

ISSN 2414-3146

Received 10 August 2017 Accepted 4 December 2017

Edited by K. Fejfarova, Institute of Biotechnology CAS, Czech Republic

Keywords: crystal structure; layered structure; C— $H \cdots O$ interactions.

CCDC reference: 1535126

Structural data: full structural data are available from iucrdata.iucr.org

1,4-Bis(4-methyl-2-nitrophenoxy)butane

Huihui Zhang,^{a,b} Haiyan Wang^{a,b} and Jianhua Yu^{a,b*}

^aDepartment of Chemistry, Anhui University, Hefei 230601, People's Republic of China, and ^bKey Laboratory of Functional Inorganic Materials Chemistry, Hefei 230601, People's Republic of China. *Correspondence e-mail: iu_jh@163.com

The asymmetric unit of the title compound, $C_{18}H_{20}N_2O_6$, contains one-half molecule, the mid-point of the central C–C bond being located on a crystallographic inversion centre. In the crystal, weak C–H···O interactions generate a layered structure. The O atoms of the nitro group are disordered over two sets of sites with a refined occupancy ratio of 0.700 (8):0.300 (8).

Structure description

The title compound (Fig. 1) crystallizes with the molecule being situated on a crystallographic inversion centre located at the midpoint of the C7-C7A bond. The two parallel phenyl rings are linked by an ethereal chain, forming a non-coplanar structure similar to that described by Elizondo *et al.* (2009).

In the crystal, the molecules are linked into chains by the C7-H7A···O3 interactions (Table 1, Fig. 2). The chains are connected into layers by C9-H9A···O2 interactions (Table 1, Fig. 3).

Synthesis and crystallization

To a solution of 4-methyl-2-nitrophenol (5.00 g, 32.7 mmol) in acetonitrile (100 ml) were added potassium carbonate (6.78 g, 50.0 mmol) and 1,4-dibromobutane (3.30 g, 15.3 mmol). After the reaction mixture had been refluxed for 6 h, all the volatile components were evaporated and the residue was partitioned between dichloromethane and water. The organic phase was washed with water, then dried in calcium chloride, and concentrated *in vacuo* to give an off-white solid. White single crystals were obtained in a yield of 62% using acetonitrile crude extraction.

Figure 1

The molecular structure of the title molecule, with displacement ellipsoids drawn at the 50% probability level.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. The O atoms of the nitro group are disordered over two sets of sites (O2/O2' and O3/O3') with a refined occupancy ratio of 0.700 (8):0.300 (8).

Funding information

This work was supported by the Graduate Students Innovative Program of Anhui University (J18515024, J18515019, 201310357155).

Figure 2

The chains generated by $C7-H7A\cdots O3$ interactions (green dashed lines). H atoms not involved in these interactions have been omitted.

Figure 3

A view along the *c* axis of the crystal packing of the title compound. The $C9-H9A\cdots O$ interactions are represented by purple dashed lines.

Table 1	
Hydrogen-bond geometry (Å, °).	

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
	0.07	2 (0	2 (27 (2)	177
$C/-H/A\cdots O3^{n}$	0.97	2.69	3.637 (3)	166
$C9-H9A\cdots O2^{ii}$	0.96	2.71	3.516 (4)	143

Symmetry codes: (i) -x + 2, -y + 1, -z + 1; (ii) x - 1, y, z.

Table 2Experimental details.

Crystal data	
Chemical formula	$C_{18}H_{20}N_2O_6$
M _r	360.36
Crystal system, space group	Monoclinic, $P2_1/n$
Temperature (K)	296
a, b, c (Å)	4.7936 (7), 12.9828 (19), 14.632 (2)
β (°)	92.986 (2)
$V(Å^3)$	909.4 (2)
Z	2
Radiation type	Μο Κα
$\mu (\mathrm{mm}^{-1})$	0.10
Crystal size (mm)	$0.2 \times 0.2 \times 0.2$
Data collection	
Diffractometer	Bruker SMART CCD area
	detector
Absorption correction	Multi-scan (SADABS; Bruker,
	2004)
T_{\min}, T_{\max}	0.950, 0.966
No. of measured, independent and	6305, 1603, 1348
observed $[I > 2\sigma(I)]$ reflections	
R _{int}	0.022
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.594
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.043, 0.124, 1.08
No. of reflections	1603
No. of parameters	137
No. of restraints	16
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({\rm e} {\rm \AA}^{-3})$	0.21, -0.18

