

IUCrData

ISSN 2414-3146

Received 31 October 2017 Accepted 24 November 2017

Edited by M. Weil, Vienna University of Technology, Austria

Keywords: crystal structure; supramolecular features; dinuclear structure; Hirshfeld surface.

CCDC reference: 1587513

Structural data: full structural data are available from iucrdata.iucr.org

Bis{ μ -ethyl 4-[(4-hydroxyphenyl)diazenyl]benzoate- κO }bis[aqua(4-{[4-(ethoxycarbonyl)phenyl]-diazenyl}phenolato- κO }ethyl 4-[(4-hydroxyphenyl)diazenyl]benzoate- κO }potassium]

Felipi Ramiro Sobral,^a Juliano Rosa de Menezes Vicenti,^a* Roberta Cargnelutti^b and Brenda Gabriele Trindade dos Santos^b

^aLaboratório de Físico-Química Aplicada e Tecnológica, Escola de Química e Alimentos, Universidade Federal do Rio Grande, Av. Itália km 08, Campus Carreiros, 96203-900, Rio Grande-RS, Brazil, and ^bLaboratório de Materiais Inorgânicos, Departamento de Química, Universidade Federal de Santa Maria, Av. Roraima, 97105-900, Santa Maria-RS, Brazil. *Correspondence e-mail: julianovicenti@gmail.com

The two potassium cations in the dinuclear molecule of $[K_2[OC(C_{14}H_{13}O-N_2)O]_2[OC(C_{14}H_{13}ON_2)OH]_4(H_2O)_2]$ are connected through a double bridge involving two centrosymmetrically related ethyl-4-(phenylazophenol)benzoate ligands. Each cation is also bound to a further non-bridging ligand, one ethyl-4-(phenylazophenolate)benzoate anion and a water molecule, leading to a distorted fivefold coordination. The two uncharged ligands are almost planar, whereas in the anionic ligand the aromatic systems display a dihedral angle of 21.14 (11)°. A supramolecular network formed by hydrogen-bonding interactions between phenolate anions, phenol groups and water molecules connects the dimeric species along [001]. Hirshfeld surface calculations revealed the following contributions related to intermolecular interactions: $C \cdots H$ (24.4%), $O \cdots H$ (13.2%) and $N \cdots H$ (7.4%). The azo fragment is disordered over two sets of sites [occupancy ratio 0.824 (15):0.176 (5)].

Structure description

Azo dyes are a well known family of organic dyes including the azo group (-N=N-) bonded to aromatic ring systems (Zhang *et al.*, 2013). There are several compounds reported containing even more than one azo chromophore per molecule, also linked to heterocyclic systems (Patni & Patni, 2016). The compounds are commonly prepared through a coupling reaction between an arenediazonium salt and typically aromatic

l able 1			
Hydrogen-bond	geometry	(Å,	°).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$C63 - H63 \cdots O6^{i}$	0.95	2.49	3 427 (3)	169
$C8-H8B\cdots O9^{ii}$	0.99	2.64	3.476 (3)	142
$C4-H4C\cdots O9^{iii}$	0.98	2.57	3.301 (3)	131
$O1W-H1W\cdots N4^{iv}$	0.81 (3)	2.15 (3)	2.895 (3)	153 (3)
$O1W - H1W \cdot \cdot \cdot N31^{iv}$	0.81 (3)	2.11 (4)	2.898 (13)	166 (3)
$O9-H9\cdots O1W^{ii}$	0.98 (4)	1.74 (4)	2.709 (3)	171 (3)
$O1W - H2W \cdot \cdot \cdot O6^{v}$	0.84 (3)	1.84 (3)	2.635 (2)	156 (3)
$O3-H3\cdots O6^{v}$	0.88 (3)	1.63 (3)	2.490 (2)	163 (3)

Symmetry codes: (i) $x + 1, -y + \frac{1}{2}, z + \frac{1}{2}$; (ii) -x + 2, -y, -z + 1; (iii) -x + 2, -y + 1, -z + 1; (iv) $-x + 2, y - \frac{1}{2}, -z + \frac{1}{2}$; (v) $-x + 1, y - \frac{1}{2}, -z + \frac{1}{2}$.

phenols or amines, although other substituents such as carboxylates or aldehydes can also be present (Purtas *et al.*, 2017). Besides the wide application of these compounds in both textile and paint industries, the molecular structures of the azo dyes can be modified and tuned to act as ligands in coordination chemistry. For instance, the choice of an appropriate metal ion can lead to new materials with remarkable properties, such as optical active media for lens production, recording of optical holograms or data storage (Davidenko *et al.*, 2008).

The asymmetric unit of the title compound contains one potassium cation, one ethyl-4-(phenylazophenolate)benzoate anion $OC(C_{14}H_{13}ON_2)O^-$, two neutral ethyl-4-(phenylazophenol)benzoate ligands $OC(C_{14}H_{13}ON_2)OH$, and one water molecule (Fig. 1). The anion coordinates through the carbonyl oxygen atom, presenting a C44 $-O6_{phenolic}$ distance of 1.309 (2) Å shorter than expected but compatible with a phenolate moiety due to resonance effects (Suter & Nonella, 1998). One of the neutral ethyl-4-(phenylazophenol)benzoate ligands is terminal and coordinates exclusively *via* the ester carbonyl group (C9-O8 = 1.127 (2) Å), whereas the second is bridging and coordinates through both phenol [C24-O3 = 1.325 (2) Å] and ester carbonyl [C3-O2 = 1.215 (2) Å] groups. A double bridge between two cations is formed by a third ethyl-4-(phenylazophenol)benzoate ligand generated by

Figure 1

The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 50% probability level.

Crystal packing diagram of the title compound showing hydrogenbonding interactions.

an inversion operation (2 - x, 1 - y, 1 - z), leading to dimeric species (Fig. 2). The fivefold coordination environment of the cation was computed by the method of Addison *et al.* (1984). The resulting τ_5 index was found to be 0.56, indicating a coordination sphere between a trigonal bipyramid ($\tau_5 = 1$) and a square pyramid ($\tau_5 = 0$).

The two uncharged ethyl-4-(phenylazophenol)benzoate ligands are almost planar, with r.m.s. deviations of 0.0236 Å (monodentate ligand) and 0.0591 Å (bridging ligand) for all non-hydrogen atoms. The dihedral angles between the phenyl rings are 2.53 (9)° (C51 ring and C61 ring) and 2.49 (9)° (C11 ring and C21 ring). The azo fragment N3/N4 of the ethyl-4-(phenylazophenolate)benzoate anion is disordered over two sets of sites, and the whole anion is not planar (r.m.s. deviation of 0.1696). Notably, the dihedral angle between the phenyl rings (C31 and C41 rings) is 21.14 (11)°.

The dimers follow a zigzag arrangement along [001] (Fig. 2). The dinuclear entities are connected through classical hydrogen bonding interactions involving phenolate anions, phenol groups and coordinating water molecules. Likewise, weak $C-H\cdots O$ interactions are also present (Table 1). In order to analyse the hydrogen-bonding contribution quantitatively, a Hirshfeld surface calculation was performed. The contribution of $C\cdots H$ is 24.4% for non-classic interactions,

The dimeric structure of the title compound comprising double bridging ethyl 4-(phenylazophenol)benzoate units. The inset shows the calculated Hirshfeld surface and two-dimensional fingerprint plots. Table 2Experimental details.

Crystal data Chemical formula

 $(H_2O)_2$] 1733 91 Μ. Crystal system, space group Monoclinic, $P2_1/c$ Temperature (K) 100 a, b, c (Å) 9.241 (2), 10.241 (2), 45.261 (9) $\beta (^{\circ})$ V (Å³) 91 31 (3) 4282.2 (15) Ζ 2 Radiation type Μο Κα $\mu \,({\rm mm}^{-1})$ 0.19 Crystal size (mm) $0.30 \times 0.26 \times 0.10$ Data collection Diffractometer Bruker APEXII CCD Absorption correction Numerical (SADABS; Bruker, 2014) 0.701, 0.746 T_{\min}, T_{\max} No. of measured, independent and 89218, 13099, 9788 observed $[I > 2\sigma(I)]$ reflections 0.050 Rint $(\sin \theta / \lambda)_{max} (\text{\AA}^{-1})$ 0.716 Refinement $R[F^2 > 2\sigma(F^2)], wR(F^2), S$ 0.066, 0.158, 1.05 No. of reflections 13099 No. of parameters 594 H-atom treatment H atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{\rm max}, \, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$ 0.93. -0.69

[K₂(C₁₅H₁₄N₂O₃)₄(C₁₅H₁₃N₂O₃)₂-

Computer programs: *APEX2* and *SAINT* (Bruker, 2014), *SHELXT* (Sheldrick, 2015*a*), *SHELXL2017* (Sheldrick, 2015*b*), *DIAMOND* (Brandenburg, 2006), *Mercury* (Macrae *et al.*, 2006), *CrystalExplorer17* (Turner *et al.*, 2017) and *publCIF* (Westrip, 2010).

whereas classic bonding related to $O \cdot \cdot H$ and $N \cdot \cdot H$ correspond to 13.2% and 7.4%, respectively (Fig. 3).

Synthesis and crystallization

To 1.5 g (3.33 mmol) of ethyl-4-(phenylazophenol)benzoate dissolved in 10.0 ml of methanol were added 0.560 g (9.99 mmol) of KOH dissolved in 5.0 m of methanol. The reaction mixture was kept under constant stirring at room

temperature for two h. The solvent was then partially evaporated under reduced pressure, affording orange blocklike single crystals of the title compound.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. The azo fragment comprising atoms N3 and N4 was found to be disordered over two sets of sites [occupancy ratio 0.824 (15):0.176 (5)]. The disorder was treated by using PART instruction in *SHELXL* (Sheldrick, 2015*b*).

Funding information

The authors acknowledge CT–Infra (FINEP) and FIPE JUNIOR CCNE/UFSM-2017 for support.

References

- Addison, A. W., Rao, N. T., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.
- Brandenburg, K. (2006). *DIAMOND*. Crystal Impact GbR, Bonn, Germany.
- Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Davidenko, N. A., Davidenko, I. I., Savchenko, I. A. & Popenaka, A. N. (2008). *Theor. Exp. Chem.* 44, 160–164.
- Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.

Patni, N. & Patni, M. (2016). Chem. Sin. 2, 93-100.

