

IUCrData

ISSN 2414-3146

Received 17 October 2017 Accepted 6 January 2018

Edited by S. Bernès, Benemérita Universidad Autónoma de Puebla, México

Keywords: crystal structure; copper complex; 4aminophenylhydroxamic acid; solvate; hydrogen bonds.

CCDC reference: 1555577

Structural data: full structural data are available from iucrdata.iucr.org

Bis(4-aminophenylhydroxamato- $\kappa^2 O, O'$)copper(II) methanol disolvate

Yansi Zhao and Yanmei Chen*

Hubei Key Laboratory for Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang 438000, People's Republic of China. *Correspondence e-mail: cingym@163.com

In the title complex, $[Cu(C_7H_7N_2O_2)_2]\cdot 2CH_3OH$, the metal centre is coordinated by two 4-aminophenylhydroxamate bidentate ligands, in a distorted square-planar geometry. The asymmetric unit is completed by two methanol solvent molecules, which are involved in hydrogen bonding with N-H functionalities of the free hydroxamate groups. The crystal structure also features N-H···O bonds formed by the NH₂ groups, and O-H···O hydrogen bonds with the methanol solvent molecules as donors.

Structure description

The asymmetric unit of the title compound consists of a Cu^{II} metal centre bound to two bidentate 4-Apha⁻ ligands (4-AphaH is 4-aminophenylhydroxamic acid) in a distorted square-planar geometry, to form [Cu(4-Apha)₂]. A weak interaction exists between two neighbouring [Cu(4-Apha)₂] molecules, forming a contact between the metal and the free amino NH₂ group of the ligand 4-Apha⁻ (Fig. 1). The compound crystallizes with two methanol molecules for each [Cu(4-Apha)₂] complex in the crystal. The Cu–O bond lengths range from 1.9208 (13) to 1.9583 (14) Å, which agrees well with the values observed in related structures (*e.g.* Chen *et al.*, 2015; Gaynor *et al.*, 2001). The apical Cu···N contact is 2.487 (2) Å, which is larger than that reported for five-coordinated Cu^{II} complexes (*e.g.* Applegate *et al.*, 2003). It may be thus be considered as a weak interaction between the Cu^{II} ion and the NH₂ group, which was not observed in the hydrate of the same complex (Gaynor *et al.*, 2001). The Cu···Cu distance in the centrosymmetric pseudo-dimers resulting from these contacts is 8.8174 (8) Å.

In the crystal, $N-H\cdots O$ hydrogen bonds are formed between the NH_2 groups of 4-Apha⁻ as hydrogen-bond donors and O atoms of the O-N(H)- hydroxamate groups as hydrogen-bond acceptors. The methanol solvent molecules are connected to the

Figure 1

The structure of title complex, with displacement ellipsoids drawn at the 30% probability level. Two complexes are represented, in order to emphasize contacts involving the NH₂ group in the ligand (dashed bonds). [Symmetry code: (A) -x, 1 - y, 1 - z.]

 $[Cu(4-Apha)_2]$ complex molecules through N-H···O and O-H···O hydrogen bonds, forming a three-dimensional supramolecular network structure (Table 1 and Fig. 2).

Synthesis and crystallization

A mixture of 4-AphaH (0.0306 g, 0.2 mmol), Cu(CH₃₋COO)₂·H₂O (0.0199 g, 0.1 mmol) and methanol (1 ml) was sealed in a 6 ml Pyrex tube. The tube was heated to 323 K for a day under autogenous pressure. Slow cooling of the resultant solution to room temperature gave green rod-shaped crystals [yield 0.0230 g (56% based on Cu)].

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

Funding information

This research was supported by the Natural Science Foundation of Hubei Province (No. 2016CFB147), the Foundation of Hubei Educational Committee (No. D20172904) and Doctoral Fund Project of Huanggang Normal University (grant No. 2015001803).

Figure 2

Crystal packing of title complex, viewed down the a axis, with hydrogen bonds drawn as dashed lines.

Table 1			
Hydrogen-bond geometry	ı (Å	, °).	

