. The benzene ring (C1–C6) is orthogonal to the major [dihedral angle of 89.7 (2)°] and minor [dihedral angle of 88.3 (8)°] components of the five-membered rings. In the asymmetric unit, an intra-

Figure 1

The molecular structure of the title molecular salt, with atom labelling and 30% probability displacement ellipsoids. The minor component in the cation is shown with dashed bonds. The intramolecular hydrogen bond in the anion is shown with a dashed line.

Figure 2

The partial packing of the title molecular salt, showing ring-set motifs. Hydrogen bonds are shown as dashed lines.

Crystal data	
Chemical formula	$C_4H_7N_3O^+\cdot C_7H_5O_6S^-\cdot H_2O$
$M_{\rm r}$	348.31
Crystal system, space group	Monoclinic, $P2_1/c$
Temperature (K)	295
a, b, c (Å)	7.2459 (2), 15.5638 (4), 13.0774 (3)
β (°)	90.100 (1)
$V(Å^3)$	1474.79 (7)
Ζ	4
Radiation type	Cu Ka
$\mu \ (\mathrm{mm}^{-1})$	2.42
Crystal size (mm)	$0.15 \times 0.15 \times 0.10$
Data collection	
Diffractometer	Bruker APEXII CCD
Absorption correction	Multi-scan (<i>SADABS</i> ; Bruker, 2004)
T_{\min}, T_{\max}	0.587, 0.754
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	22225, 2905, 2798
R _{int}	0.041
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.620
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.049, 0.129, 1.09
No. of reflections	2905
No. of parameters	245
No. of restraints	2
H-atom treatment	H atoms treated by a mixture of independent and constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min}$ (e Å ⁻³)	0.38, -0.31

Computer programs: APEX2 and SAINT (Bruker, 2004), SHELXT2016 (Sheldrick, 2015a), SHELXL2016 (Sheldrick, 2015b) and PLATON (Spek, 2009).

ionic $O-H\cdots O$ hydrogen bond generates an S(6) graph-set motif (Fig. 2).

In the crystal, an N–H···O hydrogen bond (Table 1) links the anions and cations, generating an $R_2^2(8)$ ring-motif (Fig. 2).

Figure 3

The crystal packing of the title molecular salt viewed along the a axis. The hydrogen bonds are shown as dashed lines. H atoms not involving in hydrogen bonds have been omitted for clarity.

The water molecule links adjacent anions through $O-H\cdots O$ hydrogen bonds (Table 1 and Fig. 3). Weak $C-H\cdots O$ contacts (Fig. 3 and Table 1) link the components into a twodimensional network parallel to (001).

Synthesis and crystallization

The title compound was synthesized from the raw materials creatinine and 5-sulfosalicylic acid which were taken in a stoichiometric ratio and dissolved in water at ambient temperature. The solution was stirred for continuously six h to obtain a transparent homogeneous solution. The solution was filtered using Whatmann filter paper and the beaker containing the solution was covered with a perforated polythene cover. The saturated homogeneous solution was allowed to evaporate, yielding good quality crystals suitable for X-ray diffraction after three weeks.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. The structure was refined as twocomponent twin with twin law $\overline{1} 0 0 0 \overline{1} 0 0 0 1$. The creatinium cation is disordered over two orientations with site occupancies of 0.771(3) and 0.229(3). The EADP restraint in *SHELXL* (Sheldrick, 2015) was applied for the disordered atoms.

Acknowledgements

The authors acknowledge the SAIF, IIT, Madras for the data collection.

