

IUCrData

ISSN 2414-3146

Received 23 December 2017 Accepted 23 December 2017

Edited by W. T. A. Harrison, University of Aberdeen, Scotland

Additional corresponding author, e-mail: kariukib@cardiff.ac.uk.

Keywords: crystal structure; indenopyrazole.

CCDC reference: 1813277

Structural data: full structural data are available from iucrdata.iucr.org

Ethyl 1-phenyl-1,4-dihydroindeno[1,2-c]pyrazole-3carboxylate

Gamal A. El-Hiti,^a* Hanan A. Mohamed,^{b,c} Bakr F. Abdel-Wahab,^{b,c} Mohammad Hayal Alotaibi,^d Amany S. Hegazy^e and Benson M. Kariuki^e‡

^aCornea Research Chair, Department of Optometry, College of Applied Medical Sciences, King Saud University, PO Box 10219, Riyadh 11433, Saudi Arabia, ^bDepartment of Chemistry, College of Science and Humanities, Shaqra University, Duwadimi, Saudi Arabia, ^cApplied Organic Chemistry Department, National Research Centre, Dokki, Giza, Egypt, ^dNational Center for Petrochemicals Technology, King Abdulaziz City for Science and Technology, PO Box 6086, Riyadh 11442, Saudi Arabia, and ^eSchool of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, UK. *Correspondence e-mail: gelhiti@ksu.edu.sa

The non-H atoms of the title molecule, $C_{19}H_{16}N_2O_2$, are almost coplanar (r.m.s. deviation = 0.019 Å), apart from the phenyl group, which is disordered with two components of almost equal occupancy: the dihedral angle between them is 78.9 (3)°. In the crystal, weak $C-H \cdots N$ hydrogen bonds link the molecules into [001] chains and aromatic π - π stacking interactions [shortest centroid–centroid separation = 3.747 (2) Å] form columns parallel to the *c*-axis direction.

Structure description

Pyrazole-3-carboylates can be synthesized using various efficient procedures (*e.g.* Khidre *et al.*, 2016; Radwan *et al.*, 2014). As part of our studies in this area, we now describe the synthesis and structure of the title compound.

The title molecule is almost planar (r.m.s. deviation = 0.017 Å) apart from the phenyl ring (Fig. 1), which is disordered with two components of almost equal occupancy [50.5 (4)% and 49.5 (4)%]. The components of the disordered phenyl rings are twisted by 54.6 (2) and 46.9 (2)° away from the least-squares plane of the rest of the molecule and the angle between the disorder components is 78.9 (3)°.

In the crystal, weak C-H···N hydrogen bonds (Table 1) link the molecules into [001] chains and aromatic π - π stacking interactions [shortest centroid-centroid separation = 3.747 (2) Å] generate columns parallel to the *c*-axis direction (Fig. 2).

data reports

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$C19-H19\cdots N2^{i}$	0.93	2.56	3.489 (5)	178

Symmetry code: (i) x, y, z - 1.

Figure 1

An ORTEP representation of the title molecule showing 50% probability displacement ellipsoids.

Synthesis and crystallization

Ethyl 2-oxo-2-(1-oxo-2,3-dihydro-1*H*-inden-2-yl)acetate and phenyl hydrazine hydrochloride were refluxed in ethanol

Figure 2 Crystal packing showing one component of the disordered ring in the molecules.

Table 2Experimental details.

Crystal data	
Chemical formula	$C_{19}H_{16}N_2O_2$
M _r	304.34
Crystal system, space group	Orthorhombic, Pna21
Temperature (K)	296
a, b, c (Å)	32.387 (3), 9.8559 (15), 5.0043 (8)
$V(Å^3)$	1597.4 (4)
Z	4
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	0.08
Crystal size (mm)	$0.38\times0.13\times0.05$
Data collection	
Diffractometer	Agilent SuperNova, Dual, Cu at
Dimutomotor	zero, Atlas
Absorption correction	Gaussian (CrysAlis PRO; Agilent,
	2014)
T_{\min}, T_{\max}	0.991, 0.998
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	10362, 3460, 2661
R _{int}	0.054
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.696
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.055, 0.149, 1.05
No. of reflections	3460
No. of parameters	240
No. of restraints	37
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({\rm e} \ {\rm \AA}^{-3})$	0.18, -0.17