$D - \mathbf{H} \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$N1-H1\cdots O5$	0.86	2.05	2.848 (2)	154
$N3-H3\cdots O6^{i}$	0.86	2.03	2.840 (2)	157
$N2-H2B\cdots O2^{ii}$	0.85 (3)	2.30 (3)	3.147 (3)	175 (2)
$N4-H4A\cdots O4^{iii}$	0.81 (3)	2.34 (3)	3.149 (3)	171 (3)
$O5-H5A\cdots O2^{iv}$	0.82	1.93	2.745 (2)	179
$O6-H6A\cdots O4^{v}$	0.82	1.94	2.756 (2)	173

Symmetry codes: (i) x - 1, y - 1, z + 1; (ii) x, y + 1, z; (iii) x, y - 1, z; (iv) -x + 1, -y, -z + 1; (v) -x + 1, -y + 1, -z + 1.

Table	2	
Experi	mental	details.

Crystal data Chemical formula M_r Crystal system, space group Temperature (K) a, b, c (Å) α, β, γ (°) V (Å³) ZRadiation type

 $\mu \text{ (mm}^{-1})$ Crystal size (mm)

Data collection Diffractometer Absorption correction

 T_{\min} , T_{\max} No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections

 $\begin{array}{l} R_{\rm int} \\ (\sin \,\theta / \lambda)_{\rm max} \, ({\rm \AA}^{-1}) \end{array}$

Refinement $R[F^2 > 2\sigma(F^2)]$, $wR(F^2)$, S No. of reflections No. of parameters H-atom treatment

 $\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$

 $[Cu(C_7H_7N_2O_2)_2] \cdot 2CH_4O$ 429.92 Triclinic, $P\overline{1}$ 288 7.3969 (7), 9.7196 (10), 13.6589 (14) 75.309 (1), 82.904 (1), 83.066 (1) 938.53 (16) 2 Mo $K\alpha$ 1.20 0.30 × 0.24 × 0.20 Bruker APEXII CCD

Multi-scan (*SADABS*; Bruker, 2005) 0.714, 0.795 6568, 3301, 2962 0.016 0.594

0.027, 0.071, 1.03 3301 264 H atoms treated by a mixture of independent and constrained refinement 0.25, -0.29

Computer programs: *APEX2* and *SAINT* (Bruker, 2005), *SHELXS97* and *SHELXTL* (Sheldrick, 2008), *SHELXL2014* (Sheldrick, 2015) and *DIAMOND* (Brandenburg, 1999).

References

- Applegate, B. E., Barckholtz, T. A. & Miller, T. A. (2003). *Chem. Soc. Rev.* **32**, 38–49.
- Brandenburg, K. (1999). *DIAMOND*. Crystal Impact GbR, Bonn, Germany.
- Bruker. (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Chen, Y., Gao, Q., Chen, W., Gao, D., Li, Y., Liu, W. & Li, W. (2015). *Chem. Asian J.* **10**, 411–421.
- Gaynor, D., Starikova, Z. A., Haase, W. & Nolan, K. B. (2001). J. Chem. Soc. Dalton Trans. pp. 1578–1581.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.

full crystallographic data

IUCrData (2018). **3**, x180033 [https://doi.org/10.1107/S2414314618000330]

Bis(4-aminophenylhydroxamato- $\kappa^2 O, O'$) copper(II) methanol disolvate

Yansi Zhao and Yanmei Chen

Bis(4-aminobenzhydroxamato-κ²O,O')copper(II) methanol disolvate

Crystal data	
$[Cu(C_7H_7N_2O_2)_2] \cdot 2CH_4O$	Z = 2
$M_r = 429.92$	F(000) = 446
Triclinic, P1	$D_{\rm x} = 1.521 {\rm ~Mg~m^{-3}}$
a = 7.3969 (7) Å	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
b = 9.7196 (10) Å	Cell parameters from 3706 reflections
c = 13.6589 (14) Å	$\theta = 2.8 - 27.3^{\circ}$
$\alpha = 75.309 \ (1)^{\circ}$	$\mu = 1.20 \mathrm{~mm^{-1}}$
$\beta = 82.904 \ (1)^{\circ}$	T = 288 K
$\gamma = 83.066 \ (1)^{\circ}$	Rod, green
$V = 938.53 (16) Å^3$	$0.30 \times 0.24 \times 0.20 \text{ mm}$
Data collection	
Bruker APEXII CCD	3301 independent reflections
diffractometer	2962 reflections with $I > 2\sigma(I)$
φ and ω scans	$R_{\rm int} = 0.016$
Absorption correction: multi-scan	$\theta_{\rm max} = 25.0^\circ, \ \theta_{\rm min} = 2.4^\circ$
(SADABS; Bruker, 2005)	$h = -8 \rightarrow 8$
$T_{\min} = 0.714, \ T_{\max} = 0.795$	$k = -11 \rightarrow 11$
6568 measured reflections	$l = -16 \rightarrow 16$
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.027$	Hydrogen site location: mixed
$wR(F^2) = 0.071$	H atoms treated by a mixture of independent
S = 1.03	and constrained refinement
3301 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0354P)^2 + 0.4758P]$
264 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 0.25 \ { m e} \ { m \AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.29 \text{ e } \text{\AA}^{-3}$