- Purtas, F., Sayin, K., Ceyhan, G., Kose, M. & Kurtoglu, M. (2017). J. Mol. Struct. 1137, 461–475.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Suter, H. U. & Nonella, M. J. (1998). J. Phys. Chem. A, 102, 10128– 10133.
- Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). *CrystalExplorer17*. University of Western Australia. http://hirshfeldsurface.net
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
- Zhang, L., Cole, J. M., Waddell, P. G., Low, K. S. & Liu, X. (2013). ACS Sustainable Chem. Eng. 1, 1440–1452.

full crystallographic data

IUCrData (2017). **2**, x171695 [https://doi.org/10.1107/S2414314617016959]

Bis{ μ -ethyl 4-[(4-hydroxyphenyl)diazenyl]benzoate- κO }bis[aqua(4-{[4-(ethoxy-carbonyl)phenyl]diazenyl}phenolato- κO }(ethyl 4-[(4-hydroxyphenyl)-diazenyl]benzoate- κO }potassium]

Felipi Ramiro Sobral, Juliano Rosa de Menezes Vicenti, Roberta Cargnelutti and Brenda Gabriele Trindade dos Santos

Bis{μ-ethyl 4-[(4-hydroxyphenyl)diazenyl]benzoateκO}bis[aqua(4-{[4-(ethoxycarbonyl)phenyl]diazenyl}phenolato-κO){ethyl 4-[(4hydroxyphenyl)diazenyl]benzoate-κO}potassium]

Crystal data

 $[K_{2}(C_{15}H_{14}N_{2}O_{3})_{4}(C_{15}H_{13}N_{2}O_{3})_{2}(H_{2}O)_{2}]$ $M_{r} = 1733.91$ Monoclinic, $P2_{1}/c$ a = 9.241 (2) Å b = 10.241 (2) Å c = 45.261 (9) Å $\beta = 91.31$ (3)° V = 4282.2 (15) Å³ Z = 2

```
Data collection
```

Bruker APEXII CCD
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
φ and ω scans
Absorption correction: numerical
(SADABS; Bruker, 2014)
$T_{\min} = 0.701, \ T_{\max} = 0.746$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.066$ $wR(F^2) = 0.158$ S = 1.0513099 reflections 594 parameters 0 restraints Primary atom site location: structure-invariant direct methods F(000) = 1816 $D_x = 1.345 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 9137 reflections $\theta = 2.3-30.6^{\circ}$ $\mu = 0.19 \text{ mm}^{-1}$ T = 100 KBlock, orange $0.30 \times 0.26 \times 0.10 \text{ mm}$

89218 measured reflections 13099 independent reflections 9788 reflections with $I > 2\sigma(I)$ $R_{int} = 0.050$ $\theta_{max} = 30.6^\circ$, $\theta_{min} = 2.2^\circ$ $h = -13 \rightarrow 13$ $k = -14 \rightarrow 14$ $l = -64 \rightarrow 64$

Secondary atom site location: difference Fourier map Hydrogen site location: mixed H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0494P)^2 + 6.316P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.93$ e Å⁻³ $\Delta\rho_{min} = -0.69$ e Å⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. Hydrogen atoms of the water molecule and the phenol OH groups were located from a difference Fourier map, while all other hydrogen atoms were calculated at idealized positions.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
K1	1.27684 (5)	0.37517 (5)	0.36022 (2)	0.02488 (11)	
O1W	1.20241 (17)	0.16449 (16)	0.32369 (3)	0.0244 (3)	
01	0.31758 (15)	0.34718 (14)	0.60941 (3)	0.0209 (3)	
O4	1.27370 (15)	0.70828 (14)	0.29247 (3)	0.0228 (3)	
08	1.28617 (16)	0.23893 (14)	0.40874 (3)	0.0230 (3)	
O3	0.99472 (16)	0.38866 (16)	0.37042 (3)	0.0249 (3)	
O7	1.43811 (16)	0.07337 (15)	0.41841 (3)	0.0242 (3)	
O2	0.48657 (16)	0.49718 (16)	0.62057 (3)	0.0255 (3)	
O6	0.07140 (15)	0.71962 (16)	0.16708 (3)	0.0249 (3)	
09	0.74694 (18)	0.07815 (17)	0.65459 (4)	0.0310 (4)	
05	1.23235 (17)	0.51173 (17)	0.31213 (4)	0.0328 (4)	
N2	0.75278 (17)	0.42064 (16)	0.48120 (4)	0.0190 (3)	
N6	0.99329 (18)	0.14434 (16)	0.54520 (4)	0.0198 (3)	
N1	0.64857 (17)	0.34744 (16)	0.48747 (4)	0.0186 (3)	
N5	1.09568 (18)	0.06925 (16)	0.53849 (4)	0.0197 (3)	
N4	0.6031 (5)	0.6895 (2)	0.22523 (8)	0.0190 (8)	0.824 (15)
N41	0.553 (3)	0.6257 (12)	0.2396 (3)	0.022 (4)	0.176 (15)
N3	0.6216 (5)	0.6131 (2)	0.24702 (8)	0.0206 (9)	0.824 (15)
N31	0.665 (3)	0.6882 (13)	0.2334 (4)	0.026 (4)	0.176 (15)
C11	0.4813 (2)	0.40352 (18)	0.57239 (4)	0.0169 (4)	
C24	0.9343 (2)	0.38920 (19)	0.39736 (4)	0.0186 (4)	
C14	0.5950 (2)	0.37235 (18)	0.51635 (4)	0.0170 (3)	
C21	0.8101 (2)	0.40234 (18)	0.45282 (4)	0.0172 (4)	
C51	1.2699 (2)	0.12855 (18)	0.45474 (4)	0.0183 (4)	
C23	0.8278 (2)	0.29877 (19)	0.40525 (4)	0.0198 (4)	
H23	0.798274	0.232722	0.391666	0.024*	
C3	0.4304 (2)	0.42201 (19)	0.60299 (4)	0.0177 (4)	
C9	1.3302 (2)	0.15315 (18)	0.42524 (4)	0.0194 (4)	
C61	0.9366 (2)	0.12062 (19)	0.57348 (4)	0.0188 (4)	
C54	1.1494 (2)	0.09357 (18)	0.50966 (4)	0.0183 (4)	
C6	1.1915 (2)	0.6053 (2)	0.29772 (4)	0.0215 (4)	
C22	0.7657 (2)	0.30535 (19)	0.43269 (4)	0.0197 (4)	
H22	0.693083	0.244393	0.437910	0.024*	
C15	0.6489 (2)	0.47054 (19)	0.53493 (4)	0.0193 (4)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