Computer programs: *SMART* and *SAINT* (Bruker, 2004), *SHELXS97* and *SHELXTL* (Sheldrick, 2008), *SHELXL2014* (Sheldrick, 2015) and *DIAMOND* (Brandenburg, 2007).

References

- Brandenburg, K. (2007). *DIAMOND*. Crystal Impact GbR, Bonn, Germany.
- Bruker (2004). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Elizondo, P., Rodríguez de Barbarín, C., Nájera, B. & Pérez, N. (2009). Acta Cryst. E65, o3217.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.

full crystallographic data

IUCrData (2017). 2, x171734 [https://doi.org/10.1107/S2414314617017345]

1,4-Bis(4-methyl-2-nitrophenoxy)butane

Huihui Zhang, Haiyan Wang and Jianhua Yu

1,4-Bis(4-methyl-2-nitrophenoxy)butane

Crystal data C18H20N2O6 F(000) = 380 $M_r = 360.36$ $D_{\rm x} = 1.316 {\rm Mg} {\rm m}^{-3}$ Monoclinic, $P2_1/n$ Mo *K* α radiation, $\lambda = 0.71073$ Å Cell parameters from 3390 reflections a = 4.7936(7) Å b = 12.9828 (19) Å $\theta = 2.9 - 25.0^{\circ}$ $\mu = 0.10 \text{ mm}^{-1}$ c = 14.632 (2) Å $\beta = 92.986 \ (2)^{\circ}$ T = 296 KV = 909.4 (2) Å³ Block, white Z = 2 $0.2 \times 0.2 \times 0.2$ mm Data collection Bruker SMART CCD area detector 1603 independent reflections diffractometer 1348 reflections with $I > 2\sigma(I)$ none scans $R_{\rm int} = 0.022$ $\theta_{\text{max}} = 25.0^{\circ}, \ \theta_{\text{min}} = 2.1^{\circ}$ Absorption correction: multi-scan (SADABS; Bruker, 2004) $h = -5 \rightarrow 5$

Refinement

 $T_{\rm min} = 0.950, \ T_{\rm max} = 0.966$

6305 measured reflections

Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.043$	H-atom parameters constrained
$wR(F^2) = 0.124$	$w = 1/[\sigma^2(F_o^2) + (0.0608P)^2 + 0.1678P]$
S = 1.08	where $P = (F_o^2 + 2F_c^2)/3$
1603 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
137 parameters	$\Delta \rho_{\rm max} = 0.21$ e Å ⁻³
16 restraints	$\Delta ho_{\min} = -0.18 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

