

 ISSN 2414-3146Received 1 December 2017
Accepted 12 December 2017

Edited by H. Ishida, Okayama University, Japan

Keywords: crystal structure; coordination polymer; pyrite net; $\mathrm{Cu}^{\prime} ; \mathrm{Cd}^{\prime \prime}$; cyanido complex; luminescence.

CCDC reference: 1810643
Structural data: full structural data are available from iucrdata.iucr.org

OPEN ∂ ACCESS

Poly[bis(trimethylammonium) [hexa- μ-cyanidocadmium(II)dicopper(I)]]

Shin-ichi Nishikiori, ${ }^{\text {a* }}$ Jun Yoshida ${ }^{\text {b }}$ and Hidetaka Yuge ${ }^{\text {b }}$

${ }^{\text {a }}$ Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan, and ${ }^{\mathbf{b}}$ Department of Chemistry, School of Science, Kitasato University, Kitasato 1-15-1, Sagamihara, Kanagawa 252-0373, Japan. ${ }^{*}$ Correspondence e-mail: cnskor@mail.ecc.u-tokyo.ac.jp

The title compound, $\left\{\left(\mathrm{C}_{3} \mathrm{H}_{10} \mathrm{~N}\right)_{2}\left[\mathrm{CdCu}_{2}(\mathrm{CN})_{6}\right]\right\}_{n}$, has been synthesized as an alternative to the high-emitting complexes containing more expensive metals. The CN^{-}ligands make linkages between the Cu^{I} and $\mathrm{Cd}^{\mathrm{II}}$ ions to form the coordination polymer, $\left[\mathrm{CdCu}_{2}(\mathrm{CN})_{6}\right]_{n}^{2-}$, which is a three-dimensional framework classified as pyrite net (pyr). The net has a void space for accommodating a trimethylammonium ion located on a threefold rotation axis. The $\mathrm{Cd}^{\mathrm{II}}$ ion lies on a special position with site symmetry $\overline{3}$ and is octahedrally coordinated by six N atoms. The Cu^{1} ion is located on a threefold rotation axis and has a trigonalplanar coordination geometry formed by three C atoms. In the threedimensional net, two Cu^{1} ions are arranged closely $[\mathrm{Cu} \cdots \mathrm{Cu}=3.9095$ (5) $\AA]$, but the distance is not short enough to suggest a $\mathrm{Cu}^{\mathrm{I}}-\mathrm{Cu}^{\mathrm{I}}$ interaction. The crystal studied was a merohedral twin (twin operation $2_{[101]}$), the refined component ratio being 0.9202 (7):0.0798 (7). A powder of the title compound shows strong luminescence with an emission maximum at 509 nm and a quantum yield of 98% at room temperature.

Chemical scheme

Structure description

The title compound, a coordination polymer formed by Cu^{I} and $\mathrm{Cd}^{\mathrm{II}}$ ions and bridging CN^{-}ligands, has been synthesized as an alternative to the high-emitting complexes containing more expensive metals. Combinations of $\mathrm{Cu}^{\mathrm{I}}, \mathrm{CN}^{-}$and other building ligands have previously been used for such purposes (Lim et al., 2008; Dembo et al., 2010). The objective of the present work was to build a more robust and lower energy loss coordination polymer by adding $\mathrm{Cd}^{\mathrm{II}}$ ions. These ions are well known as excellent building blocks for three-dimensional net structures (Iwamoto, 1996), and exhibit no emissive $d-d$ metal-centred levels (Barbieri et al., 2008). A powder of the title compound showed

Figure 1
The coordination forms of the $\mathrm{Cd}^{\mathrm{II}}$ and Cu^{I} ions and the structure of the trimethylammonium ion in the title compound. All displacement ellipsoids are drawn at the 50% probability level. H atoms have been omitted for clarity. [Symmetry codes: (i) $-z+\frac{1}{2},-x+1, y-\frac{1}{2}$; (ii) $-y+1$, $z+\frac{1}{2},-x+\frac{1}{2}$; (iii) $-x+1,-y+1,-z$; (iv) $z+\frac{1}{2}, x,-y+\frac{1}{2}$; (v) $y,-z+\frac{1}{2}, x-\frac{1}{2}$; (vi) z, x, y; (vii) y, z, x.]
luminescence with an emission maximum at 509 nm and a quantum yield of 98% at room temperature.

