IUCrData

ISSN 2414-3146

Received 3 November 2017 Accepted 7 January 2018

Edited by I. Brito, University of Antofagasta, Chile

Keywords: crystal structure.

CCDC reference: 1815183

Structural data: full structural data are available from iucrdata.iucr.org

data reports

(E)-2-(3-Oxo-3-phenylprop-1-enyl)thiophene-3carbaldehyde

K. Elumalai,^a R. Raja,^a Jayachandran Karunakaran,^b Arasambattu K. Mohanakrishnan^b and K. Sakthi Murugesan^a*

^aDepartment of Physics, Presidency College (Autonomous), Chennai 600 005, India, and ^bDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India. *Correspondence e-mail: elumalai9176@gmail.com

The title compound, $C_{14}H_{10}O_2S$, crystallizes with two independent molecules (*A* and *B*) in the asymmetric unit. They have very similar conformations with the thiophene ring having an envelope conformation in both molecules. In molecule *A*, the benzene and thiophene rings makes a dihedral angle of 11.01 (9)°. The corresponding angle in molecule *B* is 9.58 (9)°. In the crystal, molecules are linked *via* pairs of $C-H\cdots O$ hydrogen bonds, forming dimers with an $R_2^2(18)$ set-graph motif. The dimers are linked *via* $C-H\cdots O$ hydrogen bonds, forming slabs lying parallel to (100).

Structure description

Thiophenes are important heterocyclic compounds that are widely used as building blocks in many agrochemicals (Ansary & Omar, 2001). Thiophene possesses antimicrobial (Russel *et al.*, 1988), analgesic and anti-inflammatory (Chen *et al.*, 2008), antihypertensive (Mongevega *et al.*, 1980), anti diabetes mellitus (Abdelhamid *et al.*, 2009), gonadotropin releasing hormone antagonist (Sabins *et al.*, 1944) activities.

Fig. 1 shows the asymmetric unit consisting of the two independent molecules (A and B) of the title compound. The two molecules have the same geometrical parameters within the precision of the experiment. In molecule A, the benzene and thiophene rings make a dihedral angle of 11.01 (9)°, the corresponding angle in molecule B being 9.58 (9)°. In molecule A, the propane group assumes an extended conformation as can be seen from the C9–C8–C7–C6 torsion angle of 178.82 (15)° [in B, C19–C20–C21–C22 = 178.14 (15)°].

Figure 1

The molecular structure of the title compound, with the atom labelling. Displacement ellipsoids are drawn at the 30% probability level.

In the crystal, the A and B molecules are linked via pairs of $C-H\cdots O$ hydrogen bonds, forming dimers with an $R_2^2(18)$ ring motif. The dimers are linked via $C-H\cdots O$ hydrogen bonds, forming slabs lying parallel to (100) (Table 1, Fig. 2).

Synthesis and crystallization

To a stirred solution of (E)-3-(3-(bromomethyl)thiophen-2yl)-1-phenylprop-2-en-1-one (1 g, 3.26 mmol) in dry DCM, *N*-methylmorpholine *N*-oxide (0.57 g, 4.87 mmol), was added and the reaction mixture was stirred at room temperature for 6 h. Removal of solvent followed by purification by column chromatographic (silica gel; 15% ethyl acetate in hexane) gave (E)-2-(3-oxo-3-phenylprop-1-enyl)-thiophene-3-carbaldehyde as a yellow solid (0.585 g, 74%). Crystals suitable for X-ray analysis were recrystallized by slow evaporation of a ethylacetate and methanol (1:1) solution.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

Figure 2

A view along the b axis of the partial crystal packing of the title compound. Hydrogen bonds are shown as dashed lines.

Table 1	
Hydrogen-bond geometry (Å, $^{\circ}$).	

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
$C1{-}H1{\cdots}O4^i$	0.93	2.49	3.125 (2)	126
$C10-H1O\cdots O3^{i}$	0.93	2.59	3.466 (2)	158
$C15-H15\cdots O2^{ii}$	0.93	2.44	3.287 (2)	152

Symmetry codes: (i) x, y - 1, z; (ii) x + 1, y, z.