 $k = -14 \rightarrow 15$ $l = -17 \rightarrow 17$

Refinement. All hydrogen atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.93 Å and $U_{ISO}(H) = 1.2 U_{eq}$.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
C1	0.5424 (3)	0.69514 (12)	0.46590 (10)	0.0557 (4)	
C2	0.7120 (4)	0.62215 (12)	0.42827 (11)	0.0625 (4)	
H2	0.8114	0.5764	0.4665	0.075*	
C3	0.7361 (3)	0.61619 (12)	0.33476 (11)	0.0597 (4)	
C4	0.5797 (4)	0.68498 (13)	0.28134 (11)	0.0619 (4)	
H4	0.5918	0.6826	0.2181	0.074*	
C5	0.4057 (3)	0.75731 (12)	0.31813 (11)	0.0579 (4)	
Н5	0.3029	0.8018	0.2796	0.069*	
C6	0.3835 (3)	0.76397 (11)	0.41205 (10)	0.0506 (4)	
C7	-0.0937 (3)	0.97110 (12)	0.46540 (12)	0.0615 (4)	
H7A	-0.2184	0.9270	0.4978	0.074*	
H7B	-0.2074	1.0203	0.4303	0.074*	
C9	0.9223 (4)	0.53703 (15)	0.29328 (15)	0.0833 (6)	
H9A	1.0814	0.5243	0.3343	0.125*	
H9B	0.9840	0.5623	0.2361	0.125*	
H9C	0.8200	0.4742	0.2831	0.125*	
C10	0.0657 (3)	0.90647 (13)	0.40078 (11)	0.0609 (4)	
H10A	-0.0619	0.8727	0.3567	0.073*	
H10B	0.1926	0.9491	0.3678	0.073*	
01	0.2189 (2)	0.83138 (8)	0.45505 (7)	0.0604 (3)	
N1	0.5373 (4)	0.69963 (13)	0.56589 (11)	0.0819 (5)	
O2	0.5488 (9)	0.6235 (2)	0.6110 (2)	0.1177 (11)	0.7
O3	0.5494 (5)	0.78584 (16)	0.60470 (12)	0.0886 (6)	0.7
O2′	0.739 (2)	0.6707 (9)	0.6058 (5)	0.177 (4)	0.3
O3′	0.2837 (15)	0.6876 (6)	0.5918 (4)	0.141 (3)	0.3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0667 (9)	0.0528 (8)	0.0476 (8)	0.0036 (7)	0.0022 (7)	0.0013 (6)
C2	0.0664 (10)	0.0537 (9)	0.0664 (10)	0.0092 (7)	-0.0050 (8)	0.0002 (7)
C3	0.0558 (9)	0.0574 (9)	0.0663 (10)	-0.0025 (7)	0.0067 (7)	-0.0111 (7)
C4	0.0663 (10)	0.0688 (10)	0.0511 (8)	-0.0019 (8)	0.0071 (7)	-0.0071 (7)
C5	0.0615 (9)	0.0610 (9)	0.0508 (8)	0.0028 (7)	-0.0002 (7)	0.0034 (7)
C6	0.0515 (8)	0.0478 (8)	0.0526 (8)	0.0000 (6)	0.0044 (6)	-0.0007 (6)
C7	0.0490 (8)	0.0572 (9)	0.0777 (11)	0.0043 (7)	-0.0025 (7)	-0.0042 (8)
C9	0.0799 (12)	0.0762 (12)	0.0949 (14)	0.0115 (10)	0.0164 (10)	-0.0192 (11)
C10	0.0570 (9)	0.0601 (9)	0.0646 (9)	0.0081 (7)	-0.0067 (7)	0.0000 (7)
01	0.0699 (7)	0.0556 (6)	0.0562 (6)	0.0144 (5)	0.0083 (5)	0.0020 (5)
N1	0.1193 (14)	0.0729 (8)	0.0541 (9)	0.0261 (9)	0.0099 (9)	0.0099 (6)
O2	0.194 (3)	0.0827 (15)	0.0775 (16)	0.0153 (18)	0.0220 (19)	0.0265 (12)
O3	0.1283 (17)	0.0881 (11)	0.0489 (10)	0.0176 (12)	-0.0013 (10)	-0.0082(8)
O2′	0.244 (10)	0.218 (10)	0.062 (4)	0.064 (8)	-0.063 (6)	0.014 (5)
O3′	0.176 (6)	0.186 (7)	0.064 (3)	0.028 (6)	0.041 (4)	0.030 (4)

Geometric parameters (Å, °)