References

- Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Greenhaff, P. L., Casey, A., Short, A. H., Harris, R., Soderlund, K. & Hultman, E. (1993). *Clin. Sci.* 84, 565–571.
- Jahubar Ali, A., Athimoolam, S. & Asath Bahadur, S. (2011). Acta Cryst. E67, 02905.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. A71, 3-8.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Thayanithi, V., Kumar, P. P. & Gunasekaran, B. (2016). *IUCrData*, 1, x160989.
- Walker, J. B. (1979). Adv. Enzymol. Relat. Areas Mol. Med. 50, 177–242.

full crystallographic data

IUCrData (2017). **2**, x171595 [https://doi.org/10.1107/S2414314617015954]

2-Amino-1-methyl-4-oxo-4,5-dihydro-1*H*-imidazol-3-ium 3-carboxy-4-hydroxybenzenesulfonate monohydrate

A. Malarkodi, S. Kalaiyarasi, K. S. Joseph Wilson, R. Mohan Kumar and G. Chakkaravarthi

2-Amino-1-methyl-4-oxo-4,5-dihydro-1H-imidazol-3-ium 3-carboxy-4-hydroxybenzenesulfonate monohydrate

F(000) = 724

 $\theta = 2.2 - 36.3^{\circ}$

 $\mu = 2.42 \text{ mm}^{-1}$

Block, colourless

 $0.15 \times 0.15 \times 0.10 \text{ mm}$

T = 295 K

 $D_{\rm x} = 1.569 {\rm Mg} {\rm m}^{-3}$

Cu *K* α radiation, $\lambda = 1.54178$ Å

Cell parameters from 9845 reflections

Crystal data

 $C_{4}H_{7}N_{3}O^{+}\cdot C_{7}H_{5}O_{6}S^{-}\cdot H_{2}O$ $M_{r} = 348.31$ Monoclinic, $P2_{1}/c$ a = 7.2459 (2) Å b = 15.5638 (4) Å c = 13.0774 (3) Å $\beta = 90.100$ (1)° V = 1474.79 (7) Å³ Z = 4

Data collection

	2005:111.0
Bruker APEXII CCD	2905 independent reflections
diffractometer	2798 reflections with $I > 2\sigma(I)$
ω and φ scans	$R_{\rm int} = 0.041$
Absorption correction: multi-scan	$\theta_{\rm max} = 72.9^{\circ}, \theta_{\rm min} = 2.8^{\circ}$
(SADABS; Bruker, 2004)	$h = -7 \rightarrow 8$
$T_{\min} = 0.587, \ T_{\max} = 0.754$	$k = -19 \rightarrow 19$
22225 measured reflections	$l = -15 \rightarrow 16$

Refinement

Refinement on F^2	Hydrogen site location: mixed
Least-squares matrix: full	H atoms treated by a mixture of independent
$R[F^2 > 2\sigma(F^2)] = 0.049$	and constrained refinement
$wR(F^2) = 0.129$	$w = 1/[\sigma^2(F_o^2) + (0.054P)^2 + 1.5916P]$
<i>S</i> = 1.09	where $P = (F_o^2 + 2F_c^2)/3$
2905 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
245 parameters	$\Delta \rho_{\rm max} = 0.38 \text{ e } \text{\AA}^{-3}$
2 restraints	$\Delta \rho_{\rm min} = -0.31 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component twin.