Special details

Refinement. Hydrogen atoms of the non-coordinating amine group N4 were found in a difference map and refined with free coordinates and isotropic displacement parameters. Other H atoms were placed geometrically and refined as riding atoms, with C—H = 0.93 (aromatic), 0.96 (methyl), O—H = 0.82 and N—H = 0.86 Å. For these H atoms, isotropic displacement parameters were based on U_{eq} parameters of their carrier atoms.

	r	12	7	I.T. */I.T	
<u> </u>	<i>x</i>	<i>y</i>	2	O_{iso} / O_{eq}	
Cul	0.03678 (3)	0.05781 (2)	0.68807 (2)	0.02744 (10)	
NI	0.2586 (2)	0.17752 (17)	0.52451 (13)	0.0308 (4)	
HI	0.3254	0.1947	0.4674	0.03/*	
C1	0.2397 (3)	0.4293 (2)	0.52501 (14)	0.0243 (4)	
01	0.1102 (2)	0.24819 (14)	0.65777 (10)	0.0308 (3)	
02	0.2065 (2)	0.04134 (14)	0.56879 (11)	0.0315 (3)	
C2	0.1814 (3)	0.5281 (2)	0.58312 (15)	0.0322 (5)	
H2	0.1354	0.4959	0.6506	0.039*	
N2	0.2485 (3)	0.87055 (19)	0.39870 (17)	0.0351 (4)	
H2A	0.322 (3)	0.894 (3)	0.355 (2)	0.037 (8)*	
H2B	0.233 (3)	0.920 (3)	0.442 (2)	0.044 (7)*	
N3	-0.1200 (2)	-0.07629 (17)	0.87137 (13)	0.0317 (4)	
H3	-0.1720	-0.0961	0.9325	0.038*	
C3	0.1903 (3)	0.6722 (2)	0.54304 (16)	0.0327 (5)	
H3A	0.1496	0.7361	0.5833	0.039*	
03	-0.0158 (2)	-0.13922 (14)	0.72716 (10)	0.0326 (3)	
O4	-0.0667(2)	0.05964 (14)	0.82653 (10)	0.0336 (3)	
C4	0.2600 (3)	0.7229 (2)	0.44265 (15)	0.0265 (4)	
N4	-0.2531 (4)	-0.7465 (2)	0.9708 (2)	0.0553 (6)	
H4A	-0.212 (4)	-0.803 (3)	0.937 (2)	0.068 (10)*	
H4B	-0.278 (4)	-0.772(3)	1.024 (2)	0.059 (11)*	
C5	0.3258 (3)	0.6242 (2)	0.38504 (16)	0.0328 (5)	
Н5	0.3774	0.6561	0.3187	0.039*	
05	0.5020(2)	0.13785 (19)	0.35327 (13)	0.0499 (4)	
H5A	0.5889	0.0848	0.3772	0.075*	
C6	0.3151 (3)	0.4798 (2)	0.42554 (16)	0.0312 (5)	
H6	0.3586	0.4156	0.3860	0.037*	
06	0.7664 (3)	0.9217 (2)	0.07809 (12)	0.0518 (5)	
H6A	0.8534	0.9208	0.1102	0.078*	
C7	0.2038 (3)	0.2796 (2)	0.57141 (14)	0.0244 (4)	
C8	-0.1372 (3)	-0.3207 (2)	0.86329 (15)	0.0258 (4)	
С9	-0.1021(3)	-0.4174 (2)	0.80218 (17)	0.0403 (5)	
Н9	-0.0533	-0.3859	0.7351	0.048*	
C10	-0.1370(4)	-0.5572(2)	0.83750 (18)	0.0427 (6)	
H10	-0.1086	-0.6197	0.7952	0.051*	
C11	-0.2148(3)	-0.6064(2)	0.93641 (17)	0.0343 (5)	
C12	-0.2552(3)	-0.5096(2)	0.99779(17)	0.0420 (6)	
H12	-0.3089	-0.5402	1.0639	0.050*	
C13	-0.2166(3)	-0.3693(2)	0.96193 (16)	0.0378 (5)	
H13	-0.2439	-0.3066	1 0042	0.045*	
C14	-0.0894(3)	-0.1740(2)	0.81866(15)	0.0254(4)	
C15	0.5618(4)	0 2259 (3)	0 25923 (19)	0.0251(7)	
H15A	0.4602	0.2883	0.2313	0.085*	
H15R	0.4002	0.1678	0.2134	0.085*	
H15C	0.6537	0.2818	0.2134	0.085*	
11150	0.0557	0.2010	0.2007	0.005	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

