

ISSN 2414-3146

Received 18 October 2017 Accepted 31 October 2017

Edited by J. Simpson, University of Otago, New Zealand

Keywords: crystal structure; anilinium salt; hydrogen bond; offset *π*-stacking interactions.

CCDC reference: 1583039

Structural data: full structural data are available from iucrdata.iucr.org

2-[(Prop-2-yn-1-yl)amino]anilinium chloride

Abdelhanine Essaghouani,^a* Mohammed Boulhaoua,^a Mohamed El Hafi,^a El Mokhtar Essassi^a and Joel T. Mague^b

^aLaboratoire de Chimie Organique Hétérocyclique, Centre de Recherche des Sciences des Médicaments, Pôle de Compétence Pharmacochimie, Av. Ibn Battouta BP 1014, Faculté des Sciences Université Mohammed V Rabat, Morocco, and ^bDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA. *Correspondence e-mail: hessaghouani@yahoo.fr

The title compound, $C_9H_{11}N_2^+ \cdot Cl^-$, is an anilinium chloride salt, in which the $C_{ar}-N-C-C$ (ar = aromatic) torsion angle is -84.95 (18)°. In the crystal, a bilayer of cation-anion sheets runs parallel to (100), primarily through an extensive range of $N-H \cdots Cl$ hydrogen bonds. Weak offset π -stacking interactions between the benzene rings stack molecules along *c*.

Structure description

As a continuation of our studies of substituted 4-phenyl-1,5-benzodiazepin-2-one derivatives (Loughzail *et al.*, 2011; Ballo *et al.*, 2010), we have prepared the title compound (Fig. 1) by the action of hydroxylamine hydrochloride on 4-phenyl-1-(prop-2-yn-1-yl)-1H-1,5-benzodiazepin-2(3H)-one in ethanol.

In the title anilinium chloride salt, the N1 atom of the NH_3^+ substituent and the N2– H2A group lie in the plane of the benzene ring while the N2,C7,C8=C9 substituent is inclined to the benzene ring at an angle of 81.57 (12)°.

In the crystal, the major packing interactions involve several $N-H\cdots$ Cl hydrogen bonds. Each of the H atoms of the NH_3^+ cations and the amine group form $N-H\cdots$ Cl hydrogen bonds with N1-H1A acting as a bifurcated donor while the N1-H1B \cdots Cl1 contact is supported by a weaker C5-H5 \cdots Cl hydrogen bond, Table 1, Fig. 2. Weak, offset π -stacking interactions between the benzene rings stack molecules along *a* with centroid-centroid distances of 3.951 (2) Å and a dihedral angle of 7.02 (7)° between the rings. These interactions form bilayers running along the caxis direction (Fig. 3).

Figure 1

The title molecule with the atom-labelling scheme and 50% probability displacement ellipsoids.

Synthesis and crystallization

To a solution of 4-phenyl-1-(prop-2-yn-1-yl)-1H-1,5-benzodiazepin-2(3H)-one (10 mmol), was added hydroxylamine hydrochloride (20 mmol) in anhydrous ethanol (100 ml). The mixture was stirred at room temperature for 24 h. The solvent

Figure 3

Overall packing viewed along the *b*-axis direction with π - π stacking interactions shown as dashed orange lines.

Table 1				
Hydroge	n-bond	geometry	(Å,	°).

	• • •	·		
$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
$N1 - H1A \cdots Cl1^i$	0.90 (2)	2.72 (2)	3.2854 (17)	122.2 (17)
$N1-H1A\cdots Cl1^{ii}$	0.90(2)	2.56 (2)	3.2903 (18)	138.6 (18)
$N1 - H1B \cdot \cdot \cdot Cl1^{iii}$	0.92(2)	2.29 (2)	3.2011 (16)	174.6 (16)
$N1 - H1C \cdots Cl1$	0.86 (2)	2.44 (2)	3.2064 (17)	148.2 (16)
$N2-H2A\cdots Cl1^{ii}$	0.832 (17)	2.492 (17)	3.3148 (18)	170.1 (15)
$C5-H5\cdots Cl1^{iii}$	0.996 (17)	2.935 (16)	3.7479 (19)	139.4 (12)

Symmetry codes: (i) $-x, y + \frac{1}{2}, -z + \frac{1}{2}$; (ii) $x, -y + \frac{1}{2}, z + \frac{1}{2}$; (iii) -x, -y + 1, -z.