The Cu^{I} ion resides on a threefold rotation axis and has a trigonal-planar coordination geometry by the C atoms of three CN^{-}ligands. The N -terminals of the CN^{-}ligands are linked to the $\mathrm{Cd}^{\mathrm{II}}$ ions, which are located on special positions with $\overline{3}$ site symmetry (Fig. 1). The orientation of the bridging CN^{-}ions

Figure 2
Pyrite net (pyr) of the coordination polymer $\left[\mathrm{CdCu}_{2}(\mathrm{CN})_{6}\right]_{n}{ }^{2-}$. The CN^{-} ligands linking the $\mathrm{Cd}^{\mathrm{II}}$ (octahedral coordination sphere) and the Cu^{I} (trigonal-planar coordination sphere) ions are represented as solid lines.

Figure 3
An arrangement of the $\mathrm{Cd}^{\mathrm{II}}$ (octahedral coordination sphere), Cu^{I} (trigonal-planar coordination sphere) and $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{NH}^{+}$ions on the threefold rotation axis running along the diagonal line of the unit cell. The distance between Cu 1 and $\mathrm{Cu} 1^{\mathrm{ix}}$ is 3.9095 (5) \AA. [Symmetry codes: (viii) $x+\frac{1}{2},-y+\frac{3}{2}, 1-z$; (ix) $1-x, 1-y, 1-z ;(x) x-\frac{1}{2},-y+\frac{1}{2},-z$; (xi) $x-\frac{1}{2},-y+\frac{1}{2},-z$.]
was confirmed by ${ }^{113} \mathrm{Cd} \mathrm{CP} / \mathrm{MAS}$ NMR spectra, which showed a single peak at a chemical shift of 191 p.p.m. [referenced to an external $\mathrm{Cd}\left(\mathrm{NO}_{3}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ standard]. This chemical shift indicates that each $\mathrm{Cd}^{\mathrm{II}}$ ion is octahedrally coordinated by $\operatorname{six} \mathrm{N}$ atoms (Nishikiori et al., 1990). The $\mathrm{Cu}^{\mathrm{I}}-\mathrm{CN}-\mathrm{Cd}^{\mathrm{II}}$ linkages form an infinite $\left[\mathrm{CdCu}_{2}(\mathrm{CN})_{6}\right]_{n}{ }^{2-}$ three-dimensional net. The topology of this net is characterized as pyr (pyrite net; Fig. 2),

Table 1
Experimental details.

Crystal data	
Chemical formula	$\left(\mathrm{C}_{3} \mathrm{H}_{10} \mathrm{~N}\right)_{2}\left[\mathrm{CdCu}_{2}(\mathrm{CN})_{6}\right]$
$M_{\text {r }}$	515.87
Crystal system, space group	Cubic, Pa $\overline{3}$
Temperature (K)	296
$a(\AA)$	12.3775 (9)
$V\left(\AA^{3}\right)$	1896.3 (4)
Z	4
Radiation type	Mo $K \alpha$
$\mu\left(\mathrm{mm}^{-1}\right)$	3.34
Crystal size (mm)	$0.32 \times 0.29 \times 0.22$
Data collection	
Diffractometer	Bruker APEXII
Absorption correction	Multi-scan (SADABS; Bruker, 2012)
$T_{\text {min }}, T_{\text {max }}$	0.627, 0.746
No. of measured, independent and observed $[I>2 \sigma(I)]$ reflections	11150, 861, 772
$R_{\text {int }}$	0.025
$(\sin \theta / \lambda)_{\text {max }}\left(\AA^{-1}\right)$	0.677
Refinement	
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$	0.017, 0.044, 1.11
No. of reflections	861
No. of parameters	38
H -atom treatment	H -atom parameters constrained
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \mathrm{A}^{-3}\right)$	0.28, -0.28

[^0]the same as that of MOF-150 (Chae et al., 2003). The two closest $\mathrm{Cu}(\mathrm{CN})_{3}$ units, which reside on the same threefold rotation axis, are stacked in a staggered conformation with an inversion centre at their mid point (Fig. 3). The distance between the two Cu^{I} ions $[3.9095(5) \AA]$ precludes a $\mathrm{Cu}^{\mathrm{I}}-\mathrm{Cu}^{\mathrm{I}}$ interaction, the contribution of which to luminescence behaviour has previously been discussed (Nishikawa et al., 2016). The $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{NH}^{+}$ions that balance the negative charges of the three-dimensional polymer are trapped in the voids of the pyrite net. The principal axis of the $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{NH}^{+}$ion coincides with the threefold rotation axis on which the Cu^{I} and $\mathrm{Cd}^{\mathrm{II}}$ ions reside. The lone H atom of the $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{NH}^{+}$ion is oriented towards the $\mathrm{Cd}^{\mathrm{II}}$ ion (Fig. 3).