	x	у	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$	Occ. (<1)
S1	0.76216 (13)	0.74331 (4)	0.63421 (5)	0.0308 (2)	
02	1.2464 (5)	0.77212 (16)	0.70783 (19)	0.0483 (6)	
03	0.9162 (4)	0.79601 (15)	0.6001 (3)	0.0434 (7)	
04	0.7878 (6)	0.71354 (15)	0.73693 (17)	0.0672 (11)	
05	0.5909 (4)	0.78905 (16)	0.6167 (3)	0.0525 (8)	
06	0.7490 (6)	0.44174 (15)	0.36304 (17)	0.0575 (7)	
H6A	0.750112	0.396763	0.395694	0.086*	
07	0.7467 (5)	0.34602 (13)	0.52820 (18)	0.0512 (6)	
08	0.7550 (6)	0.41124 (13)	0.67992 (17)	0.0506 (6)	
H8	0.772633	0.362118	0.700399	0.076*	
C1	0.7584 (5)	0.65219 (16)	0.55462 (19)	0.0269 (5)	
C2	0.7543 (5)	0.57105 (16)	0.59708 (19)	0.0288 (5)	
H2	0.754383	0.564915	0.667819	0.035*	
C3	0.7500 (5)	0.49812 (16)	0.5351 (2)	0.0303 (6)	
C4	0.7492 (7)	0.50885 (19)	0.4280 (2)	0.0369 (6)	
C5	0.7545 (6)	0.5911 (2)	0.3871 (2)	0.0407 (7)	
Н5	0.757849	0.597882	0.316487	0.049*	
C6	0.7550 (6)	0.66220 (18)	0.4484 (2)	0.0357 (6)	
H6	0.752994	0.716846	0.419590	0.043*	
C7	0.7485 (7)	0.41139 (18)	0.5798 (2)	0.0363 (6)	
N1A	1.1347 (5)	1.0238 (3)	0.3774 (3)	0.0284 (7)	0.771 (3)
H1A	1.111783	1.077990	0.375202	0.034*	0.771 (3)
C2A	1.0054 (5)	0.9613 (3)	0.3817 (4)	0.0302 (7)	0.771 (3)
C3A	1.1079 (7)	0.8776 (3)	0.3811 (4)	0.0314 (8)	0.771 (3)
H3A	1.059443	0.822297	0.379979	0.038*	0.771 (3)
N4A	1.3000 (7)	0.9033 (2)	0.3826 (3)	0.0235 (7)	0.771 (3)
C5A	1.3095 (7)	0.9879 (3)	0.3770 (4)	0.0257 (8)	0.771 (3)
O6A	0.8414 (4)	0.9749 (2)	0.3856 (3)	0.0454 (7)	0.771 (3)
C6A	1.4533 (7)	0.8455 (3)	0.3792 (6)	0.0456 (14)	0.771 (3)
H6AA	1.409585	0.787429	0.384815	0.068*	0.771 (3)
H6AB	1.517571	0.852489	0.315673	0.068*	0.771 (3)
H6AC	1.535550	0.857697	0.434992	0.068*	0.771 (3)
N8A	1.4596 (6)	1.0336 (2)	0.3736 (4)	0.0362 (8)	0.771 (3)
H8AA	1.565543	1.008656	0.374992	0.043*	0.771 (3)
H8AB	1.452993	1.088636	0.369915	0.043*	0.771 (3)
N1B	1.359 (2)	1.0233 (11)	0.3762 (13)	0.0284 (7)	0.229 (3)
H1B	1.378647	1.077807	0.373429	0.034*	0.229 (3)
C2B	1.5042 (18)	0.9616 (9)	0.3808 (14)	0.0302 (7)	0.229 (3)
C3B	1.399 (3)	0.8786 (14)	0.3735 (15)	0.0314 (8)	0.229 (3)
H3B	1.447922	0.823430	0.370289	0.038*	0.229 (3)
N4B	1.210 (3)	0.9018 (9)	0.3724 (13)	0.0235 (7)	0.229 (3)
C5B	1.194 (3)	0.9897 (11)	0.3766 (14)	0.0257 (8)	0.229 (3)
O6B	1.6597 (13)	0.9739 (8)	0.3906 (12)	0.0454 (7)	0.229 (3)
C6B	1.059 (3)	0.8509 (12)	0.358 (2)	0.0456 (14)	0.229 (3)
H6BA	1.095917	0.791695	0.356864	0.068*	0.229 (3)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

