

ISSN 2414-3146

Received 1 December 2017 Accepted 12 December 2017

Edited by H. Ishida, Okayama University, Japan

Keywords: crystal structure; coordination polymer; pyrite net; Cu¹; Cd¹¹; cyanido complex; luminescence.

CCDC reference: 1810643

Structural data: full structural data are available from iucrdata.iucr.org

Poly[bis(trimethylammonium) [hexa-µ-cyanidocadmium(II)dicopper(I)]]

Shin-ichi Nishikiori,^a* Jun Yoshida^b and Hidetaka Yuge^b

^aDepartment of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan, and ^bDepartment of Chemistry, School of Science, Kitasato University, Kitasato 1-15-1, Sagamihara, Kanagawa 252-0373, Japan. *Correspondence e-mail: cnskor@mail.ecc.u-tokyo.ac.jp

The title compound, $\{(C_3H_{10}N)_2[CdCu_2(CN)_6]\}_n$, has been synthesized as an alternative to the high-emitting complexes containing more expensive metals. The CN^- ligands make linkages between the Cu^I and Cd^{II} ions to form the coordination polymer, $[CdCu_2(CN)_6]_n^{2-}$, which is a three-dimensional framework classified as pyrite net (**pyr**). The net has a void space for accommodating a trimethylammonium ion located on a threefold rotation axis. The Cd^{II} ion lies on a special position with site symmetry $\overline{3}$ and is octahedrally coordinated by six N atoms. The Cu^I ion is located on a threefold rotation axis and has a trigonal-planar coordination geometry formed by three C atoms. In the three-dimensional net, two Cu^I ions are arranged closely $[Cu \cdot \cdot Cu = 3.9095 (5) \text{ Å}]$, but the distance is not short enough to suggest a Cu^I-Cu^I interaction. The crystal studied was a merohedral twin (twin operation $2_{[101]}$), the refined component ratio being 0.9202 (7):0.0798 (7). A powder of the title compound shows strong luminescence with an emission maximum at 509 nm and a quantum yield of 98% at room temperature.

Structure description

The title compound, a coordination polymer formed by Cu^{I} and Cd^{II} ions and bridging CN^{-} ligands, has been synthesized as an alternative to the high-emitting complexes containing more expensive metals. Combinations of Cu^{I} , CN^{-} and other building ligands have previously been used for such purposes (Lim *et al.*, 2008; Dembo *et al.*, 2010). The objective of the present work was to build a more robust and lower energy loss coordination polymer by adding Cd^{II} ions. These ions are well known as excellent building blocks for three-dimensional net structures (Iwamoto, 1996), and exhibit no emissive *d*-*d* metal-centred levels (Barbieri *et al.*, 2008). A powder of the title compound showed

The coordination forms of the Cd^{II} and Cu^I ions and the structure of the trimethylammonium ion in the title compound. All displacement ellipsoids are drawn at the 50% probability level. H atoms have been omitted for clarity. [Symmetry codes: (i) $-z + \frac{1}{2}, -x + 1, y - \frac{1}{2}$; (ii) $-y + 1, z + \frac{1}{2}, -x + \frac{1}{2}$; (iii) -x + 1, -y + 1, -z; (iv) $z + \frac{1}{2}, x, -y + \frac{1}{2}$; (v) $y, -z + \frac{1}{2}, x - \frac{1}{2}$; (vi) z, x, y; (vii) y, z, x.]

luminescence with an emission maximum at 509 nm and a quantum yield of 98% at room temperature.

The Cu^I ion resides on a threefold rotation axis and has a trigonal-planar coordination geometry by the C atoms of three CN^- ligands. The N-terminals of the CN^- ligands are linked to the Cd^{II} ions, which are located on special positions with $\overline{3}$ site symmetry (Fig. 1). The orientation of the bridging CN^- ions

Figure 2

Pyrite net (**pyr**) of the coordination polymer $[CdCu_2(CN)_6]_n^{2-}$. The CN⁻ ligands linking the Cd^{II} (octahedral coordination sphere) and the Cu^{II} (trigonal-planar coordination sphere) ions are represented as solid lines.