Table 2Experimental details.

Crystal data	
Chemical formula	$C_{14}H_{10}O_2S$
M _r	242.28
Crystal system, space group	Monoclinic, $P2_1/n$
Temperature (K)	273
<i>a</i> , <i>b</i> , <i>c</i> (Å)	10.4355 (4), 8.6955 (4), 25.7106 (9)
β (°)	95.420 (3)
$V(Å^3)$	2322.60 (16)
Ζ	8
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	0.26
Crystal size (mm)	$0.23 \times 0.17 \times 0.11$
Data collection	
Diffractometer	Bruker SMART APEXII area- detector
Absorption correction	Multi-scan (SADABS; Bruker, 2014)
T_{\min}, T_{\max}	0.941, 0.971
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	24652, 5662, 4287
R _{int}	0.028
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.688
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.042, 0.116, 1.04
No. of reflections	5662
No. of parameters	307
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({\rm e} {\rm \AA}^{-3})$	0.22, -0.21

Computer programs: APEX2 and SAINT (Bruker, 2014), SHELXS97 and SHELXTL (Sheldrick 2008) and SHELXL2014 (Sheldrick, 2015).

Acknowledgements

The authors thank the Department of Chemistry, Pondicherry University, India, for X-ray intensity data collection.

References

- Abdelhamid, A. O. (2009). J. Heterocycl. Chem. 46, 680-686.
- Ansary, A. K. & Omar, H. A. (2001). Bull. Faculty Pharm. 39, 17.
- Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Chen, H. J., Wang, W., I Wang, G. F., Shi, L. P., Gu, M., Ren, Y. D. & Hou, L. F. (2008). Med. Chem. 3, 1316–1321.
- Monge Vega, A., Aldana, I., Rabbani, M. M. & Fernandez-Alvarez, E. (1980). *Heterocycl. Chem.* **17**, 77–80.
- Russell, R. K., Press, J. B., Rampulla, R. A., McNally, J. J., Falotico, R., Keiser, J. A., Bright, D. A. & Tobia, A. (1988). *J. Med. Chem.* **31**, 1786–1793.
- Sabins, R. W. (1944). Sulfur Rep. 16, 1.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.

full crystallographic data

IUCrData (2018). **3**, x180041 [https://doi.org/10.1107/S241431461800041X]

(E)-2-(3-Oxo-3-phenylprop-1-enyl)thiophene-3-carbaldehyde

K. Elumalai, R. Raja, Jayachandran Karunakaran, Arasambattu K. Mohanakrishnan and K. Sakthi Murugesan

F(000) = 1008

 $\theta = 3.8 - 29.3^{\circ}$ $\mu = 0.26 \text{ mm}^{-1}$

T = 273 KColorless, yellow

 $R_{\rm int} = 0.028$

 $h = -14 \rightarrow 13$

 $k = -11 \rightarrow 11$

 $l = -34 \rightarrow 35$

 $D_{\rm x} = 1.386 {\rm Mg} {\rm m}^{-3}$

 $0.23 \times 0.17 \times 0.11 \text{ mm}$

 $\theta_{\rm max} = 29.3^\circ, \ \theta_{\rm min} = 3.8^\circ$

24652 measured reflections

5662 independent reflections

4287 reflections with $I > 2\sigma(I)$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 5662 reflections

(E)-2-(3-Oxo-3-phenylprop-1-enyl)thiophene-3-carbaldehyde

Crystal data

C₁₄H₁₀O₂S $M_r = 242.28$ Monoclinic, $P2_1/n$ Hall symbol: -P 2yn a = 10.4355 (4) Å b = 8.6955 (4) Å c = 25.7106 (9) Å $\beta = 95.420$ (3)° V = 2322.60 (16) Å³ Z = 8

Data collection

Bruker SMART APEXII area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω and φ scans Absorption correction: multi-scan (*SADABS*; Bruker, 2014) $T_{\min} = 0.941, T_{\max} = 0.971$