data reports

H6BB	0.972351	0.860018	0.412162	0.068*	0.229 (3)
H6BC	1.001645	0.865178	0.293577	0.068*	0.229 (3)
N8B	1.025 (2)	1.0332 (8)	0.3690 (14)	0.0362 (8)	0.229 (3)
H8BA	1.023308	1.088293	0.363335	0.043*	0.229 (3)
H8BB	0.923017	1.004941	0.369984	0.043*	0.229 (3)
H2A	1.340 (4)	0.768 (3)	0.672 (3)	0.054*	
H2B	1.191 (5)	0.789 (3)	0.657 (2)	0.054*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
S1	0.0428 (4)	0.0216 (3)	0.0280 (3)	0.0009 (4)	0.0022 (5)	-0.0013 (2)
O2	0.0439 (15)	0.0468 (12)	0.0543 (14)	0.0027 (15)	-0.0050 (17)	-0.0055 (11)
O3	0.0402 (15)	0.0318 (12)	0.0583 (18)	-0.0089 (10)	0.0060 (12)	-0.0053 (12)
O4	0.142 (3)	0.0337 (12)	0.0260 (11)	-0.0063 (18)	-0.0006 (18)	-0.0024 (9)
05	0.0366 (14)	0.0385 (13)	0.082 (2)	0.0052 (10)	0.0110 (16)	-0.0179 (16)
O6	0.090 (2)	0.0438 (12)	0.0386 (12)	-0.0018 (18)	-0.007 (2)	-0.0200 (9)
O7	0.0671 (17)	0.0275 (10)	0.0591 (13)	-0.0055 (14)	0.0019 (18)	-0.0112 (9)
08	0.0783 (19)	0.0285 (10)	0.0449 (12)	-0.0075 (17)	-0.013 (2)	0.0040 (9)
C1	0.0286 (14)	0.0273 (12)	0.0247 (11)	0.0052 (15)	-0.0008 (15)	-0.0021 (9)
C2	0.0339 (15)	0.0275 (12)	0.0248 (11)	-0.0037 (15)	0.0047 (16)	-0.0015 (9)
C3	0.0307 (15)	0.0262 (12)	0.0341 (13)	-0.0005 (15)	-0.0032 (17)	-0.0051 (10)
C4	0.0410 (17)	0.0368 (14)	0.0329 (13)	-0.0015 (18)	0.0039 (18)	-0.0137 (11)
C5	0.0520 (19)	0.0461 (16)	0.0239 (12)	-0.0007 (19)	0.002 (2)	-0.0032 (11)
C6	0.0460 (18)	0.0325 (14)	0.0285 (12)	-0.0022 (18)	-0.0018 (18)	0.0041 (10)
C7	0.0371 (16)	0.0292 (13)	0.0424 (14)	0.003 (2)	-0.0048 (19)	-0.0046 (11)
N1A	0.021 (2)	0.0292 (17)	0.0350 (17)	0.0047 (14)	0.0027 (18)	0.0010 (14)
C2A	0.0217 (17)	0.0411 (19)	0.0278 (16)	0.0029 (16)	0.0037 (18)	-0.0009 (14)
C3A	0.022 (2)	0.039 (2)	0.033 (2)	-0.0025 (19)	0.001 (2)	-0.0029 (17)
N4A	0.015 (2)	0.0257 (12)	0.0300 (16)	-0.0022 (17)	-0.0043 (18)	-0.0005 (11)
C5A	0.026 (2)	0.0278 (18)	0.0236 (15)	0.0034 (18)	0.003 (2)	0.0022 (14)
O6A	0.0203 (14)	0.0618 (18)	0.0543 (17)	0.0007 (14)	0.0050 (16)	0.0023 (14)
C6A	0.029 (2)	0.029 (2)	0.079 (4)	0.0078 (19)	-0.007 (3)	-0.008(2)
N8A	0.0251 (19)	0.0283 (15)	0.055 (2)	0.0015 (14)	0.001 (2)	0.0031 (15)
N1B	0.021 (2)	0.0292 (17)	0.0350 (17)	0.0047 (14)	0.0027 (18)	0.0010 (14)
C2B	0.0217 (17)	0.0411 (19)	0.0278 (16)	0.0029 (16)	0.0037 (18)	-0.0009 (14)
C3B	0.022 (2)	0.039 (2)	0.033 (2)	-0.0025 (19)	0.001 (2)	-0.0029 (17)
N4B	0.015 (2)	0.0257 (12)	0.0300 (16)	-0.0022 (17)	-0.0043 (18)	-0.0005 (11)
C5B	0.026 (2)	0.0278 (18)	0.0236 (15)	0.0034 (18)	0.003 (2)	0.0022 (14)
O6B	0.0203 (14)	0.0618 (18)	0.0543 (17)	0.0007 (14)	0.0050 (16)	0.0023 (14)
C6B	0.029 (2)	0.029 (2)	0.079 (4)	0.0078 (19)	-0.007 (3)	-0.008 (2)
N8B	0.0251 (19)	0.0283 (15)	0.055 (2)	0.0015 (14)	0.001 (2)	0.0031 (15)