C64 $0.8110(2)$ $0.0899(2)$ $0.62814(5)$ $0.0224(4)$ C12 $0.223(2)$ $0.30763(19)$ $0.55331(4)$ $0.0197(4)$ H12 0.348799 0.252746 0.559466 $0.024*$ C44 $0.1954(2)$ $0.7087(2)$ $0.18141(4)$ $0.0224(4)$ C31 $1.0441(2)$ $0.6151(2)$ $0.28387(4)$ $0.0221(4)$ C52 $1.3218(2)$ $0.02940(19)$ $0.47333(4)$ $0.0200(4)$ H52 1.398285 -0.025634 0.467245 $0.024*$ C62 $0.9815(2)$ $0.01903(19)$ $0.55217(4)$ $0.0195(4)$ H62 1.054992 -0.039486 0.586150 $0.023*$ C13 $0.4819(2)$ $0.22926(19)$ $0.52538(4)$ $0.0204*$ C26 $0.9178(2)$ $0.49068(19)$ $0.44501(5)$ $0.0211(4)$ H26 0.949080 0.555584 0.458731 $0.025*$ C16 $0.5917(2)$ $0.48523(19)$ $0.56273(4)$ $0.0198(4)$ H16 0.628111 0.551937 0.575453 $0.024*$ C55 $1.0957(2)$ $0.19174(19)$ 0.460515 $0.025*$ C56 $1.1556(2)$ $0.20817(19)$ $0.46357(4)$ $0.0205(4)$ H55 1.018788 0.246402 0.446015 $0.025*$ C56 $0.1594(2)$ $0.0038(2)$ $0.41753(5)$ $0.0225(4)$ H55 $1.0957(2)$ $0.0194(19)$ $0.50075(4)$ $0.0224(4)$ H55 $1.0957(2)$ $0.0184(2)$ $0.41753(5)$ $0.0225(4)$ H56 $0.1994($	H15	0.723888	0.526643	0.528574	0.023*
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C64	0.8110 (2)	0.0899 (2)	0.62814 (5)	0.0224 (4)
H12 0.348799 0.252746 0.559466 0.024^* C44 0.1954 (2) 0.7087 (2) 0.18141 (4) 0.0221 (4)C51 1.0441 (2) 0.6151 (2) 0.28387 (4) 0.0221 (4)C52 1.3218 (2) 0.02940 (19) 0.47333 (4) 0.0204 (4)H52 1.398285 -0.025634 0.467245 0.024^* C62 0.9815 (2) 0.01903 (19) 0.59217 (4) 0.0195 (4)H62 1.054992 -0.039486 0.586150 0.023^* C13 0.4819 (2) 0.29296 (19) 0.52538 (4) 0.0204 (4)H13 0.443280 0.228425 0.512349 0.024^* C26 0.9178 (2) 0.49068 (19) 0.44501 (5) 0.0211 (4)H26 0.949080 0.555584 0.458731 0.025^* C16 0.5917 (2) 0.48523 (19) 0.56273 (4) 0.0198 (4)H16 0.628111 0.551937 0.575433 0.024^* C55 1.0957 (2) 0.19174 (19) 0.46357 (4) 0.0205 (4)H55 1.11961 0.273976 0.450619 0.025^* C56 1.1556 (2) 0.20817 (19) 0.46357 (4) 0.0205 (4)H53 1.294605 -0.065184 0.632044 0.025^* C53 1.2606 (2) 0.0194 (19) 0.50075 (4) 0.0225 (4)H53 1.294605 -0.055795 0.513458 0.0224^* C55 0.7645 (2) 0.1992 (2) 0.60946 (5) 0.0224^*	C12	0.4253 (2)	0.30763 (19)	0.55331 (4)	0.0197 (4)
C440.1954 (2)0.7087 (2)0.18141 (4)0.0224 (4)C311.0441 (2)0.6151 (2)0.28387 (4)0.0221 (4)C521.3218 (2)0.02940 (19)0.47333 (4)0.0200 (4)H521.398285-0.0256340.4672450.024*C620.9815 (2)0.01903 (19)0.59217 (4)0.0195 (4)H621.054992-0.0394860.5861500.023*C130.4419 (2)0.29296 (19)0.52538 (4)0.0200 (4)H130.4432800.2284250.5123490.024*C260.9178 (2)0.49068 (19)0.44501 (5)0.0211 (4)H260.9490800.5555840.4587310.025*C160.5917 (2)0.48523 (19)0.5673 (4)0.0198 (4)H160.6281110.5519370.5754530.024*C551.0957 (2)0.19174 (19)0.49087 (4)0.0207 (4)H551.0187880.2464020.4969150.025*C561.1556 (2)0.20817 (19)0.46357 (4)0.0207 (4)H561.1190610.2739760.4506190.025*C531.2606 (2)0.01194 (19)0.50075 (4)0.0204 (4)H531.294605-0.0651840.6320440.025*C540.7645 (2)0.1902 (2)0.60946 (5)0.0214 (4)H531.294605-0.0557950.5134580.027*C531.2606 (2)0.2047 (2)0.69946 (5)0.0224 (4)H540.490700.2720760.5891	H12	0.348799	0.252746	0.559466	0.024*
C31 $1.0441(2)$ $0.6151(2)$ $0.28387(4)$ $0.0221(4)$ C52 $1.3218(2)$ $0.02940(19)$ $0.47333(4)$ $0.0200(4)$ H52 1.398285 -0.025634 0.467245 $0.024*$ C62 $0.9815(2)$ $0.01903(19)$ $0.59217(4)$ $0.0195(4)$ H62 1.054992 -0.039486 0.586150 $0.023*$ C13 $0.4819(2)$ $0.229296(19)$ $0.52538(4)$ $0.0200(4)$ H13 0.443280 0.228425 0.512349 $0.024*$ C26 $0.9178(2)$ $0.49068(19)$ $0.44501(5)$ $0.0211(4)$ H26 0.949080 0.55584 0.458731 $0.025*$ C16 $0.5917(2)$ $0.48523(19)$ $0.56273(4)$ $0.0198(4)$ H16 0.628111 0.551937 0.575453 $0.027*(4)$ H55 1.018788 0.246402 0.496915 $0.025*$ C56 $1.1556(2)$ $0.2017(19)$ $0.46357(4)$ $0.0207(4)$ H56 1.119061 0.273976 0.450619 $0.025*$ C53 $0.9193(2)$ $0.0038(2)$ $0.61932(4)$ $0.029(4)$ H63 0.949862 -0.065184 0.632044 $0.0224(4)$ H53 1.294605 -0.055795 0.513458 $0.027*$ C54 $0.7545(2)$ $0.1912(19)$ 0.569165 $0.027*$ C55 $0.7645(2)$ $0.1912(2)$ $0.69246(5)$ $0.0214(4)$ H53 1.294605 -0.055795 0.513458 $0.0225(4)$ H64 0.794070 0.27207	C44	0.1954 (2)	0.7087 (2)	0.18141 (4)	0.0224 (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C31	1.0441 (2)	0.6151 (2)	0.28387 (4)	0.0221 (4)
H52 1.398285 -0.025634 0.467245 $0.024*$ C62 $0.9815(2)$ $0.01903(19)$ $0.59217(4)$ $0.0195(4)$ H62 1.054992 -0.039486 0.586150 $0.023*$ C13 $0.4819(2)$ $0.29296(19)$ $0.552538(4)$ $0.0200(4)$ H13 0.443280 0.228425 0.512349 $0.024*$ C26 $0.9178(2)$ $0.49068(19)$ $0.44501(5)$ $0.0211(4)$ H26 0.949080 0.555584 0.458731 $0.025*$ C16 $0.5917(2)$ $0.48523(19)$ $0.56273(4)$ $0.0198(4)$ H16 0.628111 0.551937 0.575453 $0.024*$ C55 $1.0957(2)$ $0.19174(19)$ $0.49087(4)$ $0.0207(4)$ H55 1.018788 0.246402 0.456115 $0.025*$ C56 $1.1556(2)$ $0.20817(19)$ $0.46357(4)$ $0.0205(4)$ H56 1.119061 0.273976 0.450619 $0.025*$ C25 $0.9794(2)$ $0.4845(2)$ $0.41753(5)$ $0.0225(4)$ H25 1.052359 0.545151 0.412380 $0.027*$ C53 $1.2606(2)$ $0.01194(19)$ $0.50075(4)$ $0.0204(4)$ H55 1.09265 -0.055795 0.513458 $0.022*$ C66 $0.8266(2)$ $0.2047(2)$ $0.58212(5)$ $0.022*(4)$ H55 0.626645 0.248421 0.615448 $0.029*$ C66 $0.8266(2)$ $0.2047(2)$ 0.58963 $0.027*$ C2 $0.2632(2)$ $0.3610(2)$ <	C52	1.3218 (2)	0.02940 (19)	0.47333 (4)	0.0200 (4)
C62 $0.9815(2)$ $0.01903(19)$ $0.59217(4)$ $0.0195(4)$ H62 1.054992 -0.039486 0.586150 $0.023*$ C13 $0.4819(2)$ $0.29296(19)$ $0.52538(4)$ $0.020(4)$ H13 0.443280 0.228425 0.512349 $0.024*$ C26 $0.9178(2)$ $0.49068(19)$ $0.44501(5)$ $0.0211(4)$ H26 0.949080 0.555584 0.458731 $0.025*$ C16 $0.5917(2)$ $0.48523(19)$ 0.572453 $0.024*$ C55 $1.0957(2)$ $0.19174(19)$ $0.49087(4)$ $0.0207(4)$ H55 1.018788 0.246402 0.496915 $0.025*$ C56 $1.1556(2)$ $0.20817(19)$ $0.45357(4)$ $0.0205(4)$ H56 1.119061 0.273976 0.450619 $0.025*$ C53 $0.9193(2)$ $0.0038(2)$ $0.61932(4)$ $0.029(4)$ H63 0.949862 -0.065184 0.632044 $0.025*$ C25 $0.9794(2)$ $0.4845(2)$ $0.41753(5)$ $0.0225(4)$ H25 1.052359 0.541511 0.412380 $0.027*$ C53 $1.2606(2)$ $0.01194(19)$ $0.50075(4)$ $0.0244(4)$ H55 0.690645 0.248421 0.615448 $0.029*$ C65 $0.7645(2)$ $0.2047(2)$ 0.589165 $0.027*$ C53 1.260605 0.227766 0.569165 $0.027*$ C2 $0.2632(2)$ $0.3610(2)$ 0.569165 $0.027*$ C32 $1.0009(2)$ $0.7238(2)$ 0	H52	1.398285	-0.025634	0.467245	0.024*
H62 1.054992 -0.039486 0.586150 0.023^* C13 $0.4819(2)$ $0.22926(19)$ $0.52538(4)$ $0.0200(4)$ H13 0.443280 0.228425 0.512349 0.024^* C26 $0.9178(2)$ $0.49068(19)$ $0.44501(5)$ $0.0211(4)$ H26 0.949080 0.555584 0.458731 0.022^* C16 $0.5917(2)$ $0.48523(19)$ $0.56273(4)$ $0.0198(4)$ H16 0.628111 0.551937 0.575453 0.022^* C55 $1.0957(2)$ $0.19174(19)$ $0.49087(4)$ $0.0207(4)$ H55 1.018788 0.246402 0.496915 0.025^* C56 $1.1556(2)$ $0.20817(19)$ $0.46357(4)$ $0.0209(4)$ H55 1.018788 0.246402 0.496915 0.0225^* C56 1.159061 0.273976 0.450619 0.0225^* C53 $0.9193(2)$ $0.0038(2)$ $0.61932(4)$ $0.0209(4)$ H63 0.949862 -0.065184 0.632044 0.0225^* C25 $0.9794(2)$ $0.4845(2)$ $0.41753(5)$ $0.0225(4)$ H25 1.052359 0.545151 0.412380 0.027^* C53 1.204605 -0.055795 0.513458 0.0224^* C65 $0.7645(2)$ $0.1902(2)$ $0.60946(5)$ $0.0241(4)$ H55 0.690645 0.248421 0.615448 $0.022*$ C66 $0.8266(2)$ $0.2244(2)$ $0.58212(5)$ $0.0225(4)$ H66 0.794070 0.27207	C62	0.9815 (2)	0.01903 (19)	0.59217 (4)	0.0195 (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H62	1.054992	-0.039486	0.586150	0.023*
H13 0.443280 0.228425 0.512349 0.024^* C26 0.9178 (2) 0.49068 (19) 0.44501 (5) 0.0211 (4)H26 0.949080 0.555584 0.458731 0.025^* C16 0.5917 (2) 0.48523 (19) 0.56273 (4) 0.0198 (4)H16 0.628111 0.551937 0.575453 0.024^* C55 1.0957 (2) 0.19174 (19) 0.49087 (4) 0.0207 (4)H55 1.018788 0.246402 0.49087 (4) 0.0207 (4)H56 1.119061 0.273976 0.450619 0.025^* C56 1.1556 (2) 0.20817 (19) 0.46357 (4) 0.0209 (4)H63 0.949862 -0.065184 0.632044 0.0225^* C25 0.9794 (2) 0.4845 (2) 0.41753 (5) 0.0225 (4)H25 1.052359 0.545151 0.412380 0.027^* C53 1.2606 (2) 0.01194 (19) 0.50075 (4) 0.0204 (4)H53 1.294605 -0.055795 0.513458 0.0224^* C65 0.7645 (2) 0.1902 (2) 0.60946 (5) 0.0241 (4)H65 0.690645 0.248421 0.615448 0.029^* C26 0.2632 (2) 0.3610 (2) 0.63923 (4) 0.0227 (4)H66 0.794070 0.272076 0.569165 0.0274 (4)H28 0.341026 0.341377 0.653963 0.027^* C3 1.0099 (2) 0.7238 (2) 0.265069 0.033^* C5<	C13	0.4819 (2)	0.29296 (19)	0.52538 (4)	0.0200 (4)
C26 0.9178 (2) 0.49068 (19) 0.44501 (5) 0.0211 (4)H26 0.949080 0.55584 0.458731 $0.025*$ C16 0.5917 (2) 0.48523 (19) 0.56273 (4) 0.0198 (4)H16 0.628111 0.551937 0.575453 $0.024*$ C55 1.0957 (2) 0.19174 (19) 0.49087 (4) 0.0207 (4)H55 1.018788 0.246402 0.496915 $0.025*$ C56 1.1556 (2) 0.20817 (19) 0.46357 (4) 0.0205 (4)H56 1.119061 0.273976 0.450619 $0.0225*$ C63 0.9193 (2) 0.0038 (2) 0.61932 (4) $0.0225 (4)$ H63 0.949862 -0.065184 0.632044 $0.0225 (4)$ H25 1.052359 0.545151 0.412380 $0.027*$ C53 1.2606 (2) 0.01194 (19) 0.50075 (4) 0.0204 (4)H53 1.294605 -0.055795 0.513458 $0.022*$ C65 0.7645 (2) 0.2047 (2) 0.58212 (5) 0.0225 (4)H66 0.794070 0.272076 0.59165 $0.027*$ C22 0.2632 (2) 0.3610 (2) 0.36933 (4) $0.0225 (4)$ H2A 0.229633 0.451580 0.642460 $0.027*$ C32 1.0009 (2) 0.7238 (2) 0.265069 $0.033*$ C5 1.4195 (2) 0.7533 (2) 0.30541 (5) 0.0274 (4)H32 1.065267 0.794999 0.265069 $0.033*$ C5	H13	0.443280	0.228425	0.512349	0.024*
H26 0.949080 0.555584 0.458731 0.025^* C16 $0.5917(2)$ $0.48523(19)$ $0.56273(4)$ $0.0198(4)$ H16 0.628111 0.551937 0.575453 0.024^* C55 $1.0957(2)$ $0.19174(19)$ $0.49087(4)$ $0.0207(4)$ H55 1.018788 0.246402 0.496915 0.025^* C56 $1.1556(2)$ $0.20817(19)$ $0.45357(4)$ $0.0205(4)$ H56 1.119061 0.273976 0.450619 0.025^* C63 $0.9193(2)$ $0.0038(2)$ $0.61932(4)$ $0.0209(4)$ H63 0.949862 -0.065184 0.632044 $0.0225(4)$ H25 1.052359 0.545151 0.412380 0.027^* C53 $1.2606(2)$ $0.01194(19)$ $0.50075(4)$ $0.0204(4)$ H53 1.294605 -0.055795 0.513458 0.0224^* C65 $0.7645(2)$ $0.1902(2)$ $0.60946(5)$ $0.0241(4)$ H65 0.690645 0.248421 0.615448 $0.0225(4)$ H66 0.794070 0.272076 0.569165 0.027^* C2 $0.2632(2)$ $0.3610(2)$ $0.63923(4)$ $0.0225(4)$ H2A 0.229633 0.451580 0.642460 0.027^* H2B 0.341026 0.341377 0.653963 0.027^* C32 $1.0009(2)$ $0.7238(2)$ $0.30541(5)$ $0.0225(4)$ H33 0.308413 0.842533 0.157251 0.035^* C5 $1.4195(2)$ $0.7053(2)$	C26	0.9178 (2)	0.49068 (19)	0.44501 (5)	0.0211 (4)
C16 $0.5917 (2)$ $0.48523 (19)$ $0.56273 (4)$ $0.0198 (4)$ H16 0.628111 0.551937 0.575453 $0.024*$ C55 $1.0957 (2)$ $0.19174 (19)$ $0.49087 (4)$ $0.0207 (4)$ H55 1.08788 0.246402 $0.490817 (4)$ $0.0207 (4)$ H55 1.018788 $0.20817 (19)$ $0.46357 (4)$ $0.0205 (4)$ H56 1.119061 0.273976 0.450619 $0.025*$ C63 $0.9193 (2)$ $0.0038 (2)$ $0.61932 (4)$ $0.0209 (4)$ H63 0.949862 -0.065184 0.632044 $0.025*$ C25 $0.9794 (2)$ $0.4845 (2)$ $0.41753 (5)$ $0.0225 (4)$ H25 1.052359 0.545151 0.412380 $0.027*$ C53 1.264605 -0.05795 0.513458 $0.022*$ C65 $0.7645 (2)$ $0.1190 (2)$ $0.60946 (5)$ $0.0214 (4)$ H65 0.690645 0.248421 0.615448 $0.0225 (4)$ H26 $0.8266 (2)$ $0.2047 (2)$ $0.58212 (5)$ $0.0225 (4)$ H27 $0.2632 (2)$ $0.3610 (2)$ 0.589165 $0.027*$ C2 $0.2632 (2)$ $0.3610 (2)$ $0.63923 (4)$ $0.0225 (4)$ H28 0.341026 0.341377 0.653963 $0.027*$ H28 0.341026 0.341377 0.653963 $0.027*$ C32 $1.0009 (2)$ $0.7238 (2)$ $0.30541 (5)$ $0.0225 (4)$ H33 0.306413 0.842533 0.157251 $0.035*$ C5	H26	0.949080	0.555584	0.458731	0.025*
H16 0.628111 0.551937 0.575453 0.024^* C55 $1.0957(2)$ $0.19174(19)$ $0.49087(4)$ $0.0207(4)$ H55 1.018788 0.246402 0.496915 0.025^* C56 $1.1556(2)$ $0.20817(19)$ $0.46357(4)$ $0.0209(4)$ H56 1.119061 0.273976 0.450619 0.025^* C63 $0.9193(2)$ $0.0038(2)$ $0.61932(4)$ $0.0209(4)$ H63 0.949862 -0.065184 0.632044 0.0225^* C25 $0.9794(2)$ $0.4845(2)$ $0.41753(5)$ $0.0225(4)$ H25 1.052359 0.545151 0.412380 0.027^* C53 $1.2606(2)$ $0.01194(19)$ $0.50075(4)$ $0.0204(4)$ H53 1.294605 -0.055795 0.513458 0.025^* C65 $0.7645(2)$ $0.1902(2)$ $0.60946(5)$ $0.0241(4)$ H53 1.294605 0.2248421 0.615448 0.029^* C66 $0.8266(2)$ $0.2047(2)$ $0.58212(5)$ $0.0225(4)$ H66 0.794070 0.272076 0.569165 0.027^* C2 $0.2632(2)$ $0.3610(2)$ $0.63923(4)$ $0.0225(4)$ H2B 0.341026 0.341377 0.653963 0.027^* C32 $1.0009(2)$ $0.7238(2)$ 0.265069 0.033^* C43 $0.3165(2)$ $0.7844(2)$ $0.17357(5)$ $0.0228(5)$ H43 0.308413 0.842533 0.157251 0.035^* C5 $1.4195(2)$ $0.7053(2)$ </td <td>C16</td> <td>0.5917 (2)</td> <td>0.48523 (19)</td> <td>0.56273 (4)</td> <td>0.0198 (4)</td>	C16	0.5917 (2)	0.48523 (19)	0.56273 (4)	0.0198 (4)
C551.0957 (2)0.19174 (19)0.49087 (4)0.0207 (4)H551.0187880.2464020.4969150.025*C561.1556 (2)0.20817 (19)0.46357 (4)0.0205 (4)H561.1190610.2739760.4506190.025*C630.9193 (2)0.0038 (2)0.61932 (4)0.0209 (4)H630.949862-0.0651840.6320440.025*C250.9794 (2)0.4845 (2)0.41753 (5)0.0225 (4)H251.0523590.5451510.4123800.027*C531.2606 (2)0.01194 (19)0.50075 (4)0.0204 (4)H531.294605-0.0557950.5134580.025*C650.7645 (2)0.1902 (2)0.60946 (5)0.0241 (4)H650.6906450.2484210.6154480.029*C660.8266 (2)0.2047 (2)0.58212 (5)0.0225 (4)H660.7940700.2720760.5691650.027*C20.2632 (2)0.3610 (2)0.63923 (4)0.0225 (4)H2B0.3410260.3413770.6339630.027*C321.0009 (2)0.7238 (2)0.2650690.033*C430.3165 (2)0.7844 (2)0.17357 (5)0.0288 (5)H430.3084130.8425330.1572510.035*C51.4195 (2)0.7053 (2)0.30541 (5)0.0253 (4)H5A1.473640.6289600.2979640.030*H5B1.4155620.6990490.3272020.030* <tr<< td=""><td>H16</td><td>0.628111</td><td>0.551937</td><td>0.575453</td><td>0.024*</td></tr<<>	H16	0.628111	0.551937	0.575453	0.024*
H55 1.018788 0.246402 0.496915 0.025^* C56 1.1556 (2) 0.20817 (19) 0.46357 (4) 0.0205 (4)H56 1.119061 0.273976 0.450619 0.025^* C63 0.9193 (2) 0.0038 (2) 0.61932 (4) 0.0209 (4)H63 0.949862 -0.065184 0.632044 0.025^* C25 0.9794 (2) 0.4845 (2) 0.41753 (5) 0.0225 (4)H25 1.052359 0.545151 0.412380 0.027^* C53 1.2606 (2) 0.01194 (19) 0.50075 (4) 0.0204 (4)H53 1.294605 -0.055795 0.513458 0.0224^* C65 0.7645 (2) 0.1902 (2) 0.60946 (5) 0.2241 (4)H65 0.690645 0.248421 0.615448 0.029^* C66 0.8266 (2) 0.2047 (2) 0.58212 (5) 0.0225 (4)H66 0.794070 0.272076 0.569165 0.027^* C2 0.2632 (2) 0.3610 (2) 0.63923 (4) 0.0225 (4)H2B 0.341026 0.341377 0.653963 0.027^* C32 1.0009 (2) 0.7238 (2) 0.265069 0.033^* C43 0.3165 (2) 0.7844 (2) 0.17357 (5) 0.0288 (5)H43 0.308413 0.842533 0.157251 0.035^* C5 1.4195 (2) 0.753 (2) 0.30541 (5) 0.0279 (5)H43 0.308413 0.828577 0.23776 0.3007^* C45 <td< td=""><td>C55</td><td>1.0957 (2)</td><td>0.19174 (19)</td><td>0.49087 (4)</td><td>0.0207 (4)</td></td<>	C55	1.0957 (2)	0.19174 (19)	0.49087 (4)	0.0207 (4)
C561.1556 (2)0.20817 (19)0.46357 (4)0.0205 (4)H561.1190610.2739760.4506190.025*C630.9193 (2)0.0038 (2)0.61932 (4)0.0209 (4)H630.949862 -0.065184 0.6320440.025*C250.9794 (2)0.4845 (2)0.41753 (5)0.0225 (4)H251.0523590.5451510.4123800.027*C531.2606 (2)0.01194 (19)0.50075 (4)0.0204 (4)H531.294605 -0.055795 0.5134580.025*C650.7645 (2)0.1902 (2)0.60946 (5)0.0241 (4)H650.6006450.2484210.6154480.029*C660.8266 (2)0.2047 (2)0.58212 (5)0.0225 (4)H660.7940700.2720760.5691650.027*C20.2632 (2)0.3610 (2)0.63923 (4)0.0225 (4)H2B0.3410260.3413770.6539630.027*C321.0009 (2)0.7238 (2)0.26758 (5)0.0274 (4)H321.0652670.7949990.2650690.033*C430.3165 (2)0.7844 (2)0.17357 (5)0.0288 (5)H430.3084130.8425330.1572510.035*C51.4195 (2)0.7053 (2)0.30541 (5)0.0253 (4)H5B1.4155620.6990490.3272020.030*C360.9485 (2)0.5108 (3)0.28754 (5)0.0305*C450.2121 (2)0.6226 (2)0.20566 (5)0.0279	H55	1.018788	0.246402	0.496915	0.025*
H561.119061 0.273976 0.450619 0.025^* C63 0.9193 (2) 0.0038 (2) 0.61932 (4) 0.0209 (4)H63 0.949862 -0.065184 0.632044 0.025^* C25 0.9794 (2) 0.4845 (2) 0.41753 (5) 0.0225 (4)H25 1.052359 0.545151 0.412380 0.027^* C53 1.2606 (2) 0.01194 (19) 0.50075 (4) 0.0204 (4)H53 1.294605 -0.055795 0.513458 0.022^* C65 0.7645 (2) 0.1902 (2) 0.60946 (5) 0.0241 (4)H65 0.690645 0.248421 0.615448 0.029^* C66 0.8266 (2) 0.2047 (2) 0.58212 (5) 0.0225 (4)H66 0.794070 0.272076 0.569165 0.027^* C2 0.2632 (2) 0.3610 (2) 0.63923 (4) 0.0225 (4)H2A 0.229633 0.451580 0.642460 0.027^* H2B 0.341026 0.341377 0.653963 0.027^* C32 1.0009 (2) 0.7238 (2) 0.265069 0.033^* C43 0.3165 (2) 0.7844 (2) 0.17357 (5) 0.0288 (5)H43 0.308413 0.842533 0.157251 0.035^* C5 1.4195 (2) 0.7053 (2) 0.30541 (5) 0.0273 (4)H5B 1.415562 0.699049 0.327202 0.030^* C36 0.9485 (2) 0.5108 (3) 0.28754 (5) 0.0305^* C43 0.32	C56	1.1556 (2)	0.20817 (19)	0.46357 (4)	0.0205 (4)