Figure 3

An arrangement of the Cd^{II} (octahedral coordination sphere), Cu^I (trigonal-planar coordination sphere) and (CH₃)₃NH⁺ ions on the threefold rotation axis running along the diagonal line of the unit cell. The distance between Cu1 and Cu1^{ix} is 3.9095 (5) Å. [Symmetry codes: (viii) $x + \frac{1}{2}, -y + \frac{3}{2}, 1 - z$; (ix) 1 - x, 1 - y, 1 - z; (x) $x - \frac{1}{2}, -y + \frac{1}{2}, -z$; (xi) $x - \frac{1}{2}, -y + \frac{1}{2}, -z$.]

was confirmed by ¹¹³Cd CP/MAS NMR spectra, which showed a single peak at a chemical shift of 191 p.p.m. [referenced to an external Cd(NO₃)₂·4H₂O standard]. This chemical shift indicates that each Cd^{II} ion is octahedrally coordinated by six N atoms (Nishikiori *et al.*, 1990). The Cu^I–CN–Cd^{II} linkages form an infinite $[CdCu_2(CN)_6]_n^{2-}$ three-dimensional net. The topology of this net is characterized as **pyr** (pyrite net; Fig. 2),

 Table 1

 Experimental details.

1	
Crystal data	
Chemical formula	$(C_{3}H_{10}N)_{2}[CdCu_{2}(CN)_{6}]$
$M_{ m r}$	515.87
Crystal system, space group	Cubic, $Pa\overline{3}$
Temperature (K)	296
a (Å)	12.3775 (9)
$V(Å^3)$	1896.3 (4)
Z	4
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	3.34
Crystal size (mm)	$0.32 \times 0.29 \times 0.22$
Data collection	
Diffractometer	Bruker APEXII
Absorption correction	Multi-scan (SADABS; Bruker,
·····	2012)
T_{\min}, T_{\max}	0.627, 0.746
No. of measured, independent and	11150, 861, 772
observed $[I > 2\sigma(I)]$ reflections	
R _{int}	0.025
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.677
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.017, 0.044, 1.11
No. of reflections	861
No. of parameters	38
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\text{max}}, \Delta \rho_{\text{min}} (e \text{ Å}^{-3})$	0.28, -0.28

Computer programs: *APEX2* and *SAINT* (Bruker, 2012), *SHELXS97* (Sheldrick 2008), *SHELXL2017* (Sheldrick, 2015), *VESTA 3* (Momma & Izumi, 2011) and *publCIF* (Westrip, 2010).

the same as that of MOF-150 (Chae *et al.*, 2003). The two closest Cu(CN)₃ units, which reside on the same threefold rotation axis, are stacked in a staggered conformation with an inversion centre at their mid point (Fig. 3). The distance between the two Cu^I ions [3.9095 (5) Å] precludes a Cu^I–Cu^I interaction, the contribution of which to luminescence behaviour has previously been discussed (Nishikawa *et al.*, 2016). The (CH₃)₃NH⁺ ions that balance the negative charges of the three-dimensional polymer are trapped in the voids of the pyrite net. The principal axis of the (CH₃)₃NH⁺ ion coincides with the threefold rotation axis on which the Cu^I and Cd^{II} ions reside. The lone H atom of the (CH₃)₃NH⁺ ion is oriented towards the Cd^{II} ion (Fig. 3).

Synthesis and crystallization

The title compound was prepared from an aqueous solution containing Cd(CN)₂, CuCN, NaCN and (CH₃)₃NHCl. Into 20 ml of water Cd(CN)₂ (0.33 g, 2 mmol), CuCN (0.18 g, 2 mmol) and NaCN (0.40 g, 8.2 mmol) were added. The mixture was warmed with stirring until it turned to a clear solution. Then, (CH₃)₃NHCl (0.19 g, 2 mmol) was dissolved into the solution. After keeping the solution at 278 K for a week, colourless crystals of the title compound were obtained. Analysis calculated for C₁₂H₂₀CdCu₂N₈: C 27.94, H 3.91, N 21.72%; found: C 27.85, H 3.98, N 21.87%.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1. In the final stage, the refinement was carried out assuming merohedral twinning, as suggested by the *PLATON* program (Spek, 2015), with the twin operation $2_{[101]}$, and the final BASF parameter was 0.0798 (7).