Synthesis and crystallization

The title compound was prepared from an aqueous solution containing $\mathrm{Cd}(\mathrm{CN})_{2}, \mathrm{CuCN}, \mathrm{NaCN}$ and $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{NHCl}$. Into 20 ml of water $\mathrm{Cd}(\mathrm{CN})_{2}(0.33 \mathrm{~g}, 2 \mathrm{mmol}), \mathrm{CuCN}(0.18 \mathrm{~g}$, 2 mmol) and $\mathrm{NaCN}(0.40 \mathrm{~g}, 8.2 \mathrm{mmol})$ were added. The mixture was warmed with stirring until it turned to a clear solution. Then, $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{NHCl}(0.19 \mathrm{~g}, 2 \mathrm{mmol})$ was dissolved into the solution. After keeping the solution at 278 K for a week, colourless crystals of the title compound were obtained. Analysis calculated for $\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{CdCu}_{2} \mathrm{~N}_{8}$: C 27.94, H 3.91, N 21.72\%; found: C 27.85, H 3.98, N 21.87%.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1. In the final stage, the refinement was carried out assuming merohedral twinning, as suggested by the PLATON program (Spek, 2015), with the twin operation $2_{[101]}$, and the final BASF parameter was 0.0798 (7).

References

Barbieri, A., Accorsi, G. \& Armaroli, N. (2008). Chem. Commun. pp. 2185-2193.
Bruker (2012). APEX2, SAINT and $S A D A B S$. Bruker AXS Inc., Madison, Wisconsin, USA.
Chae, H. K., Kim, J., Friedrichs, O. D., O'Keeffe, M. \& Yaghi, O. M. (2003). Angew. Chem. Int. Ed. 42, 3907-3909.

Dembo, M. D., Dunaway, L. E., Jones, J. S., Lepekhina, E. A., McCullough, S. M., Ming, J. L., Li, X., Baril-Robert, F., Patterson, H. H., Bayse, C. A. \& Pike, R. D. (2010). Inorg. Chim. Acta, 364, 102-114.
Iwamoto, T. (1996). J. Incl Phenom. Macrocycl Chem. 24, 61-132.
Lim, M. J., Murray, C. A., Tronic, T. A., deKrafft, K. E., Ley, A. N., deButts, J. C., Pike, R. D., Lu, H. \& Patterson, H. H. (2008). Inorg. Chem. 47, 6931-6947.
Momma, K. \& Izumi, F. (2011). J. Appl. Cryst. 44, 1272-1276.
Nishikawa, M., Sano, T., Washimi, M., Takao, K. \& Tsubomura, T. (2016). Dalton Trans. 45, 12127-12136.

Nishikiori, S., Ratcliffe, C. I. \& Ripmeester, J. A. (1990). Can. J. Chem. 68, 2270-2273.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
Spek, A. L. (2015). Acta Cryst. C71, 9-18.
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

full crystallographic data

IUCrData (2017). 2, x171771 [https://doi.org/10.1107/S2414314617017710]
Poly[bis(trimethylammonium) [hexa- μ-cyanido-cadmium(II)dicopper(I)]]

Shin-ichi Nishikiori, Jun Yoshida and Hidetaka Yuge

Poly[bis[(trimethylammonium) [hexa- μ-cyanido-cadmium(II)dicopper(I)]

Crystal data

$\left(\mathrm{C}_{3} \mathrm{H}_{10} \mathrm{~N}\right)_{2}\left[\mathrm{CdCu}_{2}(\mathrm{CN})_{6}\right] \quad$ Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
$M_{r}=515.87$
Cubic, $P a \overline{3}$
$a=12.3775$ (9) \AA
$V=1896.3$ (4) \AA^{3}
$Z=4$
$F(000)=1016$
$D_{\mathrm{x}}=1.807 \mathrm{Mg} \mathrm{m}^{-3}$
Data collection
Bruker APEXII
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
Detector resolution: 8.3333 pixels mm^{-1}
phi and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
$T_{\text {min }}=0.627, T_{\text {max }}=0.746$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.017$
$w R\left(F^{2}\right)=0.044$
$S=1.11$
861 reflections
38 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