C630.1913 (2)0.0038 (2)0.61932 (4)0.0209 (4)H630.949862 -0.065184 0.6320440.025*C250.9794 (2)0.4845 (2)0.41753 (5)0.0225 (4)H251.0523590.5451510.4123800.027*C531.2606 (2)0.01194 (19)0.50075 (4)0.0204 (4)H531.294605 -0.055795 0.5134580.025*C650.7645 (2)0.1902 (2)0.60946 (5)0.0241 (4)H650.6906450.2484210.6154480.029*C660.8266 (2)0.2047 (2)0.58212 (5)0.0225 (4)H660.7940700.2720760.5691650.027*C20.2632 (2)0.3610 (2)0.63923 (4)0.0225 (4)H2A0.2296330.4515800.6424600.027*C321.0009 (2)0.7238 (2)0.2650690.033*C430.3165 (2)0.7844 (2)0.17357 (5)0.0288 (5)H430.3084130.8425330.1572510.035*C51.4195 (2)0.7053 (2)0.30541 (5)0.0273 (4)H5B1.4155620.6990490.3272020.30*C360.9485 (2)0.5108 (3)0.28754 (5)0.037*C450.2121 (2)0.6226 (2)0.20566 (5)0.0279 (5)H450.1325590.5704300.2114650.033*C450.2121 (2)0.6226 (2)0.20566 (5)0.0279 (5)H450.1325590.5704300.2114650.033* </td <td>Н56</td> <td>1.119061</td> <td>0.273976</td> <td>0.450619</td> <td>0.025*</td>	Н56	1.119061	0.273976	0.450619	0.025*
H63 $0.9498(2)$ -0.065184 0.632044 0.025^* C25 0.9794 (2) 0.4845 (2) 0.41753 (5) 0.0225 (4)H25 1.052359 0.545151 0.412380 0.027^* C53 1.2606 (2) 0.01194 (19) 0.50075 (4) 0.0204 (4)H53 1.294605 -0.055795 0.513458 0.025^* C65 0.7645 (2) 0.1902 (2) 0.60946 (5) 0.0241 (4)H65 0.690645 0.248421 0.615448 0.029^* C66 0.8266 (2) 0.2047 (2) 0.58212 (5) 0.0225 (4)H66 0.794070 0.272076 0.569165 0.027^* C2 0.2632 (2) 0.3610 (2) 0.63923 (4) 0.0225 (4)H28 0.341026 0.341377 0.653963 0.027^* H2B 0.341026 0.341377 0.653963 0.027^* C32 1.0009 (2) 0.7238 (2) 0.265069 0.033^* C43 0.3165 (2) 0.7844 (2) 0.17357 (5) 0.0228 (5)H43 0.308413 0.842533 0.157251 0.035^* C5 1.4195 (2) 0.7053 (2) 0.30541 (5) 0.037^* C45 0.2121 (2) 0.6226 (2) 0.20566 (5) 0.0279 (5)H45 0.132559 0.570430 0.211465 0.033^* C45 0.2121 (2) 0.6226 (2) 0.20566 (5) 0.0279 (5)H45 0.132559 0.570430 0.211465 0.033^* C45 $0.$	C63	0.9193 (2)	0.0038 (2)	0.61932 (4)	0.0209 (4)
C25 0.9794 (2) 0.4845 (2) 0.41753 (5) 0.0225 (4)H25 1.052359 0.545151 0.412380 0.027^* C53 1.2606 (2) 0.01194 (19) 0.50075 (4) 0.0204 (4)H53 1.294605 -0.055795 0.513458 0.025^* C65 0.7645 (2) 0.1902 (2) 0.60946 (5) 0.0241 (4)H65 0.690645 0.248421 0.615448 0.029^* C66 0.8266 (2) 0.2047 (2) 0.58212 (5) 0.0225 (4)H66 0.794070 0.272076 0.569165 0.027^* C2 0.2632 (2) 0.3610 (2) 0.63923 (4) 0.0225 (4)H2A 0.229633 0.451580 0.642460 0.027^* C32 1.0009 (2) 0.7238 (2) 0.26758 (5) 0.0274 (4)H32 1.065267 0.794999 0.265069 0.033^* C43 0.3165 (2) 0.7844 (2) 0.17357 (5) 0.0288 (5)H43 0.308413 0.842533 0.157251 0.035^* C5 1.4195 (2) 0.7053 (2) 0.30541 (5) 0.030^* H5B 1.415562 0.699049 0.327202 0.303^* C45 0.2121 (2) 0.6226 (2) 0.20566 (5) 0.0279 (5)H45 0.132559 0.570430 0.211465 0.033^* C5 1.4990 (2) 0.9952 (2) 0.388577 0.031^* C45 0.2121 (2) 0.6226 (2) 0.388577 0.031^* C45 0	H63	0.949862	-0.065184	0.632044	0.025*
H25 1.052359 0.545151 0.412380 0.027^* C53 $1.2606(2)$ $0.01194(19)$ $0.50075(4)$ $0.0204(4)$ H53 1.294605 -0.055795 0.513458 0.025^* C65 $0.7645(2)$ $0.1902(2)$ $0.60946(5)$ $0.0241(4)$ H65 0.690645 0.248421 0.615448 0.029^* C66 $0.8266(2)$ $0.2047(2)$ $0.58212(5)$ $0.0225(4)$ H66 0.794070 0.272076 0.569165 0.027^* C2 $0.2632(2)$ $0.3610(2)$ $0.63923(4)$ $0.0225(4)$ H2A 0.229633 0.451580 0.642460 0.027^* C32 $1.0009(2)$ $0.7238(2)$ $0.26758(5)$ $0.0274(4)$ H32 1.065267 0.794999 0.265069 0.033^* C43 $0.3165(2)$ $0.7844(2)$ $0.17357(5)$ $0.0288(5)$ H43 0.308413 0.842533 0.157251 0.035^* C5 $1.4195(2)$ $0.7053(2)$ $0.30541(5)$ 0.030^* H5B 1.473364 0.628960 0.297964 0.307^* C45 $0.2121(2)$ $0.6226(2)$ $0.20566(5)$ 0.037^* C45 $0.2121(2)$ $0.6226(2)$ $0.20566(5)$ 0.037^* C45 $0.2121(2)$ $0.6226(2)$ $0.20566(5)$ 0.037^* C5 $1.41990(2)$ $0.522(2)$ 0.388577 0.031^* C45 $0.2121(2)$ $0.6226(2)$ $0.20566(5)$ $0.0229(4)$ H8B 1.422180 0.089838 <td< td=""><td>C25</td><td>0.9794 (2)</td><td>0.4845 (2)</td><td>0.41753 (5)</td><td>0.0225 (4)</td></td<>	C25	0.9794 (2)	0.4845 (2)	0.41753 (5)	0.0225 (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H25	1.052359	0.545151	0.412380	0.027*
H53 1.294605 -0.055795 0.513458 0.025^* C65 $0.7645(2)$ $0.1902(2)$ $0.60946(5)$ $0.0241(4)$ H65 0.690645 0.248421 0.615448 0.029^* C66 $0.8266(2)$ $0.2047(2)$ $0.58212(5)$ $0.0225(4)$ H66 0.794070 0.272076 0.569165 0.027^* C2 $0.2632(2)$ $0.3610(2)$ $0.63923(4)$ $0.0225(4)$ H2A 0.229633 0.451580 0.642460 0.027^* C32 $1.0009(2)$ $0.7238(2)$ 0.265963 0.027^* C32 $1.0009(2)$ $0.7238(2)$ 0.265069 0.033^* C43 $0.3165(2)$ $0.7844(2)$ $0.17357(5)$ $0.0288(5)$ H43 0.308413 0.842533 0.157251 0.035^* C5 $1.4195(2)$ $0.7053(2)$ $0.30541(5)$ $0.0253(4)$ H5B 1.473364 0.628960 0.297964 0.030^* C36 $0.9485(2)$ $0.5108(3)$ $0.28754(5)$ 0.037^* C45 $0.2121(2)$ $0.6226(2)$ $0.20566(5)$ $0.0279(5)$ H45 0.132559 0.570430 0.211465 0.033^* C8 $1.4990(2)$ $0.0952(2)$ $0.38945(5)$ $0.0262(4)$ H8B 1.422180 0.089838 0.373881 0.031^*	C53	1.2606 (2)	0.01194 (19)	0.50075 (4)	0.0204 (4)
C65 0.7645 (2) 0.1902 (2) 0.60946 (5) 0.0241 (4)H65 0.690645 0.248421 0.615448 $0.029*$ C66 0.8266 (2) 0.2047 (2) 0.58212 (5) 0.0225 (4)H66 0.794070 0.272076 0.569165 $0.027*$ C2 0.2632 (2) 0.3610 (2) 0.63923 (4) 0.0225 (4)H2A 0.229633 0.451580 0.642460 $0.027*$ C32 1.0009 (2) 0.7238 (2) 0.265069 $0.033*$ C43 0.3165 (2) 0.7844 (2) 0.17357 (5) 0.0288 (5)H43 0.308413 0.842533 0.157251 $0.035*$ C5 1.4195 (2) 0.7053 (2) 0.30541 (5) 0.0225 (4)H5B 1.415562 0.699049 0.327202 $0.30*$ H5B 1.415562 0.699049 0.327202 $0.30*$ C36 0.9485 (2) 0.5108 (3) 0.28754 (5) $0.027*$ C45 0.2121 (2) 0.6226 (2) 0.20566 (5) $0.027*$ H45 0.132559 0.570430 0.211465 $0.033*$ C8 1.4990 (2) 0.0952 (2) 0.38945 (5) 0.0262 (4)H8B 1.422180 0.089838 0.373881 $0.031*$	Н53	1.294605	-0.055795	0.513458	0.025*
H65 0.690645 0.248421 0.615448 $0.029*$ C66 $0.8266(2)$ $0.2047(2)$ $0.58212(5)$ $0.0225(4)$ H66 0.794070 0.272076 0.569165 $0.027*$ C2 $0.2632(2)$ $0.3610(2)$ $0.63923(4)$ $0.0225(4)$ H2A 0.229633 0.451580 0.642460 $0.027*$ C32 $1.0009(2)$ $0.7238(2)$ $0.26758(5)$ $0.0274(4)$ H32 1.065267 0.794999 0.265069 $0.033*$ C43 $0.3165(2)$ $0.7844(2)$ $0.17357(5)$ $0.0288(5)$ H43 0.308413 0.842533 0.157251 $0.035*$ C5 $1.4195(2)$ $0.7053(2)$ $0.30541(5)$ $0.020*$ H5B 1.415562 0.699049 0.327202 $0.030*$ C36 $0.9485(2)$ $0.5108(3)$ $0.28754(5)$ $0.037*$ C45 $0.2121(2)$ $0.6226(2)$ $0.20566(5)$ $0.0279(5)$ H45 0.132559 0.570430 0.211465 $0.033*$ C8 $1.4990(2)$ $0.0952(2)$ $0.38945(5)$ $0.0262(4)$ H8A 1.422180 0.089838 0.373881 $0.031*$	C65	0.7645 (2)	0.1902 (2)	0.60946 (5)	0.0241 (4)
C66 $0.8266(2)$ $0.2047(2)$ $0.58212(5)$ $0.0225(4)$ H66 0.794070 0.272076 0.569165 $0.027*$ C2 $0.2632(2)$ $0.3610(2)$ $0.63923(4)$ $0.0225(4)$ H2A 0.229633 0.451580 0.642460 $0.027*$ H2B 0.341026 0.341377 0.653963 $0.027*$ C32 $1.0009(2)$ $0.7238(2)$ $0.26758(5)$ $0.0274(4)$ H32 1.065267 0.794999 0.265069 $0.033*$ C43 $0.3165(2)$ $0.7844(2)$ $0.17357(5)$ $0.0288(5)$ H43 0.308413 0.842533 0.157251 $0.035*$ C5 $1.4195(2)$ $0.7053(2)$ $0.30541(5)$ $0.020*$ H5B 1.473364 0.628960 0.297964 $0.030*$ H5B 1.415562 0.699049 0.327202 $0.030*$ C36 $0.9485(2)$ $0.5108(3)$ $0.28754(5)$ $0.0305(5)$ H45 0.132559 0.570430 0.211465 $0.033*$ C45 $0.2121(2)$ $0.6226(2)$ $0.20566(5)$ $0.0279(5)$ H45 $1.4990(2)$ $0.0952(2)$ 0.388577 $0.031*$ H8B 1.422180 0.089838 0.373881 $0.031*$	H65	0.690645	0.248421	0.615448	0.029*
H66 0.794070 0.272076 0.569165 $0.027*$ C2 $0.2632(2)$ $0.3610(2)$ $0.63923(4)$ $0.0225(4)$ H2A 0.229633 0.451580 0.642460 $0.027*$ H2B 0.341026 0.341377 0.653963 $0.027*$ C32 $1.0009(2)$ $0.7238(2)$ $0.26758(5)$ $0.0274(4)$ H32 1.065267 0.794999 0.265069 $0.033*$ C43 $0.3165(2)$ $0.7844(2)$ $0.17357(5)$ $0.0288(5)$ H43 0.308413 0.842533 0.157251 $0.035*$ C5 $1.4195(2)$ $0.7053(2)$ $0.30541(5)$ $0.0253(4)$ H5A 1.473364 0.628960 0.297964 $0.30*$ H5B 1.415562 0.699049 0.327202 $0.030*$ C36 $0.9485(2)$ $0.5108(3)$ $0.28754(5)$ $0.0305(5)$ H45 0.132559 0.570430 0.211465 $0.033*$ C45 $0.2121(2)$ $0.6226(2)$ $0.20566(5)$ $0.0279(5)$ H45 $1.4990(2)$ $0.0952(2)$ 0.388577 $0.031*$ C8 $1.4990(2)$ 0.098838 0.373881 $0.031*$ H8B 1.422180 0.089838 0.373881 $0.031*$	C66	0.8266 (2)	0.2047 (2)	0.58212 (5)	0.0225 (4)
C2 $0.2632 (2)$ $0.3610 (2)$ $0.63923 (4)$ $0.0225 (4)$ H2A 0.229633 0.451580 0.642460 0.027^* H2B 0.341026 0.341377 0.653963 0.027^* C32 $1.0009 (2)$ $0.7238 (2)$ $0.26758 (5)$ $0.0274 (4)$ H32 1.065267 0.794999 0.265069 0.033^* C43 $0.3165 (2)$ $0.7844 (2)$ $0.17357 (5)$ $0.0288 (5)$ H43 0.308413 0.842533 0.157251 0.035^* C5 $1.4195 (2)$ $0.7053 (2)$ $0.30541 (5)$ $0.0253 (4)$ H5A 1.473364 0.628960 0.297964 0.030^* H5B 1.415562 0.699049 0.327202 0.030^* C36 $0.9485 (2)$ $0.5108 (3)$ $0.28754 (5)$ $0.0305 (5)$ H45 0.132559 0.570430 0.211465 0.033^* C8 $1.4990 (2)$ $0.0952 (2)$ $0.38945 (5)$ $0.0262 (4)$ H8A 1.544284 0.182640 0.388577 0.031^* H8B 1.422180 0.089838 0.373881 0.031^*	H66	0.794070	0.272076	0.569165	0.027*
H2A 0.229633 0.451580 0.642460 0.027^* H2B 0.341026 0.341377 0.653963 0.027^* C32 1.0009 (2) 0.7238 (2) 0.26758 (5) 0.0274 (4)H32 1.065267 0.794999 0.265069 0.033^* C43 0.3165 (2) 0.7844 (2) 0.17357 (5) 0.0288 (5)H43 0.308413 0.842533 0.157251 0.035^* C5 1.4195 (2) 0.7053 (2) 0.30541 (5) 0.0253 (4)H5A 1.473364 0.628960 0.297964 0.030^* H5B 1.415562 0.699049 0.327202 0.030^* C36 0.9485 (2) 0.5108 (3) 0.28754 (5) 0.0305 (5)H36 0.978309 0.436777 0.298758 0.037^* C45 0.2121 (2) 0.6226 (2) 0.20566 (5) 0.0279 (5)H45 0.132559 0.570430 0.211465 0.033^* C8 1.4990 (2) 0.0952 (2) 0.38945 (5) 0.0262 (4)H8A 1.544284 0.182640 0.388577 0.031^* H8B 1.422180 0.089838 0.373881 0.031^*	C2	0.2632 (2)	0.3610(2)	0.63923 (4)	0.0225 (4)
H2B0.3410260.3413770.6539630.027*C321.0009 (2)0.7238 (2)0.26758 (5)0.0274 (4)H321.0652670.7949990.2650690.033*C430.3165 (2)0.7844 (2)0.17357 (5)0.0288 (5)H430.3084130.8425330.1572510.035*C51.4195 (2)0.7053 (2)0.30541 (5)0.0253 (4)H5A1.4733640.6289600.2979640.030*C360.9485 (2)0.5108 (3)0.28754 (5)0.0305 (5)H360.9783090.4367770.2987580.037*C450.2121 (2)0.6226 (2)0.20566 (5)0.0279 (5)H450.1325590.5704300.2114650.033*C81.4990 (2)0.0952 (2)0.3885770.031*H8B1.4221800.0898380.3738810.031*C420.4458 (2)0.755 (3)0.18914 (6)0.0330 (5)	H2A	0.229633	0.451580	0.642460	0.027*
C321.0009 (2)0.7238 (2)0.26758 (5)0.0274 (4)H321.0652670.7949990.2650690.033*C430.3165 (2)0.7844 (2)0.17357 (5)0.0288 (5)H430.3084130.8425330.1572510.035*C51.4195 (2)0.7053 (2)0.30541 (5)0.0253 (4)H5A1.4733640.6289600.2979640.030*H5B1.4155620.6990490.3272020.030*C360.9485 (2)0.5108 (3)0.28754 (5)0.0305 (5)H360.9783090.4367770.2987580.037*C450.2121 (2)0.6226 (2)0.20566 (5)0.0279 (5)H450.1325590.5704300.2114650.033*C81.4990 (2)0.0952 (2)0.38945 (5)0.0262 (4)H8A1.5442840.1826400.3885770.031*H8B1.4221800.0898380.3738810.031*C420.4458 (2)0.7755 (3)0.18914 (6)0.0330 (5)	H2B	0.341026	0.341377	0.653963	0.027*
H321.0652670.7949990.2650690.033*C430.3165 (2)0.7844 (2)0.17357 (5)0.0288 (5)H430.3084130.8425330.1572510.035*C51.4195 (2)0.7053 (2)0.30541 (5)0.0253 (4)H5A1.4733640.6289600.2979640.030*H5B1.4155620.6990490.3272020.030*C360.9485 (2)0.5108 (3)0.28754 (5)0.0305 (5)H360.9783090.4367770.2987580.037*C450.2121 (2)0.6226 (2)0.20566 (5)0.0279 (5)H450.1325590.5704300.2114650.033*C81.4990 (2)0.0952 (2)0.38945 (5)0.0262 (4)H8A1.5442840.1826400.3885770.031*H8B1.4221800.0898380.3738810.031*C420.4458 (2)0.7755 (3)0.18914 (6)0.0330 (5)	C32	1.0009 (2)	0.7238 (2)	0.26758 (5)	0.0274 (4)
C430.3165 (2)0.7844 (2)0.17357 (5)0.0288 (5)H430.3084130.8425330.1572510.035*C51.4195 (2)0.7053 (2)0.30541 (5)0.0253 (4)H5A1.4733640.6289600.2979640.030*H5B1.4155620.6990490.3272020.030*C360.9485 (2)0.5108 (3)0.28754 (5)0.0305 (5)H360.9783090.4367770.2987580.037*C450.2121 (2)0.6226 (2)0.20566 (5)0.0279 (5)H450.1325590.5704300.2114650.033*C81.4990 (2)0.0952 (2)0.38945 (5)0.0262 (4)H8A1.5442840.1826400.3885770.031*H8B1.4221800.0898380.3738810.031*C420.4458 (2)0.7755 (3)0.18914 (6)0.0330 (5)	H32	1.065267	0.794999	0.265069	0.033*
H430.3084130.8425330.1572510.035*C51.4195 (2)0.7053 (2)0.30541 (5)0.0253 (4)H5A1.4733640.6289600.2979640.030*H5B1.4155620.6990490.3272020.030*C360.9485 (2)0.5108 (3)0.28754 (5)0.0305 (5)H360.9783090.4367770.2987580.037*C450.2121 (2)0.6226 (2)0.20566 (5)0.0279 (5)H450.1325590.5704300.2114650.033*C81.4990 (2)0.0952 (2)0.38945 (5)0.0262 (4)H8A1.5442840.1826400.3885770.031*H8B1.4221800.0898380.3738810.031*C420.4458 (2)0.7755 (3)0.18914 (6)0.0330 (5)	C43	0.3165 (2)	0.7844 (2)	0.17357 (5)	0.0288(5)
C51.4195 (2)0.7053 (2)0.30541 (5)0.0253 (4)H5A1.4733640.6289600.2979640.030*H5B1.4155620.6990490.3272020.030*C360.9485 (2)0.5108 (3)0.28754 (5)0.0305 (5)H360.9783090.4367770.2987580.037*C450.2121 (2)0.6226 (2)0.20566 (5)0.0279 (5)H450.1325590.5704300.2114650.033*C81.4990 (2)0.0952 (2)0.38945 (5)0.0262 (4)H8A1.5442840.1826400.3885770.031*H8B1.4221800.0898380.3738810.031*C420.4458 (2)0.7755 (3)0.18914 (6)0.0330 (5)	H43	0.308413	0.842533	0.157251	0.035*
H5A1.4733640.6289600.2979640.030*H5B1.4155620.6990490.3272020.030*C360.9485 (2)0.5108 (3)0.28754 (5)0.0305 (5)H360.9783090.4367770.2987580.037*C450.2121 (2)0.6226 (2)0.20566 (5)0.0279 (5)H450.1325590.5704300.2114650.033*C81.4990 (2)0.0952 (2)0.38945 (5)0.0262 (4)H8A1.5442840.1826400.3885770.031*H8B1.4221800.0898380.3738810.031*C420.4458 (2)0.7755 (3)0.18914 (6)0.0330 (5)	C5	1.4195 (2)	0.7053 (2)	0.30541 (5)	0.0253 (4)
H5B1.4155620.6990490.3272020.030*C360.9485 (2)0.5108 (3)0.28754 (5)0.0305 (5)H360.9783090.4367770.2987580.037*C450.2121 (2)0.6226 (2)0.20566 (5)0.0279 (5)H450.1325590.5704300.2114650.033*C81.4990 (2)0.0952 (2)0.38945 (5)0.0262 (4)H8A1.5442840.1826400.3885770.031*H8B1.4221800.0898380.3738810.031*C420.4458 (2)0.7755 (3)0.18914 (6)0.0330 (5)	H5A	1.473364	0.628960	0.297964	0.030*
C360.9485 (2)0.5108 (3)0.28754 (5)0.0305 (5)H360.9783090.4367770.2987580.037*C450.2121 (2)0.6226 (2)0.20566 (5)0.0279 (5)H450.1325590.5704300.2114650.033*C81.4990 (2)0.0952 (2)0.38945 (5)0.0262 (4)H8A1.5442840.1826400.3885770.031*H8B1.4221800.0898380.3738810.031*C420.4458 (2)0.7755 (3)0.18914 (6)0.0330 (5)	H5B	1.415562	0.699049	0.327202	0.030*
H360.9783090.4367770.2987580.037*C450.2121 (2)0.6226 (2)0.20566 (5)0.0279 (5)H450.1325590.5704300.2114650.033*C81.4990 (2)0.0952 (2)0.38945 (5)0.0262 (4)H8A1.5442840.1826400.3885770.031*H8B1.4221800.0898380.3738810.031*C420.4458 (2)0.7755 (3)0.18914 (6)0.0330 (5)	C36	0.9485 (2)	0.5108 (3)	0.28754 (5)	0.0305 (5)
C450.2121 (2)0.6226 (2)0.20566 (5)0.0279 (5)H450.1325590.5704300.2114650.033*C81.4990 (2)0.0952 (2)0.38945 (5)0.0262 (4)H8A1.5442840.1826400.3885770.031*H8B1.4221800.0898380.3738810.031*C420.4458 (2)0.7755 (3)0.18914 (6)0.0330 (5)	H36	0.978309	0.436777	0.298758	0.037*
H450.1325590.5704300.2114650.033*C81.4990 (2)0.0952 (2)0.38945 (5)0.0262 (4)H8A1.5442840.1826400.3885770.031*H8B1.4221800.0898380.3738810.031*C420.4458 (2)0.7755 (3)0.18914 (6)0.0330 (5)	C45	0.2121 (2)	0.6226 (2)	0.20566 (5)	0.0279 (5)
C81.4990 (2)0.0952 (2)0.38945 (5)0.0262 (4)H8A1.5442840.1826400.3885770.031*H8B1.4221800.0898380.3738810.031*C420.4458 (2)0.7755 (3)0.18914 (6)0.0330 (5)	H45	0.132559	0.570430	0.211465	0.033*
H8A1.5442840.1826400.3885770.031*H8B1.4221800.0898380.3738810.031*C420.4458 (2)0.7755 (3)0.18914 (6)0.0330 (5)	C8	1.4990 (2)	0.0952 (2)	0.38945 (5)	0.0262 (4)
H8B1.4221800.0898380.3738810.031*C420.4458 (2)0.7755 (3)0.18914 (6)0.0330 (5)	H8A	1.544284	0.182640	0.388577	0.031*
(42 0.4458(2) 0.7755(3) 0.18914(6) 0.0330(5)	H8B	1.422180	0.089838	0.373881	0.031*
	C42	0.4458 (2)	0.7755 (3)	0.18914 (6)	0.0330 (5)