Computer programs: CrysAlis PRO (Agilent, 2014), SHELXS2013 (Sheldrick, 2008), SHELXL2013 (Sheldrick, 2015), ORTEP-3 for Windows and WinGX (Farrugia, 2012) and CHEMDRAW Ultra (Cambridge Soft, 2001).

solution for 4 h. The mixture was left to cool and the solid obtained was filtered, washed (ethanol) and dried. Recrystallization from dimethylformamide solution provided paleyellow crystals.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. The phenyl ring was modelled with two disorder components with occupancies of 49.5 (4) and 50.5 (4)%.

Funding information

The project was supported by King Saud University, Deanship of Scientific Research, Research Chairs.

References

- Agilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.
- Cambridge Soft. CHEMDRAW Ultra. Cambridge Soft Corporation, Cambridge, Massachusetts, USA.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Khidre, R. E., Abdel-Wahab, B. F., Farahat, A. A. & Mohamed, H. A. (2016). *J. Heterocycl. Chem.* **53**, 13–31.
- Radwan, A. A., Ghorab, M. A., Alsaid, M. S. & Alanazi, F. K. (2014). *Acta Pharm.* 64, 335–344.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.

full crystallographic data

IUCrData (2018). 3, x171840 [https://doi.org/10.1107/S2414314617018405]

Ethyl 1-phenyl-1,4-dihydroindeno[1,2-c]pyrazole-3-carboxylate

Gamal A. El-Hiti, Hanan A. Mohamed, Bakr F. Abdel-Wahab, Mohammad Hayal Alotaibi, Amany S. Hegazy and Benson M. Kariuki

Ethyl 1-phenyl-1,4-dihydroindeno[1,2-c]pyrazole-3-carboxylate

Crystal data

C19H16N2O2 $M_r = 304.34$ Orthorhombic, $Pna2_1$ a = 32.387(3) Å *b* = 9.8559 (15) Å c = 5.0043 (8) Å V = 1597.4 (4) Å³ Z = 4F(000) = 640

Data collection

Agilent SuperNova, Dual, Cu at zero, Atlas diffractometer ω scans Absorption correction: gaussian (CrysAlisPro; Agilent, 2014) $T_{\rm min} = 0.991, T_{\rm max} = 0.998$ 10362 measured reflections

Refinement

Refinement on F^2 Primary atom site location: structure-invariant Least-squares matrix: full direct methods $R[F^2 > 2\sigma(F^2)] = 0.055$ Hydrogen site location: inferred from $wR(F^2) = 0.149$ neighbouring sites *S* = 1.05 H-atom parameters constrained 3460 reflections $w = 1/[\sigma^2(F_0^2) + (0.0805P)^2 + 0.1345P]$ where $P = (F_o^2 + 2F_c^2)/3$ 240 parameters 37 restraints $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{\rm max} = 0.18 \ {\rm e} \ {\rm \AA}^{-3}$

Special details

Experimental. Version 1.171.37.35g (release 09-12-2014 CrysAlis171 .NET) (compiled Dec 9 2014.15:38:47) Numerical absorption correction based on gaussian integration over a multifaceted crystal model Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

 $D_{\rm x} = 1.265 {\rm Mg} {\rm m}^{-3}$ Mo *K* α radiation, $\lambda = 0.71073$ Å Cell parameters from 1394 reflections $\theta = 4.1 - 25.3^{\circ}$ $\mu = 0.08 \text{ mm}^{-1}$ T = 296 KBlock, pale yellow $0.38 \times 0.13 \times 0.05 \text{ mm}$

3460 independent reflections 2661 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.054$ $\theta_{\rm max} = 29.6^\circ, \ \theta_{\rm min} = 2.2^\circ$ $h = -44 \rightarrow 39$ $k = -11 \rightarrow 12$ $l = -5 \rightarrow 6$