Cell parameters from 5459 reflections
$\theta=2.9-28.5^{\circ}$
$\mu=3.34 \mathrm{~mm}^{-1}$
$T=296 \mathrm{~K}$
Block, colourless
$0.32 \times 0.29 \times 0.22 \mathrm{~mm}$

11150 measured reflections
861 independent reflections
772 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.025$
$\theta_{\text {max }}=28.8^{\circ}, \theta_{\text {min }}=1.7^{\circ}$
$h=-16 \rightarrow 11$
$k=-14 \rightarrow 16$
$l=-15 \rightarrow 16$

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0208 P)^{2}+0.6318 P\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=0.28$ e \AA^{-3}
$\Delta \rho_{\min }=-0.28$ e \AA^{-3}

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refined as a 2-component twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\mathrm{iso}} * / U_{\mathrm{eq}}$
Cd1	0.500000	0.500000	0.000000	$0.02365(9)$
Cu1	$0.40882(2)$	$0.40882(2)$	$0.40882(2)$	$0.03148(11)$
N 1	$0.48328(15)$	$0.49244(15)$	$0.18799(14)$	$0.0413(4)$
C 1	$0.46209(16)$	$0.46692(16)$	$0.27362(15)$	$0.0335(4)$
N 2	$0.29859(12)$	$0.70141(12)$	$0.20141(12)$	$0.0338(6)$
H2	0.344303	0.655696	0.155697	0.041^{*}
C2	$0.20128(19)$	$0.6377(2)$	$0.23072(19)$	$0.0521(6)$
H2A	0.222902	0.572912	0.267472	0.078^{*}
H2B	0.162203	0.619101	0.166360	0.078^{*}
H2C	0.155818	0.679893	0.277288	0.078^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cd1	$0.02365(9)$	$0.02365(9)$	$0.02365(9)$	$0.00096(6)$	$0.00096(6)$	$-0.00096(6)$
Cu1	$0.03148(11)$	$0.03148(11)$	$0.03148(11)$	$0.00670(10)$	$0.00670(10)$	$0.00670(10)$
N1	$0.0470(10)$	$0.0483(11)$	$0.0286(8)$	$-0.0062(8)$	$0.0020(7)$	$0.0031(7)$
C1	$0.0340(9)$	$0.0340(9)$	$0.0324(9)$	$0.0042(8)$	$0.0033(8)$	$0.0028(7)$
N2	$0.0338(6)$	$0.0338(6)$	$0.0338(6)$	$0.0038(6)$	$0.0038(6)$	$-0.0038(6)$
C2	$0.0514(13)$	$0.0599(14)$	$0.0450(12)$	$-0.0161(11)$	$0.0071(10)$	$-0.0003(11)$

Geometric parameters ($\AA,{ }^{\circ}$)