Geometric parameters (Å, °)

S1—O4	1.433 (2)	C3A—N4A	1.448 (6)
S1—O5	1.448 (3)	СЗА—НЗА	0.9300
S1—O3	1.456 (3)	N4A—C5A	1.321 (6)

1.759 (3)	N4A—C6A	1.430 (6)
0.824 (10)	C5A—N8A	1.300 (7)
0.819 (10)	С6А—Н6АА	0.9600
1.347 (3)	С6А—Н6АВ	0.9600
0.8200	С6А—Н6АС	0.9600
1.221 (4)	N8A—H8AA	0.8600
1.310 (4)	N8A—H8AB	0.8600
0.8200	N1B-C5B	1.31 (3)
1.380 (3)	N1B—C2B	1.42 (2)
1.399 (3)	N1B—H1B	0.8600
1.395 (3)	C2B-06B	1.150 (17)
0.9300	C2B—C3B	1.50(2)
1.411 (4)	C3B—N4B	1.42 (2)
1.471 (4)	C3B—H3B	0.9300
1.387 (4)	N4B—C6B	1.36(2)
1.367 (4)	N4B—C5B	1.37 (2)
0.9300	C5B—N8B	1.40(2)
0.9300	C6B—H6BA	0.9600
1.351 (6)	C6B—H6BB	0.9600
1 384 (6)	C6B—H6BC	0.9600
0.8600	N8B—H8BA	0.8600
1 208 (5)	N8B—H8BB	0.8600
1.499 (6)		0.0000
114.6 (2)	C5A—N4A—C6A	125.8 (5)
111.8 (2)	C5A—N4A—C3A	108.9 (5)
109.37 (15)	C6A—N4A—C3A	125.0 (4)
107.21 (13)	N8A—C5A—N4A	126.2 (5)
106.87 (18)	N8A—C5A—N1A	123.0 (4)
106.50 (16)	N4A—C5A—N1A	110.8 (5)
88 (4)	N4A—C6A—H6AA	109.5
109.5	N4A—C6A—H6AB	109.5
109.5	Н6АА—С6А—Н6АВ	109.5
120.1 (2)	N4A—C6A—H6AC	109.5
120.1 (2) 120.00 (19)	N4A—C6A—H6AC H6AA—C6A—H6AC	109.5 109.5
120.1 (2) 120.00 (19) 119.9 (2)	N4A—C6A—H6AC H6AA—C6A—H6AC H6AB—C6A—H6AC	109.5 109.5 109.5
120.1 (2) 120.00 (19) 119.9 (2) 120.8 (2)	N4A—C6A—H6AC H6AA—C6A—H6AC H6AB—C6A—H6AC C5A—N8A—H8AA	109.5 109.5 109.5 120.0
120.1 (2) 120.00 (19) 119.9 (2) 120.8 (2) 119.6	N4A—C6A—H6AC H6AA—C6A—H6AC H6AB—C6A—H6AC C5A—N8A—H8AA C5A—N8A—H8AB	109.5 109.5 109.5 120.0 120.0
120.1 (2) 120.00 (19) 119.9 (2) 120.8 (2) 119.6 119.6	N4A—C6A—H6AC H6AA—C6A—H6AC H6AB—C6A—H6AC C5A—N8A—H8AA C5A—N8A—H8AB H8AA—N8A—H8AB	109.5 109.5 109.5 120.0 120.0 120.0
120.1 (2) 120.00 (19) 119.9 (2) 120.8 (2) 119.6 119.6 118.7 (2)	N4A—C6A—H6AC H6AA—C6A—H6AC H6AB—C6A—H6AC C5A—N8A—H8AA C5A—N8A—H8AB H8AA—N8A—H8AB C5B—N1B—C2B	109.5 109.5 109.5 120.0 120.0 120.0 113.9 (17)
120.1 (2) 120.00 (19) 119.9 (2) 120.8 (2) 119.6 119.6 118.7 (2) 121.1 (2)	N4A—C6A—H6AC H6AA—C6A—H6AC C5A—N8A—H8AA C5A—N8A—H8AB H8AA—N8A—H8AB C5B—N1B—C2B C5B—N1B—H1B	109.5 109.5 120.0 120.0 120.0 113.9 (17) 123.0
120.1 (2) 120.00 (19) 119.9 (2) 120.8 (2) 119.6 119.6 118.7 (2) 121.1 (2) 120.2 (2)	N4A—C6A—H6AC H6AA—C6A—H6AC C5A—N8A—H8AA C5A—N8A—H8AB H8AA—N8A—H8AB C5B—N1B—C2B C5B—N1B—H1B C2B—N1B—H1B	109.5 109.5 120.0 120.0 120.0 113.9 (17) 123.0 123.0