 $\Delta \rho_{\rm min} = -0.17 \ {\rm e} \ {\rm \AA}^{-3}$

Refinement. All hydrogen atoms were placed in calculated positions (C—H = 0.93–0.97 Å) and using a riding model with $U_{iso}(H) = 1.2U_{eq}(C)$ or $1.5U_{eq}(methyl C)$. The methyl groups were allowed to rotate, but not to tip, to best fit the electron density.

	x	У	Z	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
C1	0.38927 (8)	0.1784 (3)	0.9703 (6)	0.0522 (6)	
C2	0.41595 (7)	0.0900 (3)	1.0968 (7)	0.0532 (6)	
C3	0.45872 (8)	0.1067 (3)	0.9863 (7)	0.0593 (7)	
H3A	0.4683	0.0241	0.9010	0.071*	
H3B	0.4782	0.1330	1.1245	0.071*	
C4	0.45247 (9)	0.2195 (3)	0.7847 (7)	0.0580 (7)	
C5	0.41075 (8)	0.2621 (3)	0.7730 (7)	0.0552 (6)	
C6	0.48178 (10)	0.2807 (4)	0.6220 (8)	0.0705 (8)	
H6	0.5093	0.2542	0.6295	0.085*	
C7	0.46916 (13)	0.3826 (4)	0.4476 (8)	0.0779 (10)	
H7	0.4885	0.4246	0.3378	0.093*	
C8	0.42798 (12)	0.4225 (4)	0.4353 (8)	0.0748 (9)	
H8	0.4202	0.4904	0.3164	0.090*	
C9	0.39854 (10)	0.3633 (3)	0.5956 (7)	0.0648 (8)	
H9	0.3711	0.3903	0.5857	0.078*	
C10	0.39149 (8)	0.0192 (3)	1.2805 (7)	0.0537 (6)	
C11	0.40527 (8)	-0.0897(3)	1.4630 (7)	0.0588 (7)	
C12	0.38793 (12)	-0.2480 (4)	1.7995 (8)	0.0749 (9)	
H12A	0.4093	-0.2157	1.9192	0.090*	
H12B	0.3987	-0.3246	1.6995	0.090*	
C13	0.35063 (14)	-0.2894(5)	1.9549 (11)	0.0985 (13)	
H13A	0.3399	-0.2123	2.0491	0.148*	
H13B	0.3581	-0.3588	2.0807	0.148*	
H13C	0.3300	-0.3237	1.8349	0.148*	
C14	0.31175 (11)	0.2208 (5)	1.0428 (9)	0.050 (3)	0.505 (4)
C15	0.28917 (13)	0.2838 (5)	1.2438 (7)	0.0645 (16)	0.505 (4)
H15	0.2983	0.2801	1.4197	0.077*	0.505 (4)
C16	0.25288 (12)	0.3522 (5)	1.1818 (8)	0.075 (2)	0.505 (4)
H16	0.2378	0.3943	1.3163	0.090*	0.505 (4)
C17	0.23917 (12)	0.3576 (6)	0.9188 (9)	0.074 (4)	0.505 (4)
H17	0.2149	0.4033	0.8774	0.089*	0.505 (4)
C18	0.26174 (13)	0.2946 (6)	0.7178 (7)	0.083 (2)	0.505 (4)
H18	0.2526	0.2982	0.5419	0.099*	0.505 (4)
C19	0.29804 (13)	0.2262 (5)	0.7798 (8)	0.0689 (18)	0.505 (4)
H19	0.3131	0.1840	0.6453	0.083*	0.505 (4)
C14A	0.31445 (9)	0.2308 (4)	1.0024 (12)	0.045 (2)	0.495 (4)
C15A	0.31241 (10)	0.3716 (3)	0.9934 (12)	0.0573 (14)	0.495 (4)
H15A	0.3363	0.4229	1.0129	0.069*	0.495 (4)
C16A	0.27464 (13)	0.4357 (3)	0.9553 (12)	0.0685 (17)	0.495 (4)
H16A	0.2733	0.5299	0.9493	0.082*	0.495 (4)
C17A	0.23890 (10)	0.3590 (4)	0.9262 (12)	0.072 (4)	0.495 (4)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