H42	0.525225	0.828567	0.183676	0.040*
C41	0.4612 (2)	0.6903 (2)	0.21262 (5)	0.0310 (5)
C46	0.3432 (3)	0.6133 (2)	0.22108 (5)	0.0317 (5)
H46	0.353157	0.554977	0.237325	0.038*
C4	1.4926 (3)	0.8298 (2)	0.29658 (5)	0.0314 (5)
H4A	1.591417	0.831422	0.304902	0.047*
H4B	1.495816	0.834680	0.274979	0.047*
H4C	1.438273	0.904456	0.304086	0.047*
C33	0.8616 (3)	0.7271 (3)	0.25492 (5)	0.0333 (5)
H33	0.830543	0.801323	0.243896	0.040*
C34	0.7678 (2)	0.6214 (3)	0.25847 (5)	0.0321 (5)
C1	0.1402 (3)	0.2674 (2)	0.64255 (5)	0.0319 (5)
H1A	0.101783	0.274963	0.662482	0.048*
H1B	0.063604	0.287864	0.627939	0.048*
H1C	0.174590	0.178063	0.639400	0.048*
C35	0.8103 (3)	0.5148 (3)	0.27491 (5)	0.0344 (5)
H35	0.745429	0.444049	0.277624	0.041*
C7	1.6105 (3)	-0.0094 (3)	0.38500 (6)	0.0403 (6)
H7A	1.654181	0.001927	0.365643	0.060*
H7B	1.685725	-0.002989	0.400539	0.060*
H7C	1.564175	-0.095371	0.385910	0.060*
H2W	1.113 (4)	0.176 (3)	0.3215 (7)	0.049 (9)*
H1W	1.232 (3)	0.183 (3)	0.3076 (7)	0.043 (8)*
Н9	0.775 (4)	-0.006 (4)	0.6632 (7)	0.059 (10)*
Н3	0.962 (3)	0.321 (3)	0.3600 (7)	0.047 (9)*