Refinement

Refinement on F^2 Secondary atom site location: difference Fourier Least-squares matrix: full map $R[F^2 > 2\sigma(F^2)] = 0.042$ Hydrogen site location: inferred from $wR(F^2) = 0.116$ neighbouring sites S = 1.04H-atom parameters constrained 5662 reflections $w = 1/[\sigma^2(F_0^2) + (0.0534P)^2 + 0.4625P]$ where $P = (F_o^2 + 2F_c^2)/3$ 307 parameters 0 restraints $(\Delta/\sigma)_{\rm max} = 0.001$ Primary atom site location: structure-invariant $\Delta \rho_{\rm max} = 0.22 \ {\rm e} \ {\rm \AA}^{-3}$ direct methods $\Delta \rho_{\rm min} = -0.21 \ {\rm e} \ {\rm \AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F² against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F², conventional R-factors R are based on F, with F set to zero for negative F². The threshold expression of F² > 2sigma(F²) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F² are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. N and C-bound H atoms were positioned geometrically (C–H = 0.93–0.98 Å) and allowed to ride on their parent atoms, with $U_{iso}(H) = 1.5U_{eq}(C)$ for methyl H atoms and $1.2U_{eq}(C)$ for all other H atoms.

	X	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
S 1	0.58222 (4)	0.17941 (5)	0.533986 (17)	0.05201 (13)	
C7	0.41701 (15)	0.25005 (19)	0.42763 (6)	0.0456 (4)	
H7	0.4819	0.1764	0.4300	0.055*	
C5	0.45568 (14)	0.30548 (17)	0.52220 (6)	0.0406 (3)	
C8	0.34529 (15)	0.28131 (18)	0.37647 (6)	0.0451 (4)	
C6	0.39093 (15)	0.32474 (18)	0.47036 (6)	0.0439 (3)	
H6	0.3246	0.3964	0.4666	0.053*	
C9	0.38064 (14)	0.19583 (17)	0.32955 (6)	0.0424 (3)	
O2	0.25734 (13)	0.37418 (15)	0.37253 (5)	0.0645 (3)	
C3	0.43096 (14)	0.37960 (18)	0.56796 (6)	0.0432 (3)	
01	0.31113 (15)	0.55770 (17)	0.61230 (6)	0.0794 (4)	
C1	0.60052 (17)	0.2255 (2)	0.59868 (7)	0.0564 (4)	
H1	0.6627	0.1820	0.6225	0.068*	
C4	0.33211 (17)	0.4959 (2)	0.57214 (8)	0.0555 (4)	
H4	0.2820	0.5241	0.5418	0.067*	
C2	0.51515 (16)	0.3316 (2)	0.61143 (7)	0.0516 (4)	
H2	0.5117	0.3694	0.6451	0.062*	
C14	0.29804 (17)	0.2032 (2)	0.28401 (7)	0.0561 (4)	
H14	0.2242	0.2635	0.2831	0.067*	
C12	0.43303 (19)	0.0341 (2)	0.24080 (7)	0.0599 (5)	
H12	0.4499	-0.0218	0.2114	0.072*	
C13	0.32441 (19)	0.1220 (3)	0.24013 (7)	0.0643 (5)	
H13	0.2679	0.1272	0.2100	0.077*	
C10	0.49070 (18)	0.1090 (2)	0.32932 (7)	0.0597 (5)	
H10	0.5482	0.1041	0.3592	0.072*	
C11	0.5166 (2)	0.0289 (3)	0.28494 (7)	0.0693 (6)	
H11	0.5917	-0.0289	0.2852	0.083*	
S2	1.06667 (4)	0.65651 (6)	0.463918 (18)	0.05982 (15)	
O4	0.82888 (11)	0.99222 (14)	0.60156 (5)	0.0575 (3)	
C19	0.93792 (14)	0.77858 (19)	0.46540 (6)	0.0434 (3)	
C21	0.96631 (16)	0.8293 (2)	0.56034 (6)	0.0487 (4)	
H21	1.0366	0.7632	0.5646	0.058*	
C22	0.92485 (14)	0.91119 (18)	0.60602 (6)	0.0445 (4)	
C20	0.90501 (15)	0.84822 (19)	0.51326 (6)	0.0450 (4)	
H20	0.8337	0.9128	0.5109	0.054*	
C23	1.00267 (14)	0.89828 (18)	0.65772 (6)	0.0428 (3)	
C15	1.03801 (19)	0.6268 (2)	0.39857 (7)	0.0609 (5)	
H15	1.0874	0.5631	0.3793	0.073*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^2)