H17A	0.2136	0.4019	0.9007	0.086*	0.495 (4)
C18A	0.24094 (9)	0.2182 (4)	0.9351 (11)	0.0652 (17)	0.495 (4)
H18A	0.2170	0.1669	0.9156	0.078*	0.495 (4)
C19A	0.27872 (12)	0.1541 (3)	0.9732 (11)	0.0565 (14)	0.495 (4)
H19A	0.2801	0.0599	0.9792	0.068*	0.495 (4)
N1	0.35113 (6)	0.1593 (2)	1.0792 (6)	0.0543 (6)	
N2	0.35193 (6)	0.0611 (2)	1.2712 (6)	0.0575 (6)	
01	0.44040 (7)	-0.1290 (3)	1.4686 (7)	0.0823 (8)	
O2	0.37529 (6)	-0.1400 (2)	1.6176 (5)	0.0663 (6)	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U ²³
C1	0.0458 (13)	0.0540 (14)	0.0569 (15)	0.0039 (10)	-0.0074 (12)	-0.0135 (12)
C2	0.0431 (12)	0.0557 (14)	0.0607 (15)	0.0047 (10)	-0.0058 (12)	-0.0127 (13)
C3	0.0469 (13)	0.0653 (16)	0.0658 (17)	0.0072 (11)	-0.0032 (13)	-0.0138 (15)
C4	0.0532 (14)	0.0636 (17)	0.0571 (15)	0.0008 (11)	-0.0005 (13)	-0.0135 (14)
C5	0.0540 (14)	0.0554 (14)	0.0561 (15)	0.0024 (11)	-0.0036 (13)	-0.0156 (13)
C6	0.0594 (16)	0.080(2)	0.072 (2)	-0.0042 (15)	0.0023 (15)	-0.0102 (18)
C7	0.087 (2)	0.075 (2)	0.072 (2)	-0.0097 (17)	0.0097 (19)	-0.0071 (17)
C8	0.093 (2)	0.0641 (19)	0.068 (2)	-0.0001 (16)	-0.0030 (18)	0.0000 (16)
C9	0.0684 (18)	0.0589 (16)	0.0669 (18)	0.0061 (13)	-0.0076 (16)	-0.0089 (15)
C10	0.0448 (12)	0.0489 (13)	0.0674 (16)	0.0024 (10)	-0.0085 (12)	-0.0085 (13)
C11	0.0498 (14)	0.0550 (15)	0.0717 (19)	0.0048 (11)	-0.0071 (14)	-0.0122 (14)
C12	0.086 (2)	0.0666 (19)	0.072 (2)	0.0158 (16)	-0.0073 (19)	-0.0028 (17)
C13	0.099 (3)	0.100 (3)	0.096 (3)	-0.005 (2)	-0.002 (3)	0.018 (3)
C14	0.039 (4)	0.055 (5)	0.056 (5)	0.003 (3)	0.005 (3)	0.001 (4)
C15	0.058 (3)	0.084 (4)	0.051 (3)	0.015 (3)	0.002 (3)	-0.001 (3)
C16	0.064 (4)	0.099 (5)	0.062 (4)	0.030 (3)	0.007 (3)	-0.001 (3)
C17	0.054 (7)	0.098 (7)	0.069 (7)	0.023 (7)	-0.002 (7)	0.000 (7)
C18	0.062 (4)	0.130 (7)	0.057 (4)	0.025 (4)	-0.010 (3)	0.009 (4)
C19	0.053 (3)	0.091 (5)	0.063 (4)	0.012 (3)	0.000 (3)	-0.019 (4)
C14A	0.040 (4)	0.052 (5)	0.043 (3)	0.004 (3)	-0.005 (3)	-0.001 (3)
C15A	0.052 (3)	0.050 (3)	0.070 (4)	0.003 (2)	0.001 (3)	-0.007 (3)
C16A	0.063 (3)	0.062 (3)	0.081 (4)	0.014 (3)	-0.002 (3)	-0.005 (3)
C17A	0.050 (6)	0.098 (7)	0.067 (7)	0.026 (6)	-0.004 (6)	0.008 (7)
C18A	0.041 (3)	0.093 (5)	0.062 (4)	0.000 (3)	-0.006 (2)	0.000 (3)
C19A	0.049 (3)	0.061 (3)	0.060 (3)	0.000 (2)	-0.005 (3)	-0.001 (3)
N1	0.0425 (10)	0.0509 (12)	0.0696 (15)	0.0043 (8)	-0.0064 (10)	-0.0064 (11)
N2	0.0440 (11)	0.0502 (12)	0.0782 (16)	0.0002 (8)	-0.0075 (12)	-0.0025 (12)
01	0.0547 (12)	0.0882 (16)	0.104 (2)	0.0218 (10)	-0.0061 (13)	0.0110 (15)
O2	0.0587 (11)	0.0633 (12)	0.0768 (14)	0.0092 (9)	-0.0048 (11)	0.0027 (11)