Fable	2		

Experimental details.

Crystal data	
Chemical formula	$C_9H_{11}N_2^+ \cdot Cl^-$
M _r	182.65
Crystal system, space group	Monoclinic, $P2_1/c$
Temperature (K)	296
<i>a</i> , <i>b</i> , <i>c</i> (Å)	14.736 (6), 7.955 (3), 7.843 (3)
β (°)	94.502 (5)
$V(Å^3)$	916.6 (7)
Ζ	4
Radiation type	Μο Κα
$\mu (\text{mm}^{-1})$	0.36
Crystal size (mm)	$0.30 \times 0.29 \times 0.08$
Data collection	
Diffractometer	Bruker SMART APEX CCD
Absorption correction	Multi-scan (<i>SADABS</i> ; Bruker, 2016)
T_{\min}, T_{\max}	0.84, 0.97
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	8431, 2311, 1732
R _{int}	0.033
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.677
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.039, 0.106, 1.00
No. of reflections	2311
No. of parameters	153
H-atom treatment	All H-atom parameters refined

Computer programs: *APEX3* and *SAINT* (Bruker, 2016), *SHELXT* (Sheldrick, 2015*a*), *SHELXL2014* (Sheldrick, 2015*b*), *DIAMOND* (Brandenburg & Putz, 2012) and *SHELXTL* (Sheldrick, 2008).

0.50, -0.18

was removed under reduced pressure. The solid product was purified by recrystallization from ethanol solution to afford the title salt as colourless crystals.

Refinement

 $\Delta \rho_{\rm max}, \, \Delta \rho_{\rm min}$ (e Å

Crystal data, data collection and structure refinement details are summarized in Table 2.

Acknowledgements

JTM thanks Tulane University for support of the Tulane Crystallography Laboratory.

References

Ballo, D., Ahabchane, N. H., Zouihri, H., Essassi, E. M. & Ng, S. W. (2010). Acta Cryst. E66, 01277.

Brandenburg, K. & Putz, H. (2012). *DIAMOND*. Crystal Impact GbR, Bonn, Germany.

- Bruker (2016). APEX3, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015*a*). *Acta Cryst.* A**71**, 3–8. Sheldrick, G. M. (2015*b*). *Acta Cryst.* C**71**, 3–8.
- Loughzail, M., Fernandes, J. A., Baouid, A., Essaber, M., Cavaleiro, J. A. S. & Almeida Paz, F. A. (2011). Acta Cryst. E67, o2075-o2076.

full crystallographic data

IUCrData (2017). 2, x171583 [https://doi.org/10.1107/S2414314617015838]

2-[(Prop-2-yn-1-yl)amino]anilinium chloride

Abdelhanine Essaghouani, Mohammed Boulhaoua, Mohamed El Hafi, El Mokhtar Essassi and Joel T. Mague

2-[(Prop-2-yn-1-yl)amino]anilinium chloride

Crystal data

C₉H₁₁N₂⁺·Cl⁻ $M_r = 182.65$ Monoclinic, $P2_1/c$ a = 14.736 (6) Å b = 7.955 (3) Å c = 7.843 (3) Å $\beta = 94.502$ (5)° V = 916.6 (7) Å³ Z = 4

Data collection

Bruker SMART APEX CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator Detector resolution: 8.3333 pixels mm⁻¹ φ and ω scans Absorption correction: multi-scan (*SADABS*; Bruker, 2016) $T_{\min} = 0.84, T_{\max} = 0.97$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.039$ $wR(F^2) = 0.106$ S = 1.002311 reflections 153 parameters 0 restraints Primary atom site location: structure-invariant direct methods F(000) = 384 $D_x = 1.324 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 3191 reflections $\theta = 2.8-28.1^{\circ}$ $\mu = 0.36 \text{ mm}^{-1}$ T = 296 KPlate, colourless $0.30 \times 0.29 \times 0.08 \text{ mm}$

8431 measured reflections 2311 independent reflections 1732 reflections with $I > 2\sigma(I)$ $R_{int} = 0.033$ $\theta_{max} = 28.7^{\circ}, \ \theta_{min} = 1.4^{\circ}$ $h = -19 \rightarrow 19$ $k = -10 \rightarrow 10$ $l = -10 \rightarrow 10$