data reports

C16	0.6166 (4)	0.8733 (4)	0.1456 (2)	0.0762 (10)
H16A	0.6445	0.7751	0.1798	0.114*
H16B	0.5120	0.8814	0.1085	0.114*
H16C	0.5902	0.9300	0.1947	0.114*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
Cu1	0.03733 (16)	0.01877 (14)	0.02422 (14)	-0.00400 (10)	0.00401 (10)	-0.00424 (10)
N1	0.0383 (10)	0.0180 (8)	0.0316 (9)	-0.0039 (7)	0.0101 (8)	-0.0033 (7)
C1	0.0237 (10)	0.0219 (10)	0.0266 (10)	-0.0018 (8)	-0.0026 (8)	-0.0046 (8)
01	0.0421 (8)	0.0229 (7)	0.0264 (7)	-0.0064 (6)	0.0054 (6)	-0.0065 (6)
O2	0.0414 (8)	0.0165 (7)	0.0334 (8)	-0.0046 (6)	0.0078 (6)	-0.0047 (6)
C2	0.0443 (13)	0.0260 (10)	0.0240 (10)	-0.0043 (9)	0.0061 (9)	-0.0058 (8)
N2	0.0472 (12)	0.0221 (9)	0.0344 (11)	-0.0087 (8)	0.0006 (10)	-0.0037 (8)
N3	0.0467 (11)	0.0220 (8)	0.0255 (9)	-0.0121 (8)	0.0085 (8)	-0.0056 (7)
C3	0.0428 (12)	0.0244 (10)	0.0320 (11)	-0.0025 (9)	0.0020 (9)	-0.0121 (9)
03	0.0487 (9)	0.0214 (7)	0.0249 (7)	-0.0038 (6)	0.0081 (6)	-0.0061 (6)
O4	0.0534 (9)	0.0203 (7)	0.0268 (7)	-0.0119 (6)	0.0078 (7)	-0.0064 (6)
C4	0.0269 (10)	0.0218 (10)	0.0305 (11)	-0.0053 (8)	-0.0046 (8)	-0.0038 (8)
N4	0.0826 (18)	0.0269 (11)	0.0549 (16)	-0.0194 (11)	0.0102 (14)	-0.0085 (12)
C5	0.0405 (12)	0.0287 (11)	0.0265 (11)	-0.0062 (9)	0.0054 (9)	-0.0042 (9)
O5	0.0409 (10)	0.0530 (11)	0.0472 (10)	0.0031 (8)	0.0088 (8)	-0.0060 (8)
C6	0.0376 (12)	0.0251 (10)	0.0305 (11)	-0.0028 (9)	0.0050 (9)	-0.0101 (9)
06	0.0601 (11)	0.0650 (12)	0.0333 (9)	-0.0213 (10)	0.0019 (8)	-0.0134 (8)
C7	0.0245 (10)	0.0219 (10)	0.0258 (10)	-0.0022 (8)	-0.0025 (8)	-0.0043 (8)
C8	0.0304 (11)	0.0207 (10)	0.0256 (10)	-0.0024 (8)	0.0003 (8)	-0.0058 (8)
C9	0.0583 (15)	0.0292 (11)	0.0310 (11)	-0.0080 (10)	0.0111 (10)	-0.0083 (9)
C10	0.0638 (16)	0.0254 (11)	0.0402 (13)	-0.0071 (10)	0.0067 (11)	-0.0147 (10)
C11	0.0383 (12)	0.0236 (10)	0.0403 (12)	-0.0067 (9)	-0.0038 (10)	-0.0049 (9)
C12	0.0600 (16)	0.0318 (12)	0.0312 (12)	-0.0154 (11)	0.0106 (11)	-0.0043 (10)
C13	0.0547 (14)	0.0274 (11)	0.0323 (12)	-0.0099 (10)	0.0074 (10)	-0.0115 (9)
C14	0.0266 (10)	0.0230 (10)	0.0260 (10)	-0.0009 (8)	-0.0008 (8)	-0.0062 (8)
C15	0.0502 (16)	0.0701 (19)	0.0414 (14)	0.0071 (14)	-0.0022 (12)	-0.0045 (13)
C16	0.065 (2)	0.114 (3)	0.0594 (19)	-0.0310 (19)	0.0109 (16)	-0.0355 (19)