Atomic displacement parameters (\mathring{A}^2)

	I 711	I 722	I 733	I /12	I /13	I 723
	0	U	U	U	0	0
K1	0.0214 (2)	0.0310 (2)	0.0220 (2)	-0.00758 (18)	-0.00356 (16)	0.00664 (18)
O1W	0.0173 (7)	0.0361 (8)	0.0199 (7)	0.0005 (6)	0.0055 (6)	0.0033 (6)
01	0.0178 (6)	0.0241 (7)	0.0209 (7)	-0.0035 (5)	0.0028 (5)	-0.0042 (5)
O4	0.0204 (7)	0.0252 (7)	0.0227 (7)	-0.0005 (6)	-0.0035 (6)	0.0031 (6)
08	0.0284 (8)	0.0199 (7)	0.0205 (7)	-0.0033 (6)	-0.0012 (6)	0.0041 (5)
03	0.0211 (7)	0.0316 (8)	0.0222 (7)	-0.0040 (6)	0.0043 (6)	-0.0011 (6)
O7	0.0230 (7)	0.0248 (7)	0.0250 (7)	-0.0017 (6)	0.0041 (6)	0.0031 (6)
O2	0.0236 (7)	0.0332 (8)	0.0198 (7)	-0.0089 (6)	-0.0003 (6)	-0.0053 (6)
06	0.0173 (7)	0.0350 (8)	0.0223 (7)	0.0013 (6)	-0.0003 (5)	0.0027 (6)
09	0.0302 (8)	0.0347 (9)	0.0284 (8)	0.0035 (7)	0.0091 (7)	-0.0014 (7)
05	0.0256 (8)	0.0374 (9)	0.0352 (9)	-0.0012 (7)	-0.0051 (7)	0.0185 (7)
N2	0.0174 (8)	0.0186 (8)	0.0210 (8)	0.0007 (6)	0.0017 (6)	-0.0002 (6)
N6	0.0208 (8)	0.0185 (8)	0.0199 (8)	-0.0035 (6)	-0.0029 (6)	0.0005 (6)
N1	0.0178 (8)	0.0178 (7)	0.0201 (8)	0.0004 (6)	-0.0002 (6)	0.0000 (6)
N5	0.0207 (8)	0.0186 (8)	0.0197 (8)	-0.0040 (6)	-0.0022 (6)	0.0006 (6)
N4	0.0153 (16)	0.0230 (11)	0.0187 (15)	0.0028 (10)	0.0029 (12)	0.0030 (9)
N41	0.027 (10)	0.028 (5)	0.011 (5)	0.009 (5)	-0.003 (6)	-0.006 (4)
N3	0.0190 (19)	0.0254 (12)	0.0175 (13)	0.0021 (10)	0.0015 (12)	0.0028 (9)
N31	0.022 (9)	0.033 (6)	0.023 (7)	-0.002 (5)	-0.003 (6)	0.001 (5)