Secondary atom site location: difference Fourier map Hydrogen site location: difference Fourier map All H-atom parameters refined $w = 1/[\sigma^2(F_o^2) + (0.0677P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.002$ $\Delta\rho_{max} = 0.50 \text{ e} \text{ Å}^{-3}$ $\Delta\rho_{min} = -0.18 \text{ e} \text{ Å}^{-3}$

Special details

Experimental. The diffraction data were collected in three sets of 363 frames (0.5° width in ω) at $\varphi = 0$, 120 and 240°. A scan time of 25 sec/frame was used.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

 $U_{\rm iso}$ */ $U_{\rm eq}$ Ζ х v N1 0.08712 (9) 0.56842 (17) 0.23286 (19) 0.0323(3)H1A 0.0601 (16) 0.533 (3) 0.325 (3) 0.079 (7)* H1B 0.0470(13) 0.056 (5)* 0.633(3)0.166(2)H1C 0.1026(12)0.485(3)0.172(3)0.055 (6)* N2 0.24881(9)0.42987 (16) 0.38629 (18) 0.0373(3)H2A 0.2005 (12) 0.383(2)0.407(2)0.040 (5)* C1 0.24303 (9) 0.60397 (17) 0.36781 (18) 0.0296(3)C2 0.31409 (11) 0.7126(2)0.4199(2)0.0379(4)H2 0.043 (4)* 0.3669 (12) 0.663 (2) 0.465 (2) C3 0.4016 (2) 0.0433 (4) 0.30463 (11) 0.8851(2)H3 0.3552 (12) 0.953(2)0.438 (2) 0.049 (5)* C4 0.22475 (12) 0.9538 (2) 0.3278(2)0.0435 (4) H4 0.2185 (13) 0.317(2) $0.060(5)^*$ 1.075 (2) C5 0.15423 (10) 0.84824 (19) 0.27104 (19) 0.0355(3)H5 0.0949 (11) 0.890(2)0.217(2)0.042 (4)* C6 0.29098 (17) 0.0275 (3) 0.16362 (9) 0.67665 (17) C7 0.32679 (10) 0.3572(2)0.4861(2)0.0412 (4) H7A 0.066 (6)* 0.3111 (15) 0.243(3)0.526(3)H7B 0.3429 (11) 0.419 (2) 0.591(2)0.043 (4)* 0.3334 (2) C8 0.40509 (11) 0.0513 (5) 0.3858(2)C9 0.46786 (16) 0.3128(4)0.3068(3)0.0850 (8) H9 0.516 (3) 0.307 (5) 0.237 (5) 0.147 (13)* Cl1 0.05771(2)0.22948(5)0.01428(5)0.03535 (15)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	<i>U</i> ³³	U^{12}	U^{13}	U ²³
N1	0.0282 (6)	0.0321 (7)	0.0357 (7)	-0.0017 (5)	-0.0030 (5)	-0.0011 (6)
N2	0.0259 (6)	0.0294 (6)	0.0555 (8)	-0.0006 (5)	-0.0033 (6)	0.0061 (6)
C1	0.0260 (7)	0.0292 (7)	0.0337 (7)	-0.0007 (5)	0.0026 (5)	0.0011 (6)
C2	0.0275 (7)	0.0388 (8)	0.0466 (9)	-0.0024 (6)	-0.0026 (7)	0.0015 (7)
C3	0.0375 (9)	0.0367 (8)	0.0552 (10)	-0.0101 (7)	-0.0001(7)	-0.0047 (7)
C4	0.0468 (9)	0.0279 (8)	0.0561 (10)	-0.0035 (7)	0.0049 (8)	-0.0003 (7)
C5	0.0330 (8)	0.0324 (8)	0.0408 (8)	0.0041 (6)	0.0015 (6)	0.0014 (6)

data reports

C6	0.0246 (6)	0.0287 (7)	0.0293 (7)	-0.0022 (5)	0.0028 (5)	-0.0016 (5)
C7	0.0364 (8)	0.0358 (9)	0.0498 (10)	0.0057 (7)	-0.0059 (7)	0.0011 (8)
C8	0.0362 (9)	0.0601 (11)	0.0553 (11)	0.0059 (8)	-0.0113 (8)	-0.0156 (9)
C9	0.0405 (11)	0.142 (2)	0.0713 (16)	0.0057 (13)	-0.0047 (11)	-0.0393 (16)
C11	0.0343 (2)	0.0347 (2)	0.0365 (2)	0.00367 (14)	-0.00021 (15)	-0.00251 (14)