Geometric parameters (Å, °)

Cu1—O1	1.9208 (13)	N4—H4B	0.72 (3)	
Cu1—O3	1.9271 (14)	C5—C6	1.379 (3)	
Cu1—O4	1.9543 (14)	С5—Н5	0.9300	
Cu1—O2	1.9583 (14)	O5—C15	1.404 (3)	
N1—C7	1.311 (2)	O5—H5A	0.8200	
N1	1.387 (2)	С6—Н6	0.9300	
N1—H1	0.8600	O6—C16	1.397 (3)	
C1—C6	1.392 (3)	O6—H6A	0.8200	
C1—C2	1.394 (3)	C8—C13	1.390 (3)	
C1—C7	1.474 (3)	С8—С9	1.390 (3)	

01 C7	1 277 (2)	C8 C14	1 469 (2)
01 = 07	1.277(2)	$C_0 = C_1 C_1 C_1 C_1 C_1 C_1 C_1 C_1 C_1 C_1$	1.408(3)
C2C3	1.575 (5)	C9	1.300 (3)
C2—H2	0.9300	C9—H9	0.9300
N2—C4	1.405 (3)		1.390 (3)
N2—H2A	0.76 (3)		0.9300
N2—H2B	0.85 (3)	C11—C12	1.395 (3)
N3—C14	1.314 (2)	C12—C13	1.379 (3)
N3—O4	1.390 (2)	С12—Н12	0.9300
N3—H3	0.8600	С13—Н13	0.9300
C3—C4	1.390 (3)	C15—H15A	0.9600
С3—НЗА	0.9300	C15—H15B	0.9600
O3—C14	1.279 (2)	C15—H15C	0.9600
C4—C5	1.397 (3)	C16—H16A	0.9600
N4—C11	1.375 (3)	C16—H16B	0.9600
N4—H4A	0.81 (3)	C16—H16C	0.9600
	0.01 (5)		0.9000
O1—Cu1—O3	173.99 (6)	С5—С6—Н6	119.6
O1—Cu1—O4	94.34 (6)	С1—С6—Н6	119.6
O3—Cu1—O4	84.02 (6)	С16—О6—Н6А	109.5
01-Cu1-02	83 76 (5)	01—C7—N1	118 48 (17)
03-Cu1-02	96 14 (5)	01 - 07 - 01	110.10(17) 119.60(17)
04 Cu1 02	163 24 (6)	N1 C7 C1	119.00(17) 121.86(17)
C7 N1 O2	103.24(0) 118 74 (16)	$C_1^1 = C_1^2 = C_1^2$	121.00(17) 117.67(10)
C7 N1 U1	110.74 (10)	$C_{13} = C_{8} = C_{7}$	117.07(19)
	120.0	C13 - C0 - C14	124.08 (18)
02—NI—HI	120.6	C9—C8—C14	117.64 (18)
C6-C1-C2	118.05 (18)	010-09-08	122.1 (2)
C6—C1—C7	124.74 (17)	С10—С9—Н9	119.0
C2—C1—C7	117.04 (17)	С8—С9—Н9	119.0
C7—O1—Cu1	111.62 (12)	C9—C10—C11	120.3 (2)
N1—O2—Cu1	106.16 (10)	C9—C10—H10	119.8
C3—C2—C1	121.52 (19)	C11—C10—H10	119.8
С3—С2—Н2	119.2	N4-C11-C10	120.0 (2)
C1—C2—H2	119.2	N4—C11—C12	121.8 (2)
C4—N2—H2A	114.5 (19)	C10-C11-C12	118.23 (19)
C4—N2—H2B	113.1 (17)	C13—C12—C11	121.0 (2)
H2A—N2—H2B	114 (3)	C13—C12—H12	119.5
C14 - N3 - O4	118 81 (16)	C11—C12—H12	119.5
C14 N3 H3	120.6	C_{12} C_{13} C_{8}	120.7(2)
$O_4 N_3 H_3$	120.6	C_{12} C_{13} H_{13}	110.7
$C_2 C_3 C_4$	120.0	C_{12} C_{13} H_{13}	119.7
$C_2 = C_3 = C_4$	120.31 (19)	Co-C13-H15	119.7
$C_2 = C_3 = H_2 A$	119.8	03 - 014 - 03	118.39 (17)
C4—C3—H3A	119.8	03 - 014 - 03	120.23 (17)
C14—O3—Cul	111.93 (12)	N3-C14-C8	121.17 (17)
N3—O4—Cul	106.62 (10)	US-C15-H15A	109.5
C3—C4—C5	118.57 (18)	O5—C15—H15B	109.5
C3—C4—N2	119.88 (19)	H15A—C15—H15B	109.5
C5—C4—N2	121.31 (19)	O5—C15—H15C	109.5
C11—N4—H4A	119 (2)	H15A—C15—H15C	109.5