C1—C2	1.382 (2)	C7—C7 ⁱ	1.516 (3)
C1—C6	1.392 (2)	C7—H7A	0.9700
C1—N1	1.466 (2)	C7—H7B	0.9700
C2—C3	1.381 (2)	С9—Н9А	0.9600
C2—H2	0.9300	С9—Н9В	0.9600
C3—C4	1.382 (2)	С9—Н9С	0.9600
С3—С9	1.509 (2)	C10—O1	1.4353 (18)
C4—C5	1.383 (2)	C10—H10A	0.9700
C4—H4	0.9300	C10—H10B	0.9700
С5—С6	1.387 (2)	N1—O2′	1.164 (7)
С5—Н5	0.9300	N1—O2	1.188 (3)
C6—O1	1.3550 (18)	N1—O3	1.255 (2)
C7—C10	1.502 (2)	N1—O3′	1.301 (6)
C2—C1—C6	122.06 (14)	C7 ⁱ —C7—H7B	108.9
C2	117.77 (14)	H7A—C7—H7B	107.8
C6-C1-N1	120.16 (14)	C3—C9—H9A	109.5
C3—C2—C1	120.97 (15)	С3—С9—Н9В	109.5
С3—С2—Н2	119.5	Н9А—С9—Н9В	109.5
C1—C2—H2	119.5	С3—С9—Н9С	109.5
C2—C3—C4	116.94 (14)	Н9А—С9—Н9С	109.5
C2-C3-C9	121.21 (17)	H9B—C9—H9C	109.5
C4—C3—C9	121.84 (16)	O1—C10—C7	107.07 (13)
C3—C4—C5	122.61 (15)	O1—C10—H10A	110.3
С3—С4—Н4	118.7	C7-C10-H10A	110.3
C5—C4—H4	118.7	O1-C10-H10B	110.3
C4—C5—C6	120.46 (15)	C7-C10-H10B	110.3
C4—C5—H5	119.8	H10A—C10—H10B	108.6
С6—С5—Н5	119.8	C6—O1—C10	118.39 (12)
O1—C6—C5	125.24 (14)	O2—N1—O3	119.4 (2)
O1—C6—C1	117.81 (13)	O2'—N1—O3'	125.3 (6)
C5—C6—C1	116.94 (14)	O2′—N1—C1	115.6 (5)
C10—C7—C7 ⁱ	113.19 (16)	O2—N1—C1	121.2 (2)
С10—С7—Н7А	108.9	O3—N1—C1	118.97 (16)
C7 ⁱ —C7—H7A	108.9	03' - N1 - C1	110.5 (3)
C10—C7—H7B	108.9		110.0 (5)
	1000		
C6-C1-C2-C3	1.6 (3)	C7 ⁱ —C7—C10—O1	61.7 (2)
N1-C1-C2-C3	-177.34(16)	C5-C6-O1-C10	-3.8(2)
C1 - C2 - C3 - C4	-1.1(2)	C1 - C6 - O1 - C10	176.66 (13)
C1C2C3C9	179.65 (16)	C7—C10—O1—C6	-179.22 (12)
C2-C3-C4-C5	0.1 (2)	C2-C1-N1-O2'	26.8 (7)
C9-C3-C4-C5	179.30 (16)	C6-C1-N1-O2'	-152.2(7)
C3-C4-C5-C6	0.5 (3)	C2-C1-N1-O2	-37.3(4)
C4-C5-C6-01	-179.66(14)	C6-C1-N1-O2	143.8 (3)
C4-C5-C6-C1	-0.1 (2)	C2-C1-N1-O3	135.5 (2)
· · · · · · · · · · · · · · · · · · ·	··· (=)		

C2-C1-C6-01	178.64 (14)	C6-C1-N1-O3	-43.5 (3)
N1—C1—C6—O1	-2.4 (2)	C2—C1—N1—O3'	-122.8 (4)
C2—C1—C6—C5	-0.9 (2)	C6—C1—N1—O3'	58.2 (4)
N1—C1—C6—C5	177.98 (16)		

Symmetry code: (i) -x, -y+2, -z+1.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	D—H··· A	
С7—Н7А…ОЗ ^{іі}	0.97	2.69	3.637 (3)	166	
С9—Н9А…О2 ^{ііі}	0.96	2.71	3.516 (4)	143	

Symmetry codes: (ii) –*x*+2, –*y*+1, –*z*+1; (iii) *x*–1, *y*, *z*.