Geometric parameters (Å, °)

N1—C6	1.4626 (18)	C3—C4	1.383 (2)
N1—H1A	0.90 (2)	С3—Н3	0.948 (19)
N1—H1B	0.92 (2)	C4—C5	1.382 (2)
N1—H1C	0.86 (2)	C4—H4	0.968 (19)
N2—C1	1.3945 (19)	C5—C6	1.380 (2)
N2—C7	1.4580 (19)	С5—Н5	0.996 (17)
N2—H2A	0.832 (17)	C7—C8	1.459 (2)
C1—C2	1.394 (2)	С7—Н7А	0.99 (2)
C1—C6	1.3986 (18)	С7—Н7В	0.972 (17)
C2—C3	1.385 (2)	C8—C9	1.164 (3)
C2—H2	0.919 (17)	С9—Н9	0.93 (4)
C6—N1—H1A	108.4 (15)	C5—C4—C3	119.21 (15)
C6—N1—H1B	107.3 (11)	C5—C4—H4	120.7 (12)
H1A—N1—H1B	109.3 (18)	C3—C4—H4	120.1 (12)
C6—N1—H1C	113.3 (12)	C6—C5—C4	119.90 (13)
H1A—N1—H1C	111.1 (19)	С6—С5—Н5	116.9 (9)
H1B—N1—H1C	107.4 (17)	С4—С5—Н5	123.2 (9)
C1—N2—C7	119.25 (13)	C5—C6—C1	122.07 (12)
C1—N2—H2A	115.0 (12)	C5—C6—N1	118.63 (12)
C7—N2—H2A	111.5 (11)	C1—C6—N1	119.29 (13)
C2-C1-N2	123.16 (13)	N2—C7—C8	112.68 (15)
C2—C1—C6	116.99 (13)	N2—C7—H7A	109.8 (13)
N2—C1—C6	119.84 (12)	C8—C7—H7A	105.2 (13)
C3—C2—C1	121.09 (14)	N2—C7—H7B	112.6 (10)
C3—C2—H2	122.9 (11)	C8—C7—H7B	111.8 (9)
C1—C2—H2	116.0 (11)	H7A—C7—H7B	104.1 (17)
C4—C3—C2	120.70 (15)	C9—C8—C7	179.3 (3)
С4—С3—Н3	121.5 (11)	С8—С9—Н9	174 (2)
С2—С3—Н3	117.8 (11)		
C7—N2—C1—C2	9.2 (2)	C4—C5—C6—C1	0.0 (2)
C7—N2—C1—C6	-172.05 (13)	C4—C5—C6—N1	178.74 (14)
N2—C1—C2—C3	-178.87 (14)	C2-C1-C6-C5	-1.7 (2)
C6-C1-C2-C3	2.3 (2)	N2—C1—C6—C5	179.43 (13)
C1—C2—C3—C4	-1.3 (2)	C2—C1—C6—N1	179.61 (13)
C2—C3—C4—C5	-0.5 (2)	N2—C1—C6—N1	0.7 (2)
C3—C4—C5—C6	1.1 (2)	C1—N2—C7—C8	-84.95 (18)

<i>D</i> —H··· <i>A</i>	D—H	H···A	D···· A	D—H··· A
N1—H1A····Cl1 ⁱ	0.90 (2)	2.72 (2)	3.2854 (17)	122.2 (17)
N1—H1A···Cl1 ⁱⁱ	0.90 (2)	2.56 (2)	3.2903 (18)	138.6 (18)
N1—H1B····Cl1 ⁱⁱⁱ	0.92 (2)	2.29 (2)	3.2011 (16)	174.6 (16)
N1—H1C…Cl1	0.86 (2)	2.44 (2)	3.2064 (17)	148.2 (16)
N2—H2A···Cl1 ⁱⁱ	0.832 (17)	2.492 (17)	3.3148 (18)	170.1 (15)
C5—H5···Cl1 ⁱⁱⁱ	0.996 (17)	2.935 (16)	3.7479 (19)	139.4 (12)

Hydrogen-bond geometry (Å, °)

Symmetry codes: (i) -*x*, *y*+1/2, -*z*+1/2; (ii) *x*, -*y*+1/2, *z*+1/2; (iii) -*x*, -*y*+1, -*z*.