Cd1-N1	2.3379 (17)	N1-C1	1.137 (3)
$\mathrm{Cd} 1-\mathrm{N} 1^{\text {i }}$	2.3379 (17)	N2-C2	1.485 (3)
Cd1-N1 ${ }^{\text {ii }}$	2.3379 (17)	$\mathrm{N} 2-\mathrm{C} 2{ }^{\text {i }}$	1.485 (3)
$\mathrm{Cd} 1-\mathrm{N} 1^{\text {iii }}$	2.3379 (17)	$\mathrm{N} 2-\mathrm{C} 2{ }^{\text {ii }}$	1.485 (3)
$\mathrm{Cd} 1-\mathrm{N} 1^{\text {iv }}$	2.3379 (17)	N2-H2	0.9800
Cd1-N1 ${ }^{\text {v }}$	2.3379 (17)	$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	0.9600
$\mathrm{Cu} 1-\mathrm{C} 1$	1.9371 (19)	$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	0.9600
$\mathrm{Cu}-\mathrm{Cl}^{\text {vi }}$	1.9371 (19)	$\mathrm{C} 2-\mathrm{H} 2 \mathrm{C}$	0.9600
$\mathrm{Cu} 1-\mathrm{Cl}^{\text {vii }}$	1.9371 (19)		
$\mathrm{N} 1-\mathrm{Cd} 1-\mathrm{N} 1^{\text {i }}$	87.44 (6)	$\mathrm{C} 1-\mathrm{Cu} 1-\mathrm{C} 1^{\text {vii }}$	119.24 (8)
$\mathrm{N} 1-\mathrm{Cd} 1-\mathrm{N} 1^{\text {ii }}$	87.44 (6)	C1 ${ }^{\text {vi }}-\mathrm{Cu} 1-\mathrm{C} 1^{\text {vii }}$	119.24 (8)
$\mathrm{N} 1-\mathrm{Cd} 1-\mathrm{N} 1{ }^{\text {iii }}$	180.00	Cd1-N1-C1	163.66 (17)
$\mathrm{N} 1-\mathrm{Cd} 1-\mathrm{N} 1^{\text {iv }}$	92.56 (6)	$\mathrm{Cu} 1-\mathrm{C} 1-\mathrm{N} 1$	170.85 (18)
$\mathrm{N} 1-\mathrm{Cd} 1-\mathrm{N} 1^{\text {v }}$	92.56 (6)	$\mathrm{C} 2-\mathrm{N} 2-\mathrm{C} 2{ }^{\text {i }}$	111.25 (16)
$\mathrm{N} 1{ }^{\text {i }}$ - $\mathrm{Cd} 1-\mathrm{N} 1^{\text {ii }}$	87.44 (6)	$\mathrm{C} 2-\mathrm{N} 2-\mathrm{C} 2{ }^{\text {ii }}$	111.25 (16)
N1-CCd1-N1 $1^{\text {iii }}$	92.56 (6)	$\mathrm{C} 2 \mathrm{i}-\mathrm{N} 2-\mathrm{C} 2{ }^{\text {ii }}$	111.25 (16)
N1 ${ }^{\text {i }}$ - Cd1- $1^{\text {iv }}$	180.00	$\mathrm{C} 2-\mathrm{N} 2-\mathrm{H} 2$	108.00
$\mathrm{N} 1^{\text {i }}$ - $\mathrm{Cd} 1-\mathrm{N} 1^{\text {v }}$	92.56 (6)	$\mathrm{C} 2{ }^{\text {i }}$ - $\mathrm{N} 2-\mathrm{H} 2$	108.00
$\mathrm{N} 1{ }^{\text {ii }}-\mathrm{Cd} 1-\mathrm{N} 1^{\text {iii }}$	92.56 (6)	$\mathrm{C} 2 \mathrm{ii}-\mathrm{N} 2-\mathrm{H} 2$	108.00
$\mathrm{N} 1{ }^{\text {ii- }} \mathrm{Cd} 1-\mathrm{N} 1^{\text {iv }}$	92.56 (6)	N2-C2-H2A	109.00
$\mathrm{N} 1{ }^{\text {ii }}$ - $\mathrm{Cd} 1-\mathrm{N} 1^{v}$	180.00	N2-C2-H2B	109.00

$\mathrm{N} 1^{\text {iii- }} \mathrm{Cd} 1-\mathrm{N} 1^{\text {iv }}$	$87.44(6)$	$\mathrm{N} 2-\mathrm{C} 2-\mathrm{H} 2 \mathrm{C}$	109.00
$\mathrm{~N} 1^{\mathrm{iii}}-\mathrm{Cd} 1-\mathrm{N} 1^{\mathrm{v}}$	$87.44(6)$	$\mathrm{H} 2 \mathrm{~A}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	109.00
$\mathrm{~N} 1^{\mathrm{iv}}-\mathrm{Cd} 1-\mathrm{N} 1^{\mathrm{v}}$	$87.44(6)$	$\mathrm{H} 2 \mathrm{~A}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{C}$	109.00
$\mathrm{C} 1-\mathrm{Cu} 1-\mathrm{C}^{\mathrm{vi}}$	$119.24(8)$	$\mathrm{H} 2 \mathrm{~B}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{C}$	109.00

Symmetry codes: (i) $-z+1 / 2,-x+1, y-1 / 2$; (ii) $-y+1, z+1 / 2,-x+1 / 2$; (iii) $-x+1,-y+1,-z$; (iv) $z+1 / 2, x,-y+1 / 2$; (v) $y,-z+1 / 2, x-1 / 2$; (vi) z, x, y; (vii) y, z, x.

[^0]: Computer programs: APEX2 and SAINT (Bruker, 2012), SHELXS97 (Sheldrick 2008), SHELXL2017 (Sheldrick, 2015), VESTA 3 (Momma \& Izumi, 2011) and publCIF (Westrip, 2010).