Geometric parameters (Å, °)

C1—N1	1.363 (4)	С13—Н13В	0.9600
C1—C2	1.380 (4)	С13—Н13С	0.9600
C1—C5	1.463 (5)	C14—C15	1.3900

C2—C10	1.400 (5)	C14—C19	1.3900
C2—C3	1.501 (4)	C14—N1	1.424 (3)
C3—C4	1.515 (5)	C15—C16	1.3900
С3—НЗА	0.9700	C15—H15	0.9300
С3—Н3В	0.9700	C16—C17	1.3900
C4—C6	1.388 (5)	C16—H16	0.9300
C4—C5	1.416 (4)	C17—C18	1.3900
С5—С9	1.393 (5)	C17—H17	0.9300
C6—C7	1.392 (6)	C18—C19	1.3900
С6—Н6	0.9300	C18—H18	0.9300
C7—C8	1.392 (5)	С19—Н19	0.9300
С7—Н7	0.9300	C14A—C15A	1.3900
C8—C9	1.376 (5)	C14A—C19A	1.3900
С8—Н8	0.9300	C14A—N1	1.434 (4)
С9—Н9	0.9300	C15A—C16A	1.3900
C10—N2	1.347 (3)	C15A—H15A	0.9300
C10—C11	1.478 (4)	C16A—C17A	1.3900
C11—O1	1.202 (3)	C16A—H16A	0.9300
C11—O2	1.337 (4)	C17A—C18A	1.3900
C12—O2	1.459 (4)	С17А—Н17А	0.9300
C12—C13	1.494 (6)	C18A—C19A	1.3900
C12—H12A	0.9700	C18A—H18A	0.9300
C12—H12B	0.9700	С19А—Н19А	0.9300
С13—Н13А	0.9600	N1—N2	1.364 (4)
N1—C1—C2	107.3 (3)	H13A—C13—H13C	109.5
N1—C1—C5	141.1 (2)	H13B—C13—H13C	109.5
C2—C1—C5	111.6 (2)	C15—C14—C19	120.0
C1—C2—C10	105.2 (2)	C15—C14—N1	124.7 (3)
C1—C2—C3	109.8 (3)	C19—C14—N1	115.1 (3)
C10—C2—C3	145.0 (3)	C16—C15—C14	120.0
C2—C3—C4	101.7 (2)	C16—C15—H15	120.0
С2—С3—НЗА	111.4	C14—C15—H15	120.0
С4—С3—НЗА	111.4	C15—C16—C17	120.0
С2—С3—Н3В	111.4	C15—C16—H16	120.0
C4—C3—H3B	111.4	C17—C16—H16	120.0
НЗА—СЗ—НЗВ	109.3	C16—C17—C18	120.0
C6—C4—C5	120.0 (3)	C16—C17—H17	120.0
C6—C4—C3	128.2 (3)	C18—C17—H17	120.0
C5—C4—C3	111.9 (3)	C19—C18—C17	120.0
C9—C5—C4			
	120.6 (3)	C19—C18—H18	120.0
C9—C5—C1	120.6 (3) 134.4 (3)	C19—C18—H18 C17—C18—H18	120.0 120.0
C9—C5—C1 C4—C5—C1	120.6 (3) 134.4 (3) 105.0 (3)	C19—C18—H18 C17—C18—H18 C18—C19—C14	120.0 120.0 120.0
C9—C5—C1 C4—C5—C1 C4—C6—C7	120.6 (3) 134.4 (3) 105.0 (3) 118.7 (3)	C19—C18—H18 C17—C18—H18 C18—C19—C14 C18—C19—H19	120.0 120.0 120.0 120.0
C9—C5—C1 C4—C5—C1 C4—C6—C7 C4—C6—H6	120.6 (3) 134.4 (3) 105.0 (3) 118.7 (3) 120.6	C19—C18—H18 C17—C18—H18 C18—C19—C14 C18—C19—H19 C14—C19—H19	120.0 120.0 120.0 120.0 120.0
C9—C5—C1 C4—C5—C1 C4—C6—C7 C4—C6—H6 C7—C6—H6	120.6 (3) 134.4 (3) 105.0 (3) 118.7 (3) 120.6 120.6	C19—C18—H18 C17—C18—H18 C18—C19—C14 C18—C19—H19 C14—C19—H19 C15A—C14A—C19A	120.0 120.0 120.0 120.0 120.0 120.0
C9—C5—C1 C4—C5—C1 C4—C6—C7 C4—C6—H6 C7—C6—H6 C8—C7—C6	120.6 (3) 134.4 (3) 105.0 (3) 118.7 (3) 120.6 120.6 120.8 (3)	C19—C18—H18 C17—C18—H18 C18—C19—C14 C18—C19—H19 C14—C19—H19 C15A—C14A—C19A C15A—C14A—N1	120.0 120.0 120.0 120.0 120.0 120.0 120.0 122.6 (2)