C17	0.87663 (15)	0.79548 (19)	0.41555 (6)	0.0458 (4)	
03	0.71768 (14)	0.98696 (18)	0.42779 (6)	0.0736 (4)	
C28	1.10468 (16)	0.7968 (2)	0.66730(7)	0.0527 (4)	
H28	1.1264	0.7309	0.6410	0.063*	
C24	0.97212 (17)	0.9946 (2)	0.69792 (7)	0.0536 (4)	
H24	0.9033	1.0624	0.6923	0.064*	
C16	0.93469 (17)	0.7069 (2)	0.37799 (7)	0.0554 (4)	
H16	0.9047	0.7042	0.3428	0.066*	
C18	0.76643 (17)	0.8961 (2)	0.40051 (7)	0.0574 (4)	
H18	0.7304	0.8888	0.3661	0.069*	
C25	1.0425 (2)	0.9910 (2)	0.74601 (7)	0.0622 (5)	
H25	1.0216	1.0571	0.7724	0.075*	
C26	1.14275 (19)	0.8910 (3)	0.75513 (7)	0.0651 (5)	
H26	1.1899	0.8884	0.7877	0.078*	
C27	1.17403 (18)	0.7935 (2)	0.71576 (8)	0.0652 (5)	
H27	1.2423	0.7251	0.7220	0.078*	

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}
S1	0.0495 (2)	0.0542 (3)	0.0525 (2)	0.00988 (19)	0.00581 (18)	-0.00906 (19)
C7	0.0494 (8)	0.0405 (8)	0.0468 (8)	-0.0003 (7)	0.0038 (7)	0.0011 (7)
C5	0.0396 (7)	0.0359 (8)	0.0471 (8)	-0.0042 (6)	0.0088 (6)	-0.0017 (6)
C8	0.0483 (8)	0.0388 (8)	0.0483 (9)	-0.0022 (7)	0.0047 (7)	0.0037 (7)
C6	0.0429 (8)	0.0403 (8)	0.0489 (8)	-0.0021 (6)	0.0071 (6)	0.0000(7)
C9	0.0455 (8)	0.0402 (8)	0.0413 (8)	-0.0055 (6)	0.0036 (6)	0.0057 (6)
O2	0.0710 (8)	0.0602 (8)	0.0610 (7)	0.0215 (7)	-0.0007 (6)	-0.0020 (6)
C3	0.0436 (8)	0.0388 (8)	0.0486 (8)	-0.0043 (6)	0.0114 (6)	-0.0043 (7)
01	0.0856 (10)	0.0746 (10)	0.0820 (10)	0.0174 (8)	0.0291 (8)	-0.0217 (8)
C1	0.0542 (10)	0.0630 (11)	0.0507 (10)	0.0058 (9)	-0.0018 (8)	-0.0049 (8)
C4	0.0554 (10)	0.0504 (10)	0.0623 (11)	0.0028 (8)	0.0141 (8)	-0.0049 (8)
C2	0.0541 (9)	0.0555 (10)	0.0455 (9)	-0.0011 (8)	0.0065 (7)	-0.0081 (7)
C14	0.0516 (9)	0.0617 (11)	0.0535 (10)	0.0044 (8)	-0.0026 (8)	0.0039 (8)
C12	0.0702 (12)	0.0670 (12)	0.0436 (9)	-0.0065 (10)	0.0115 (8)	-0.0052 (8)
C13	0.0668 (12)	0.0818 (14)	0.0421 (9)	-0.0051 (10)	-0.0055 (8)	-0.0015 (9)
C10	0.0602 (11)	0.0753 (13)	0.0423 (9)	0.0153 (9)	-0.0015 (7)	-0.0011 (8)
C11	0.0700 (12)	0.0863 (15)	0.0523 (10)	0.0223 (11)	0.0089 (9)	-0.0025 (10)
S2	0.0575 (3)	0.0694 (3)	0.0529 (3)	0.0180 (2)	0.0068 (2)	0.0085 (2)
O4	0.0496 (7)	0.0635 (8)	0.0595 (7)	0.0141 (6)	0.0052 (5)	-0.0009 (6)
C19	0.0408 (8)	0.0437 (8)	0.0459 (8)	-0.0037 (6)	0.0059 (6)	0.0057 (7)
C21	0.0466 (8)	0.0512 (10)	0.0486 (9)	0.0057 (7)	0.0057 (7)	0.0009 (7)
C22	0.0415 (8)	0.0431 (9)	0.0498 (9)	-0.0017 (7)	0.0087 (6)	0.0036 (7)
C20	0.0403 (8)	0.0459 (9)	0.0497 (9)	-0.0028 (7)	0.0083 (6)	0.0043 (7)
C23	0.0411 (8)	0.0429 (9)	0.0457 (8)	-0.0023 (6)	0.0103 (6)	0.0035 (7)
C15	0.0667 (11)	0.0616 (12)	0.0563 (10)	0.0059 (9)	0.0152 (9)	-0.0034 (9)
C17	0.0431 (8)	0.0465 (9)	0.0477 (8)	-0.0064 (7)	0.0035 (7)	0.0042 (7)
O3	0.0663 (8)	0.0775 (10)	0.0759 (9)	0.0185 (7)	0.0006 (7)	0.0077 (8)
C28	0.0538 (9)	0.0519 (10)	0.0536 (10)	0.0064 (8)	0.0109 (8)	0.0027 (8)