References

- Barbieri, A., Accorsi, G. & Armaroli, N. (2008). *Chem. Commun.* pp. 2185–2193.
- Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Chae, H. K., Kim, J., Friedrichs, O. D., O'Keeffe, M. & Yaghi, O. M. (2003). Angew. Chem. Int. Ed. 42, 3907–3909.
- Dembo, M. D., Dunaway, L. E., Jones, J. S., Lepekhina, E. A., McCullough, S. M., Ming, J. L., Li, X., Baril-Robert, F., Patterson, H. H., Bayse, C. A. & Pike, R. D. (2010). *Inorg. Chim. Acta*, 364, 102–114.
- Iwamoto, T. (1996). J. Incl Phenom. Macrocycl Chem. 24, 61-132.
- Lim, M. J., Murray, C. A., Tronic, T. A., deKrafft, K. E., Ley, A. N., deButts, J. C., Pike, R. D., Lu, H. & Patterson, H. H. (2008). *Inorg. Chem.* 47, 6931–6947.
- Momma, K. & Izumi, F. (2011). J. Appl. Cryst. 44, 1272-1276.
- Nishikawa, M., Sano, T., Washimi, M., Takao, K. & Tsubomura, T. (2016). *Dalton Trans.* **45**, 12127–12136.
- Nishikiori, S., Ratcliffe, C. I. & Ripmeester, J. A. (1990). Can. J. Chem. 68, 2270–2273.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Spek, A. L. (2015). Acta Cryst. C71, 9-18.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

full crystallographic data

IUCrData (2017). **2**, x171771 [https://doi.org/10.1107/S2414314617017710]

Poly[bis(trimethylammonium) [hexa-µ-cyanido-cadmium(II)dicopper(I)]]

Shin-ichi Nishikiori, Jun Yoshida and Hidetaka Yuge

Poly[bis[(trimethylammonium) [hexa-µ-cyanido-cadmium(II)dicopper(I)]

Crystal data	
$(C_{3}H_{10}N)_{2}[CdCu_{2}(CN)_{6}]$ $M_{r} = 515.87$ Cubic, $Pa\overline{3}$ a = 12.3775 (9) Å V = 1896.3 (4) Å ³ Z = 4 F(000) = 1016 $D_{x} = 1.807 \text{ Mg m}^{-3}$	Mo K α radiation, $\lambda = 0.71073$ Å Cell parameters from 5459 reflections $\theta = 2.9-28.5^{\circ}$ $\mu = 3.34 \text{ mm}^{-1}$ T = 296 K Block, colourless $0.32 \times 0.29 \times 0.22 \text{ mm}$
Data collection	
Bruker APEXII diffractometer Radiation source: fine-focus sealed tube Graphite monochromator Detector resolution: 8.3333 pixels mm ⁻¹ phi and ω scans Absorption correction: multi-scan (SADABS; Bruker, 2012) $T_{min} = 0.627, T_{max} = 0.746$	11150 measured reflections 861 independent reflections 772 reflections with $I > 2\sigma(I)$ $R_{int} = 0.025$ $\theta_{max} = 28.8^{\circ}, \theta_{min} = 1.7^{\circ}$ $h = -16 \rightarrow 11$ $k = -14 \rightarrow 16$ $l = -15 \rightarrow 16$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.017$ $wR(F^2) = 0.044$ S = 1.11 861 reflections 38 parameters 0 restraints Primary atom site location: structure-invariant direct methods	Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0208P)^2 + 0.6318P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.28 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -0.28 \text{ e } \text{Å}^{-3}$