120.1 (2) 120.00 (19) 119.9 (2) 120.8 (2) 119.6 119.6 119.6 118.7 (2) 121.1 (2) 120.2 (2) 118.1 (3)	N4A—C6A—H6AC H6AA—C6A—H6AC H6AB—C6A—H6AC C5A—N8A—H8AA C5A—N8A—H8AB H8AA—N8A—H8AB C5B—N1B—C2B C5B—N1B—H1B C2B—N1B—H1B O6B—C2B—N1B	109.5 109.5 120.0 120.0 120.0 113.9 (17) 123.0 123.0 128.0 (16)
120.1 (2) 120.00 (19) 119.9 (2) 120.8 (2) 119.6 119.6 118.7 (2) 121.1 (2) 120.2 (2) 118.1 (3) 122.3 (3)	N4A—C6A—H6AC H6AA—C6A—H6AC C5A—N8A—H8AA C5A—N8A—H8AB H8AA—N8A—H8AB C5B—N1B—C2B C5B—N1B—H1B C2B—N1B—H1B O6B—C2B—N1B O6B—C2B—C3B	109.5 109.5 120.0 120.0 120.0 113.9 (17) 123.0 123.0 128.0 (16) 130.3 (17)
120.1 (2) 120.00 (19) 119.9 (2) 120.8 (2) 119.6 119.6 118.7 (2) 121.1 (2) 120.2 (2) 118.1 (3) 122.3 (3) 119.5 (2)	N4A—C6A—H6AC H6AA—C6A—H6AC C5A—N8A—H8AA C5A—N8A—H8AB H8AA—N8A—H8AB C5B—N1B—C2B C5B—N1B—H1B C2B—N1B—H1B O6B—C2B—N1B O6B—C2B—C3B N1B—C2B—C3B	109.5 109.5 120.0 120.0 120.0 113.9 (17) 123.0 123.0 128.0 (16) 130.3 (17) 101.7 (15)
120.1 (2) 120.00 (19) 119.9 (2) 120.8 (2) 119.6 119.6 119.6 118.7 (2) 121.1 (2) 120.2 (2) 118.1 (3) 122.3 (3) 119.5 (2) 121.4 (3)	N4A—C6A—H6AC H6AA—C6A—H6AC C5A—N8A—H8AA C5A—N8A—H8AB H8AA—N8A—H8AB C5B—N1B—C2B C5B—N1B—H1B C2B—N1B—H1B O6B—C2B—N1B O6B—C2B—C3B N1B—C2B—C3B N4B—C3B—C2B	109.5 109.5 120.0 120.0 120.0 113.9 (17) 123.0 123.0 128.0 (16) 130.3 (17) 101.7 (15) 105.8 (19)
120.1 (2) 120.00 (19) 119.9 (2) 120.8 (2) 119.6 119.6 119.6 118.7 (2) 121.1 (2) 120.2 (2) 118.1 (3) 122.3 (3) 119.5 (2) 121.4 (3) 119.3	N4A—C6A—H6AC H6AA—C6A—H6AC C5A—N8A—H8AA C5A—N8A—H8AB H8AA—N8A—H8AB C5B—N1B—C2B C5B—N1B—H1B C2B—N1B—H1B O6B—C2B—N1B O6B—C2B—C3B N1B—C2B—C3B N4B—C3B—C2B N4B—C3B—H3B	109.5 109.5 120.0 120.0 120.0 120.0 123.0 123.0 123.0 128.0 (16) 130.3 (17) 101.7 (15) 105.8 (19) 127.1
	1.759 (3) 0.824 (10) 0.819 (10) 1.347 (3) 0.8200 1.221 (4) 1.310 (4) 0.8200 1.380 (3) 1.399 (3) 1.395 (3) 0.9300 1.411 (4) 1.367 (4) 0.9300 1.351 (6) 1.384 (6) 0.8600 1.208 (5) 1.499 (6) 114.6 (2) 111.8 (2) 109.37 (15) 107.21 (13) 106.87 (18) 109.5 109.5	1.759(3)N4A—C6A $0.824(10)$ C5A—N8A $0.819(10)$ C6A—H6AA $1.347(3)$ C6A—H6AB 0.8200 C6A—H6AC $1.221(4)$ N8A—H8AA $1.310(4)$ N8A—H8AB 0.8200 N1B—C5B $1.380(3)$ N1B—C2B $1.399(3)$ N1B—H1B $1.395(3)$ C2B—C6B 0.9300 C2B—C3B $1.411(4)$ C3B—H4B $1.471(4)$ C3B—H3B $1.387(4)$ N4B—C5B 0.9300 C5B—N8B 0.9300 C5B—N8B 0.9300 C6B—H6BA $1.351(6)$ C6B—H6BC 0.8600 N8B—H8BA $1.208(5)$ N8B—H8B $1.499(6)$