C11	0.0161(8)	0.0165(9)	0.0180.(0)	0.0014(7)	-0.0011(7)	-0.0000(7)
C11	0.0101(8)	0.0103(8)	0.0180(9)	0.0014(7) 0.0023(7)	0.0011(7)	0.0009(7)
C14	0.0155 (8)	0.0219(9)	0.0205(9)	0.0025(7)	-0.0003(7)	0.0023(7)
C_{14}	0.0100 (8)	0.0100(0)	0.0190(9)	0.0010(7)	-0.0012(7)	0.0007(7)
C51	0.0131(8) 0.0208(9)	0.0133(9)	0.0182(9)	-0.0014(7)	-0.0000(7)	-0.0003(7)
C23	0.0208(9)	0.0138(8)	0.0185(9)	-0.0037(7)	-0.0028(7)	-0.0007(7)
C_{23}	0.0133(9)	0.0203(9)	0.0204(9)	0.0014(7)	-0.0014(7)	0.0013(7)
C_{0}	0.0140(0)	0.0152(5)	0.0200(9)	-0.0025(7)	-0.0014(7)	-0.0010(7)
C61	0.0201(9)	0.0137(8) 0.0176(8)	0.0222(9)	-0.0003(7)	-0.0011(7)	-0.0016(7)
C54	0.0191(9) 0.0203(9)	0.0170(0)	0.0197(9)	-0.0047(7)	-0.0029(7)	0.0000(7)
C6	0.0203(9)	0.0103(0)	0.0161(9)	0.0052(7)	0.0038(7)	0.0000(7)
C_{22}	0.0210(9)	0.0271(10)	0.0105(9) 0.0204(9)	-0.0003(3)	0.0017(7)	0.0030(7)
C15	0.0105(9)	0.0202(9)	0.0204(9)	-0.0020(7)	-0.0003(7)	0.0018(7)
C64	0.0202(9)	0.0104(0)	0.0212(9) 0.0239(10)	-0.0038(7)	0.0003(7)	-0.0018(8)
C12	0.0170(9)	0.0245(10)	0.0237(10)	-0.0047(7)	0.0021(3)	-0.0010(3)
C12 C44	0.0170(9)	0.0200(9)	0.0214(9) 0.0107(9)	0.0027(7)	0.0012(7)	-0.0021(7)
C31	0.0182(9)	0.0294(10) 0.0331(11)	0.0197(9)	0.0091 (8)	0.0009(7)	0.0040(8)
C51	0.0100(9)	0.0331(11) 0.0178(0)	0.0145(9)	-0.0023(3)	-0.0009(7)	0.0001(3)
C52 C62	0.0176(9)	0.0178(9)	0.0225(10)	-0.0024(7)	-0.0021(7)	-0.0001(7)
C02	0.0170(9)	0.0191(9)	0.0210(9)	-0.0024(7)	-0.0013(7)	-0.0039(7)
C15	0.0190(9)	0.0200(9)	0.0210(9) 0.0248(10)	-0.0032(7)	0.0007(7)	-0.0039(7)
C20	0.0198(9) 0.0221(9)	0.0160(9)	0.0248(10)	-0.0020(7)	-0.0000(7)	-0.0030(7)
C10	0.0221(9) 0.0228(9)	0.0109(9) 0.0177(9)	0.0202(9) 0.0214(9)	-0.0021(7)	-0.0023(7)	0.0003(7)
C56	0.0228(9)	0.0177(9)	0.0214(9)	-0.0002(7)	-0.0023(7)	0.0010(7)
C63	0.0237(9)	0.0104(0)	0.0211(0)	-0.0034(7)	-0.0032(0)	0.0031(7)
C05	0.0198(9)	0.0200(9)	0.0228(10) 0.0278(10)	-0.0034(7)	0.0010(7) 0.0024(8)	-0.0019(7)
C53	0.0105(9)	0.0209(9)	0.0270(10)	-0.0043(7)	-0.0024(0)	0.0007(0)
C65	0.0222(9)	0.0109(9)	0.0220(0)	0.0027(7)	-0.0008(8)	-0.0029(8)
C65	0.0199(9)	0.0241(10) 0.0193(9)	0.0237(11) 0.0271(10)	-0.0017(7)	-0.0000(8)	0.0027(8)
C_{00}	0.0205(9)	0.0199(9)	0.0271(10)	-0.0017(7)	0.0040(8)	-0.00024(8)
C32	0.0190(9)	0.0209(10) 0.0328(11)	0.0190(9)	0.0020(0)	-0.0020(8)	0.0024(0)
C43	0.0271(11) 0.0200(10)	0.0328(11) 0.0344(12)	0.0223(10) 0.0321(12)	0.0008(9)	0.0020 (8)	-0.0000(9)
C5	0.0200(10) 0.0173(9)	0.0344(12) 0.0330(11)	0.0321(12) 0.0257(10)	-0.0013(8)	-0.0020(8)	0.0021(9)
C36	0.0173(5)	0.0330(11) 0.0438(13)	0.0237(11)	-0.0019(0)	-0.0014(8)	0.0001(9)
C45	0.0241(10) 0.0254(10)	0.0450(15) 0.0354(12)	0.0237(11) 0.0231(10)	0.0030 (10)	0.0014(0) 0.0036(8)	0.0000(9)
C8	0.0239(10)	0.0331(12) 0.0271(10)	0.0231(10) 0.0270(11)	-0.0002(9)	0.0063 (8)	0.0002(9)
C42	0.0213(10)	0.0271(10) 0.0412(13)	0.0270(11) 0.0375(13)	0.0032(0)	0.0003(0)	-0.0058(10)
C41	0.0209(10)	0.0399(13)	0.0375(12) 0.0311(12)	0.0075(9)	-0.0018(9)	-0.0125(10)
C46	0.0213(13) 0.0383(13)	0.0377(12)	0.0311(12) 0.0189(10)	0.0109(9)	-0.0029(9)	-0.0020(9)
C4	0.0261(11)	0.0377(12)	0.0355(12)	-0.0048(9)	0.0029(9)	-0.0038(10)
C33	0.0261(11) 0.0368(13)	0.0327(12) 0.0385(13)	0.0333(12) 0.0242(11)	0.0185(10)	-0.0073(9)	-0.0025(9)
C34	0.0202(10)	0.0500(13)	0.0260(11)	0.0052(10)	-0.0006(8)	-0.0154(10)
C1	0.0280(11)	0.0352(12)	0.0330(12)	-0.0098(9)	0.0121 (9)	-0.0082(10)
C35	0.0240 (11)	0.0500(12)	0.0291(12)	-0.0063(10)	-0.0005(9)	0.0000(10)
C7	0.0334(13)	0.0367(13)	0.0514(16)	0.0020 (11)	0.0182(12)	0.0014(12)
21						

Geometric parameters (Å, °)

K1—O8	2.6016 (16)	C64—C63	1.399 (3)
K1—O5	2.6121 (18)	C12—C13	1.387 (3)
K1—O3	2.6614 (16)	C12—H12	0.9500
$K1-O2^i$	2.6754 (17)	C44—C43	1.413 (3)
K1—O1W	2.7947 (19)	C44—C45	1.414 (3)
K1—H2W	3.07 (3)	C31—C32	1.388 (3)
K1—H3	2.96 (3)	C31—C36	1.398 (3)
O1W—H2W	0.84 (3)	C52—C53	1.387 (3)
O1W—H1W	0.81 (3)	С52—Н52	0.9500
O1—C3	1.331 (2)	C62—C63	1.378 (3)
O1—C2	1.458 (2)	С62—Н62	0.9500
O4—C6	1.325 (3)	C13—H13	0.9500
O4—C5	1.457 (2)	C26—C25	1.381 (3)
O8—C9	1.217 (2)	C26—H26	0.9500
O3—C24	1.353 (2)	C16—H16	0.9500
O3—H3	0.88 (3)	C55—C56	1.376 (3)
O7—C9	1.331 (2)	С55—Н55	0.9500
O7—C8	1.455 (2)	С56—Н56	0.9500
O2—C3	1.215 (2)	С63—Н63	0.9500
O6—C44	1.309 (2)	C25—H25	0.9500
O9—C64	1.352 (3)	С53—Н53	0.9500
О9—Н9	0.98 (4)	C65—C66	1.384 (3)
O5—C6	1.214 (3)	С65—Н65	0.9500
N2—N1	1.258 (2)	С66—Н66	0.9500
N2—C21	1.413 (2)	C2—C1	1.498 (3)
N6—N5	1.262 (2)	C2—H2A	0.9900
N6—C61	1.415 (3)	C2—H2B	0.9900
N1-C14	1.431 (2)	C32—C33	1.397 (3)
N5—C54	1.429 (3)	С32—Н32	0.9500
N4—N3	1.267 (7)	C43—C42	1.377 (3)
N4—C41	1.418 (6)	C43—H43	0.9500
N41—N31	1.25 (3)	C5—C4	1.501 (3)
N41—C41	1.61 (2)	С5—Н5А	0.9900
N3—C34	1.439 (5)	C5—H5B	0.9900
N31—C34	1.62 (2)	C36—C35	1.387 (3)
C11—C16	1.397 (3)	С36—Н36	0.9500
C11—C12	1.399 (3)	C45—C46	1.387 (3)
C11—C3	1.485 (3)	C45—H45	0.9500
C24—C25	1.394 (3)	C8—C7	1.503 (3)
C24—C23	1.404 (3)	C8—H8A	0.9900
C14—C13	1.393 (3)	C8—H8B	0.9900
C14—C15	1.395 (3)	C42—C41	1.380 (4)
C21—C26	1.397 (3)	C42—H42	0.9500
C21—C22	1.403 (3)	C41—C46	1.406 (4)
C51—C52	1.396 (3)	C46—H46	0.9500
C51—C56	1.400 (3)	C4—H4A	0.9800