С6—С7—Н7	119.6	C14A—C15A—C16A	120.0
C9—C8—C7	121.2 (3)	C14A—C15A—H15A	120.0
С9—С8—Н8	119.4	C16A—C15A—H15A	120.0
С7—С8—Н8	119.4	C17A—C16A—C15A	120.0
C8—C9—C5	118.6 (3)	C17A—C16A—H16A	120.0
С8—С9—Н9	120.7	C15A—C16A—H16A	120.0
С5—С9—Н9	120.7	C16A—C17A—C18A	120.0
N2-C10-C2	111.3 (3)	C16A—C17A—H17A	120.0
N2-C10-C11	122.1 (3)	C18A—C17A—H17A	120.0
C2-C10-C11	126.7 (2)	C19A—C18A—C17A	120.0
O1—C11—O2	123.6 (3)	C19A—C18A—H18A	120.0
O1—C11—C10	122.3 (3)	C17A—C18A—H18A	120.0
O2—C11—C10	114.1 (2)	C18A—C19A—C14A	120.0
O2—C12—C13	107.3 (3)	C18A—C19A—H19A	120.0
O2—C12—H12A	110.3	C14A—C19A—H19A	120.0
C13—C12—H12A	110.3	C1—N1—N2	111.2 (2)
O2—C12—H12B	110.3	C1—N1—C14	134.6 (3)
C13—C12—H12B	110.3	N2—N1—C14	114.1 (3)
H12A—C12—H12B	108.5	C1—N1—C14A	125.2 (3)
C12—C13—H13A	109.5	N2—N1—C14A	123.6 (3)
C12—C13—H13B	109.5	C10—N2—N1	105.1 (2)
H13A—C13—H13B	109.5	C11—O2—C12	115.3 (2)
C12—C13—H13C	109.5		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	Н…А	D···A	D—H···A
C19—H19…N2 ⁱ	0.93	2.56	3.489 (5)	178

Symmetry code: (i) x, y, z-1.