C5—C6—C1	119.5 (3)	C6B—N4B—C5B	121.0 (18)
С5—С6—Н6	120.3	C6B—N4B—C3B	129.0 (15)
С1—С6—Н6	120.3	C5B—N4B—C3B	109.6 (19)
O7—C7—O8	123.4 (3)	N1B-C5B-N4B	109 (2)
O7—C7—C3	123.1 (3)	N1B—C5B—N8B	127.2 (15)
O8—C7—C3	113.5 (2)	N4B—C5B—N8B	123.6 (17)
C2A—N1A—C5A	110.1 (5)	N4B—C6B—H6BA	109.5
C2A—N1A—H1A	124.9	N4B—C6B—H6BB	109.5
C5A—N1A—H1A	124.9	H6BA—C6B—H6BB	109.5
O6A—C2A—N1A	123.9 (4)	N4B—C6B—H6BC	109.5
O6A—C2A—C3A	129.7 (4)	H6BA—C6B—H6BC	109.5
N1A—C2A—C3A	106.4 (4)	H6BB—C6B—H6BC	109.5
N4A—C3A—C2A	103.7 (4)	C5B—N8B—H8BA	120.0
N4A—C3A—H3A	128.2	C5B—N8B—H8BB	120.0
С2А—С3А—Н3А	128.2	H8BA—N8B—H8BB	120.0

Hydrogen-bond geometry (Å, °)

<i>D</i> —H··· <i>A</i>	D—H	H···A	D··· A	D—H···A
02—H2 <i>B</i> ···O3	0.82 (1)	2.13 (3)	2.799 (4)	139 (4)
O6—H6A····O7	0.82	1.90	2.624 (3)	146
N1A— $H1A$ ···O3 ⁱ	0.86	2.00	2.844 (5)	168
O2—H2A···O5 ⁱⁱ	0.82(1)	1.99 (2)	2.780 (4)	161 (5)
N8A—H8AA···O6A ⁱⁱ	0.86	2.07	2.917 (5)	168
N8A—H8AB····O5 ⁱ	0.86	1.94	2.788 (4)	170
O8—H8···O2 ⁱⁱⁱ	0.82	1.85	2.616 (3)	155
$C6A - H6AB - O4^{iv}$	0.96	2.44	3.194 (7)	135

Symmetry codes: (i) -*x*+2, -*y*+2, -*z*+1; (ii) *x*+1, *y*, *z*; (iii) -*x*+2, *y*-1/2, -*z*+3/2; (iv) *x*+1, -*y*+3/2, *z*-1/2.