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refined as a 2-component twin.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Cd1	0.500000	0.500000	0.000000	0.02365 (9)	
Cul	0.40882 (2)	0.40882 (2)	0.40882 (2)	0.03148 (11)	
N1	0.48328 (15)	0.49244 (15)	0.18799 (14)	0.0413 (4)	
C1	0.46209 (16)	0.46692 (16)	0.27362 (15)	0.0335 (4)	
N2	0.29859 (12)	0.70141 (12)	0.20141 (12)	0.0338 (6)	
H2	0.344303	0.655696	0.155697	0.041*	
C2	0.20128 (19)	0.6377 (2)	0.23072 (19)	0.0521 (6)	
H2A	0.222902	0.572912	0.267472	0.078*	
H2B	0.162203	0.619101	0.166360	0.078*	
H2C	0.155818	0.679893	0.277288	0.078*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cd1	0.02365 (9)	0.02365 (9)	0.02365 (9)	0.00096 (6)	0.00096 (6)	-0.00096 (6)
Cu1	0.03148 (11)	0.03148 (11)	0.03148 (11)	0.00670 (10)	0.00670 (10)	0.00670 (10)
N1	0.0470 (10)	0.0483 (11)	0.0286 (8)	-0.0062 (8)	0.0020 (7)	0.0031 (7)
C1	0.0340 (9)	0.0340 (9)	0.0324 (9)	0.0042 (8)	0.0033 (8)	0.0028 (7)
N2	0.0338 (6)	0.0338 (6)	0.0338 (6)	0.0038 (6)	0.0038 (6)	-0.0038 (6)
C2	0.0514 (13)	0.0599 (14)	0.0450 (12)	-0.0161 (11)	0.0071 (10)	-0.0003 (11)

Geometric parameters (Å, °)

Cd1—N1	2.3379 (17)	N1—C1	1.137 (3)
Cd1—N1 ⁱ	2.3379 (17)	N2—C2	1.485 (3)
Cd1—N1 ⁱⁱ	2.3379 (17)	N2—C2 ⁱ	1.485 (3)
Cd1—N1 ⁱⁱⁱ	2.3379 (17)	N2—C2 ⁱⁱ	1.485 (3)
Cd1—N1 ^{iv}	2.3379 (17)	N2—H2	0.9800
Cd1—N1 ^v	2.3379 (17)	C2—H2A	0.9600
Cu1—C1	1.9371 (19)	C2—H2B	0.9600
Cu1—C1 ^{vi}	1.9371 (19)	C2—H2C	0.9600
Cu1—C1 ^{vii}	1.9371 (19)		
N1—Cd1—N1 ⁱ	87.44 (6)	C1—Cu1—C1 ^{vii}	119.24 (8)
N1—Cd1—N1 ⁱⁱ	87.44 (6)	C1 ^{vi} —Cu1—C1 ^{vii}	119.24 (8)
N1—Cd1—N1 ⁱⁱⁱ	180.00	Cd1—N1—C1	163.66 (17)
N1—Cd1—N1 ^{iv}	92.56 (6)	Cu1—C1—N1	170.85 (18)
N1—Cd1—N1 ^v	92.56 (6)	$C2$ — $N2$ — $C2^i$	111.25 (16)
N1 ⁱ —Cd1—N1 ⁱⁱ	87.44 (6)	C2—N2—C2 ⁱⁱ	111.25 (16)
N1 ⁱ —Cd1—N1 ⁱⁱⁱ	92.56 (6)	$C2^{i}$ —N2— $C2^{ii}$	111.25 (16)
N1 ⁱ —Cd1—N1 ^{iv}	180.00	C2—N2—H2	108.00
N1 ⁱ —Cd1—N1 ^v	92.56 (6)	C2 ⁱ —N2—H2	108.00
N1 ⁱⁱ —Cd1—N1 ⁱⁱⁱ	92.56 (6)	C2 ⁱⁱ —N2—H2	108.00
N1 ⁱⁱ —Cd1—N1 ^{iv}	92.56 (6)	N2—C2—H2A	109.00
N1 ⁱⁱ —Cd1—N1 ^v	180.00	N2—C2—H2B	109.00

data reports

N1 ⁱⁱⁱ —Cd1—N1 ^{iv}	87.44 (6)	N2—C2—H2C	109.00
N1 ⁱⁱⁱ —Cd1—N1 ^v	87.44 (6)	H2A—C2—H2B	109.00
$N1^{iv}$ —Cd1—N1 ^v	87.44 (6)	H2A—C2—H2C	109.00
$C1$ — $Cu1$ — $C1^{vi}$	119.24 (8)	H2B—C2—H2C	109.00

Symmetry codes: (i) -z+1/2, -x+1, y-1/2; (ii) -y+1, z+1/2, -x+1/2; (iii) -x+1, -y+1, -z; (iv) z+1/2, x, -y+1/2; (v) y, -z+1/2, x-1/2; (vi) z, x, y; (vii) y, z, x.