data reports

C24	0.0546 (10)	0.0533 (10)	0.0538 (9)	0.0056 (8)	0.0097 (8)	-0.0010 (8)
C16	0.0587 (10)	0.0611 (11)	0.0462 (9)	-0.0068 (9)	0.0044 (8)	-0.0012 (8)
C18	0.0508 (10)	0.0638 (12)	0.0563 (10)	-0.0051 (9)	-0.0014 (8)	0.0083 (9)
C25	0.0721 (12)	0.0672 (12)	0.0479 (9)	-0.0041 (10)	0.0099 (9)	-0.0057 (9)
C26	0.0687 (12)	0.0758 (13)	0.0495 (10)	-0.0013 (10)	-0.0016 (8)	0.0077 (9)
C27	0.0587 (11)	0.0705 (13)	0.0653 (12)	0.0144 (9)	0.0009 (9)	0.0136 (10)

Geometric parameters (Å, °)

S1—C1	1.7040 (18)	S2—C15	1.6984 (19)
S1—C5	1.7209 (15)	S2—C19	1.7156 (16)
C7—C6	1.326 (2)	O4—C22	1.2211 (18)
C7—C8	1.476 (2)	C19—C17	1.385 (2)
С7—Н7	0.9300	C19—C20	1.442 (2)
C5—C3	1.387 (2)	C21—C20	1.325 (2)
C5—C6	1.446 (2)	C21—C22	1.473 (2)
C8—O2	1.2195 (19)	C21—H21	0.9300
C8—C9	1.493 (2)	C22—C23	1.495 (2)
С6—Н6	0.9300	C20—H20	0.9300
C9—C10	1.375 (2)	C23—C28	1.387 (2)
C9—C14	1.388 (2)	C23—C24	1.391 (2)
C3—C2	1.418 (2)	C15—C16	1.349 (3)
C3—C4	1.455 (2)	С15—Н15	0.9300
O1—C4	1.203 (2)	C17—C16	1.416 (2)
C1—C2	1.345 (2)	C17—C18	1.468 (2)
C1—H1	0.9300	O3—C18	1.201 (2)
C4—H4	0.9300	C28—C27	1.381 (2)
С2—Н2	0.9300	C28—H28	0.9300
C14—C13	1.380 (3)	C24—C25	1.378 (3)
C14—H14	0.9300	C24—H24	0.9300
C12—C11	1.365 (3)	C16—H16	0.9300
C12—C13	1.366 (3)	C18—H18	0.9300
C12—H12	0.9300	C25—C26	1.363 (3)
С13—Н13	0.9300	С25—Н25	0.9300
C10—C11	1.385 (3)	C26—C27	1.383 (3)
C10—H10	0.9300	C26—H26	0.9300
C11—H11	0.9300	C27—H27	0.9300
C1—S1—C5	92.04 (8)	C15—S2—C19	92,92 (9)
C6-C7-C8	121.44 (15)	$C_{17} - C_{19} - C_{20}$	128.23(15)
С6—С7—Н7	1193	$C_{17} - C_{19} - S_{2}$	109 84 (12)
C8—C7—H7	119.3	C_{20} C_{19} S_{2}	121.93 (12)
$C_{3} - C_{5} - C_{6}$	128 31 (14)	$C_{20} - C_{21} - C_{22}$	121.03(12) 121.03(15)
$C_3 - C_5 - S_1$	110.35(12)	$C_{20} - C_{21} - H_{21}$	119.5
C6-C5-S1	121.34(12)	C^{22} C^{21} H^{21}	119.5
O2—C8—C7	120.67 (15)	04-C22-C21	120.29 (15)
02 - C8 - C9	120.28 (14)	04-C22-C23	119.90 (14)
C7—C8—C9	119.04 (14)	C21—C22—C23	119.79 (14)
	× /		× /