C11—N4—H4B	117 (3)	H15B—C15—H15C	109.5
H4A—N4—H4B	119 (3)	O6—C16—H16A	109.5
C6—C5—C4	120.75 (19)	O6—C16—H16B	109.5
С6—С5—Н5	119.6	H16A—C16—H16B	109.5
С4—С5—Н5	119.6	O6—C16—H16C	109.5
С15—О5—Н5А	109.5	H16A—C16—H16C	109.5
C5—C6—C1	120.71 (18)	H16B—C16—H16C	109.5
C7—N1—O2—Cu1	5.9 (2)	C2-C1-C7-N1	-177.68 (19)
C6—C1—C2—C3	2.6 (3)	C13—C8—C9—C10	-2.4 (4)
C7—C1—C2—C3	-172.86 (19)	C14—C8—C9—C10	178.2 (2)
C1—C2—C3—C4	-0.5 (3)	C8—C9—C10—C11	1.9 (4)
C14—N3—O4—Cu1	1.8 (2)	C9—C10—C11—N4	178.6 (2)
C2—C3—C4—C5	-2.1 (3)	C9—C10—C11—C12	-0.2 (4)
C2—C3—C4—N2	172.4 (2)	N4—C11—C12—C13	-179.7 (2)
C3—C4—C5—C6	2.6 (3)	C10-C11-C12-C13	-0.9 (4)
N2-C4-C5-C6	-171.8 (2)	C11—C12—C13—C8	0.3 (4)
C4—C5—C6—C1	-0.5 (3)	C9—C8—C13—C12	1.3 (3)
C2-C1-C6-C5	-2.1 (3)	C14—C8—C13—C12	-179.4 (2)
C7—C1—C6—C5	173.02 (19)	Cu1—O3—C14—N3	0.6 (2)
Cu1—O1—C7—N1	-9.8 (2)	Cu1—O3—C14—C8	-179.01 (14)
Cu1—O1—C7—C1	167.22 (13)	O4—N3—C14—O3	-1.7 (3)
O2—N1—C7—O1	2.5 (3)	O4—N3—C14—C8	177.93 (17)
O2—N1—C7—C1	-174.52 (16)	C13—C8—C14—O3	179.6 (2)
C6-C1-C7-O1	-169.77 (19)	C9—C8—C14—O3	-1.0 (3)
C2-C1-C7-O1	5.4 (3)	C13—C8—C14—N3	0.0 (3)
C6—C1—C7—N1	7.2 (3)	C9—C8—C14—N3	179.4 (2)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D^{\dots}A$	D—H···A
N1—H1…O5	0.86	2.05	2.848 (2)	154
N3—H3…O6 ⁱ	0.86	2.03	2.840 (2)	157
N2—H2 <i>B</i> ···O2 ⁱⁱ	0.85 (3)	2.30 (3)	3.147 (3)	175 (2)
N4—H4A····O4 ⁱⁱⁱ	0.81 (3)	2.34 (3)	3.149 (3)	171 (3)
O5—H5 <i>A</i> ···O2 ^{iv}	0.82	1.93	2.745 (2)	179
O6—H6 <i>A</i> ···O4 ^v	0.82	1.94	2.756 (2)	173
O6—H6A···N3 ^v	0.82	2.70	3.391 (2)	143

Symmetry codes: (i) *x*-1, *y*-1, *z*+1; (ii) *x*, *y*+1, *z*; (iii) *x*, *y*-1, *z*; (iv) -*x*+1, -*y*, -*z*+1; (v) -*x*+1, -*y*+1, -*z*+1.