C51—C9	1.480 (3)	C4—H4B	0.9800
C23—C22	1.382 (3)	C4—H4C	0.9800
С23—Н23	0.9500	C33—C34	1.398 (4)
C61—C66	1.395 (3)	С33—Н33	0.9500
C61—C62	1.398 (3)	C34—C35	1.374 (4)
C54—C53	1.391 (3)	C1—H1A	0.9800
C54—C55	1.400 (3)	C1—H1B	0.9800
C6-C31	1.490 (3)	C1—H1C	0.9800
С22—Н22	0.9500	C35—H35	0.9500
C15—C16	1 384 (3)	C7—H7A	0.9800
C15—H15	0.9500	C7—H7B	0.9800
C64 - C65	1 393 (3)	C7—H7C	0.9800
204-205	1.575 (5)	e/—m/e	0.9000
08—K1—05	172.84 (5)	C12—C13—H13	119.8
O8—K1—O3	83.98 (6)	C14—C13—H13	119.8
O5—K1—O3	88.89 (6)	C25—C26—C21	120.57 (19)
08—K1—O2 ⁱ	88.66 (6)	C25—C26—H26	119.7
$05-K1-02^{i}$	96.95 (6)	C21—C26—H26	119.7
$03-K1-02^{i}$	135.62 (5)	C_{15} C_{16} C_{11}	121.05 (18)
08 - K1 - 01W	95 07 (5)	C15—C16—H16	119.5
05-K1-01W	83 59 (6)	C_{11} $-C_{16}$ H_{16}	119.5
03-K1-01W	85.06.(6)	$C_{56} - C_{55} - C_{54}$	119.29 (19)
02^{i} K1 01W	139.27(5)	C56-C55-H55	120.4
$O_{2} = K_{1} = O_{1} W$	97.6 (6)	C54 C55 H55	120.4
05 K1 H2W	70.2 (6)	$C_{54} = C_{55} = 1155$	120.4
$O_2 = K_1 = H_2 W$	79.2 (0) 70.1 (6)	$C_{55} = C_{56} = U_{56}$	120.44 (18)
O_{2} K1 H2W	70.1(0)	С53—С50—Н50	119.8
02 - K1 - H2W	154.2 (6)	C31-C30-H36	119.8
OIW - KI - H2W	15.6 (6)	C62—C63—C64	119.94 (19)
08—K1—H3	85.2 (6)	С62—С63—Н63	120.0
05—K1—H3	87.7 (6)	С64—С63—Н63	120.0
03—K1—H3	17.0 (6)	C26—C25—C24	119.96 (18)
O2 ¹ —K1—H3	152.6 (6)	С26—С25—Н25	120.0
O1W—K1—H3	68.0 (6)	C24—C25—H25	120.0
H2W—K1—H3	53.2 (9)	C52—C53—C54	120.03 (18)
K1—O1W—H2W	101 (2)	С52—С53—Н53	120.0
K1—O1W—H1W	106 (2)	С54—С53—Н53	120.0
H2W—O1W—H1W	102 (3)	C66—C65—C64	119.56 (19)
C3—O1—C2	115.74 (15)	С66—С65—Н65	120.2
C6—O4—C5	116.11 (16)	С64—С65—Н65	120.2
C9—O8—K1	155.41 (14)	C65—C66—C61	120.30 (19)
C24—O3—K1	125.63 (12)	С65—С66—Н66	119.9
С24—О3—Н3	110 (2)	С61—С66—Н66	119.9
К1—О3—Н3	101 (2)	O1—C2—C1	108.01 (17)
С9—О7—С8	114.94 (16)	O1—C2—H2A	110.1
C3—O2—K1 ⁱ	148.90 (13)	C1—C2—H2A	110.1
С64—О9—Н9	108 (2)	O1—C2—H2B	110.1
C6—O5—K1	155.65 (16)	C1—C2—H2B	110.1
N1—N2—C21	115.52 (17)	H2A—C2—H2B	108.4

N5—N6—C61	114.10 (17)	C31—C32—C33	119.2 (2)
N2—N1—C14	112.48 (16)	С31—С32—Н32	120.4
N6—N5—C54	113.08 (16)	С33—С32—Н32	120.4
N3—N4—C41	115.1 (4)	C42—C43—C44	121.2 (2)
N31—N41—C41	92.4 (16)	C42—C43—H43	119.4
N4—N3—C34	110.7 (4)	C44—C43—H43	119.4
N41—N31—C34	96.0 (16)	O4—C5—C4	107.02 (18)
C16—C11—C12	119.33 (18)	O4—C5—H5A	110.3
C16—C11—C3	117.68 (17)	C4—C5—H5A	110.3
C12-C11-C3	122.99 (17)	04—C5—H5B	110.3
03-C24-C25	118 05 (18)	C4—C5—H5B	110.3
03-C24-C23	122.22 (18)	H5A—C5—H5B	108.6
C_{25} C_{24} C_{23}	119 73 (18)	$C_{35} - C_{36} - C_{31}$	120.4(2)
C_{13} C_{14} C_{15}	120 21 (18)	C35—C36—H36	119.8
C13 - C14 - N1	116 21 (17)	C31—C36—H36	119.8
C15 - C14 - N1	123 58 (17)	$C_{46} - C_{45} - C_{44}$	120.8(2)
$C_{26}^{}C_{21}^{}C_{22}^{}$	119 61 (18)	$C_{46} = C_{45} = H_{45}$	119.6
$C_{20} = C_{21} = C_{22}$	115.35 (17)	C44 - C45 - H45	119.6
$C_{20} = C_{21} = N_2$	125.04(17)	07 - C8 - C7	106.95 (19)
$C_{22} = C_{21} = C_{26}$	120.15(18)	07 - C8 - H8A	110.35 (17)
$C_{52} = C_{51} = C_{50}$	120.13(18) 122.44(18)	C7 - C8 - H8A	110.3
$C_{52} = C_{51} = C_{9}$	11740(18)	07 - C8 - H8B	110.3
$C_{22} = C_{23} = C_{24}$	120 33 (19)	C7-C8-H8B	110.3
$C_{22} = C_{23} = C_{24}$	110.8		108.6
$C_{22} = C_{23} = H_{23}$	119.8	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	100.0
$C_2 + C_2 - C_2 - C_2 - C_2$	117.0	$C_{43} = C_{42} = C_{41}$	120.0 (2)
02 - 03 - 01	123.13(18) 123.48(18)	$C_{43} = C_{42} = 1142$	119.7
02 - C3 - C11	123.40(10) 113.37(17)	C41 - C42 - H42	119.7 110.8(2)
$O^{\circ} = O^{\circ} = O^{\circ}$	113.37(17) 122.95(19)	C42 - C41 - C40	119.0(2)
08 - 09 - 07	122.83(18) 122.21(10)	C42 - C41 - N4	113.1(2) 127.1(2)
03 - 09 - 051	123.31(19) 112.94(17)	C40 - C41 - N41	127.1(2)
0/-09-031	113.64(17) 110.86(18)	C42 - C41 - N41	132.3(7)
C66 - C61 - C62	119.00 (10)	C45 = C41 = N41	$\frac{87.7}{0}$
C62 - C61 - N6	113.70(18) 124.26(18)	C45 = C40 = C41	119.9 (2)
C_{02} C_{01} C_{01} C_{02} C_{01} C_{02} C	124.30(18) 120.62(18)	$C_{43} - C_{40} - H_{40}$	120.1
$C_{55} = C_{54} = C_{55}$	120.02(18)	$C_{41} = C_{40} = H_{40}$	120.1
C55 - C54 - N5	113./3(1/) 122.65(19)	C_{5} C_{4} H_{4} H_{4}	109.5
$C_{33} = C_{34} = N_{3}$	123.03(18) 122.40(10)	$C_3 - C_4 - \Pi_4 D$	109.5
05 - 06 - 04	123.49 (19)	H4A - C4 - H4B	109.5
03 - 00 - 031	123.3(2)	C_{3} C_{4} $H_{4}C_{4}$	109.5
04-00-031	113.17 (18)	H4A—C4—H4C	109.5
$C_{23} = C_{22} = C_{21}$	119.78 (18)	H4B - C4 - H4C	109.5
C23—C22—H22	120.1	$C_{34} = C_{33} = C_{32}$	120.1 (2)
$C_{21} - C_{22} - H_{22}$	120.1	C32 C32 H33	120.0
C10-C15-C14	119.22 (18)	C32—C33—H33	120.0
C10-C15-H15	120.4	$C_{33} - C_{34} - C_{33}$	120.5 (2)
C14—C15—H15	120.4	$C_{33} - C_{34} - N_{3}$	113.8 (2)
09-C64-C65	117.89 (19)	C33—C34—N3	125.7 (2)
U9—C64—C63	121.79 (19)	C35—C34—N31	150.8 (6)

C65—C64—C63	120.31 (19)	C33—C34—N31	87.1 (6)
C13—C12—C11	119.78 (18)	C2—C1—H1A	109.5
C13—C12—H12	120.1	C2—C1—H1B	109.5
C11—C12—H12	120.1	H1A—C1—H1B	109.5
O6—C44—C43	121.2 (2)	C2—C1—H1C	109.5
O6—C44—C45	121.1 (2)	H1A—C1—H1C	109.5
C43—C44—C45	117.7 (2)	H1B—C1—H1C	109.5
C32—C31—C36	120.0 (2)	C34—C35—C36	119.7 (2)
C32—C31—C6	121.8 (2)	С34—С35—Н35	120.2
C36—C31—C6	118.19 (19)	С36—С35—Н35	120.2
C53—C52—C51	119.45 (19)	С8—С7—Н7А	109.5
С53—С52—Н52	120.3	С8—С7—Н7В	109.5
С51—С52—Н52	120.3	H7A—C7—H7B	109.5
C63—C62—C61	120.00 (19)	С8—С7—Н7С	109.5
С63—С62—Н62	120.0	H7A—C7—H7C	109.5
С61—С62—Н62	120.0	Н7В—С7—Н7С	109.5
C12-C13-C14	120.35 (18)		

Symmetry code: (i) -x+2, -y+1, -z+1.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	Н…А	$D \cdots A$	D—H···A
С63—Н63…Об ^{іі}	0.95	2.49	3.427 (3)	169
C8—H8 <i>B</i> ···O9 ⁱⁱⁱ	0.99	2.64	3.476 (3)	142
C4—H4 <i>C</i> ···O9 ⁱ	0.98	2.57	3.301 (3)	131
$O1W$ — $H1W$ ···· $N4^{iv}$	0.81 (3)	2.15 (3)	2.895 (3)	153 (3)
$O1W$ — $H1W$ ···· $N31^{iv}$	0.81 (3)	2.11 (4)	2.898 (13)	166 (3)
O9—H9…O1 <i>W</i> ⁱⁱⁱ	0.98 (4)	1.74 (4)	2.709 (3)	171 (3)
O1 <i>W</i> —H2 <i>W</i> ···O6 ^v	0.84 (3)	1.84 (3)	2.635 (2)	156 (3)
O3—H3…O6 ^v	0.88 (3)	1.63 (3)	2.490 (2)	163 (3)

Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) x+1, -y+1/2, z+1/2; (iii) -x+2, -y, -z+1; (iv) -x+2, y-1/2, -z+1/2; (v) -x+1, y-1/2, -z+1/2.