C7—C6—C5	126.31 (15)	C21—C20—C19	126.46 (15)
С7—С6—Н6	116.8	С21—С20—Н20	116.8
С5—С6—Н6	116.8	С19—С20—Н20	116.8
C10—C9—C14	118.31 (16)	C28—C23—C24	118.51 (15)
C10—C9—C8	123.18 (14)	C28—C23—C22	123.30 (15)
C14—C9—C8	118.52 (15)	C24—C23—C22	118.18 (14)
C5—C3—C2	112.39 (14)	C16—C15—S2	111.64 (14)
C5—C3—C4	125.12 (15)	C16—C15—H15	124.2
C2—C3—C4	122.48 (15)	S2—C15—H15	124.2
C2—C1—S1	112.55 (13)	C19—C17—C16	112.55 (15)
C2—C1—H1	123.7	C19—C17—C18	126.08 (16)
S1—C1—H1	123.7	C16—C17—C18	121.33 (16)
O1—C4—C3	124.18 (18)	C27—C28—C23	120.12 (17)
O1—C4—H4	117.9	С27—С28—Н28	119.9
C3—C4—H4	117.9	С23—С28—Н28	119.9
C1—C2—C3	112.67 (15)	C25—C24—C23	120.86 (17)
C1—C2—H2	123.7	C25—C24—H24	119.6
С3—С2—Н2	123.7	C23—C24—H24	119.6
C13—C14—C9	120.65 (17)	C15—C16—C17	113.03 (16)
C13—C14—H14	119.7	C15—C16—H16	123.5
C9—C14—H14	119.7	C17—C16—H16	123.5
C11—C12—C13	119.55 (17)	O3—C18—C17	127.09 (17)
C11—C12—H12	120.2	O3—C18—H18	116.5
C13—C12—H12	120.2	C17—C18—H18	116.5
C12—C13—C14	120.35 (16)	C26—C25—C24	120.30 (18)
С12—С13—Н13	119.8	С26—С25—Н25	119.9
C14—C13—H13	119.8	C24—C25—H25	119.9
C9—C10—C11	120.53 (16)	C25—C26—C27	119.70 (17)
С9—С10—Н10	119.7	C25—C26—H26	120.1
C11—C10—H10	119.7	C27—C26—H26	120.1
C12—C11—C10	120.59 (18)	C28—C27—C26	120.51 (17)
C12—C11—H11	119.7	С28—С27—Н27	119.7
C10—C11—H11	119.7	С26—С27—Н27	119.7

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D···· A	D—H··· A
C1—H1…O4 ⁱ	0.93	2.49	3.125 (2)	126
C10—H1O…O3 ⁱ	0.93	2.59	3.466 (2)	158
С15—Н15…О2 ^{іі}	0.93	2.44	3.287 (2)	152

Symmetry codes: (i) *x*, *y*–1, *z*; (ii) *x*+1, *y*, *z*.