

ISSN 2414-3146

Received 5 January 2018 Accepted 15 January 2018

Edited by W. T. A. Harrison, University of Aberdeen, Scotland

Keywords: crystal structure; $\pi - \pi$ stacking interactions; nitrobenzaldehyde.

CCDC reference: 1816967

Structural data: full structural data are available from iucrdata.iucr.org

3-Nitrobenzaldehyde

Antonius H.J. Engwerda, Sander J.T. Brugman, Paul Tinnemans* and Elias Vlieg

Radboud University, Institute for Molecules and Materials, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands. *Correspondence e-mail: p.tinnemans@science.ru.nl

Polymorph I of the title compound, $C_7H_5NO_3$, is approximately planar: the dihedral angle between the benzene ring and the nitro group is 10.41 (4)° and the aldehyde O atom deviates from the ring plane by 0.165 (1) Å. In the crystal, aromatic π - π stacking interactions are observed [centroid-centroid separation = 3.7363 (5) Å].

Structure description

The existence of two polymorphic forms of the title compound, $C_7H_5NO_3$, has been known for almost eighty years (Lindpaintner, 1939); however, to date no crystal structure of the title compound has been reported. Here, we present the crystal structure of the stable polymorph (polymorph I). For the crystal structure of the closely related compound 2-nitrobenzaldehyde, see Coppens & Schmidt (1964) and Coppens (1964) and for the crystal structure of 4-nitrobenzalhyde, see Jackisch *et al.* (1989) and King & Bryant (1996).

The molecular structure of the title compound is shown in Fig. 1. The dihedral angle between the benzene ring and the nitro group is 10.41 (4)° and the aldehyde O atom deviates from the ring plane by 0.165 (1) Å. In the crystal, aromatic π - π stacking interactions are observed [centroid–centroid separation = 3.7363 (5) Å].

The melting point of the stable polymorph is 327 K, while the melting point of polymorph II is 322 K, as determined using the onset temperature of differential scanning calorimetry.

Synthesis and crystallization

A 100 mg mL⁻¹ solution of 3-nitrobenzaldehyde (Merck, no indication of purity given) in acetone was filtered to obtain a clear yellow solution. Slow evaporation of a 1:1 mixture

Figure 1

The molecular structure of the title compound, showing displacement ellipsoids drawn at the 30% probability level.

of this solution and heptane resulted in large colourless needle-shaped crystals of the title compound after two days.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1.

References

- Bruker (2011). SADABS2014/5. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2012). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Coppens, P. (1964). Acta Cryst. 17, 573-578.
- Coppens, P. & Schmidt, G. M. J. (1964). Acta Cryst. 17, 222-228.
- Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284.
- Jackisch, M. A., Fronczek, F. R. & Butler, L. G. (1989). *Acta Cryst.* C45, 2016–2018.
- King, J. A. & Bryant, G. L. (1996). Acta Cryst. C52, 1691-1693.
- Lindpaintner, E. (1939). Mikrochim. Acta, 27, 21-41.

Table 1	
Experimental	details.

Crystal data Chemical formula C7H5NO3 151.12 M_{r} Crystal system, space group Monoclinic, P21 Temperature (K) 150 3.7363 (2), 7.0071 (3), 12.5877 (6) *a*, *b*, *c* (Å) 94.8144 (16) β (°) $V(Å^3)$ 328.39 (3) Z 2 Radiation type Μο Κα $\mu \text{ (mm}^{-1}\text{)}$ 0.12 Crystal size (mm) $0.48 \times 0.17 \times 0.09$ Data collection Bruker D8 Quest APEX3 Diffractometer Absorption correction Multi-scan (SADABS; Bruker, 2011) 0.713, 0.748 T_{\min}, T_{\max} No. of measured, independent and 18662, 4005, 3735 observed $[I > 2\sigma(I)]$ reflections 0.021 R_{int} $(\sin \theta / \lambda)_{max} (\text{\AA}^{-1})$ 0.909 Refinement $R[F^2 > 2\sigma(F^2)], wR(F^2), S$ 0.030, 0.089, 1.05 No. of reflections 4005 No. of parameters 100 No. of restraints H-atom treatment H-atom parameters constrained 0.38, -0.21 $\Delta \rho_{\rm max}, \Delta \rho_{\rm min}$ (e Å⁻ Flack x determined using 1595 Absolute structure quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$ (Parsons et al., 2013). -0.02(13)Absolute structure parameter

Computer programs: APEX3 (Bruker, 2012), PEAKREF (Schreurs, 2013), SAINT (Bruker, 2012), SHELXT2014/4 (Sheldrick, 2015a), SHELXL2016/6 (Sheldrick, 2015b), PLATON (Spek, 2009) and ShelXLe (Hübschle et al., 2011).

Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.

Schreurs, A. M. M. (2013). *PEAKREF*. Utrecht University, The Netherlands.

Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.

- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

full crystallographic data

IUCrData (2018). 3, x180092 [https://doi.org/10.1107/S2414314618000925]

3-Nitrobenzaldehyde

Antonius H.J. Engwerda, Sander J.T. Brugman, Paul Tinnemans and Elias Vlieg

3-Nitrobenzaldehyde

Crystal data C₇H₅NO₃ $M_r = 151.12$ Monoclinic, P2₁ a = 3.7363 (2) Å b = 7.0071 (3) Å c = 12.5877 (6) Å $\beta = 94.8144$ (16)° V = 328.39 (3) Å³ Z = 2F(000) = 156

Data collection

Bruker D8 Quest APEX3 diffractometer Radiation source: sealed tube Graphite monochromator Detector resolution: 10.4 pixels mm⁻¹ φ and ω scans Absorption correction: multi-scan (SADABS; Bruker, 2011) $T_{\min} = 0.713$, $T_{\max} = 0.748$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.030$ $wR(F^2) = 0.089$ S = 1.054005 reflections 100 parameters 1 restraint Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map $D_x = 1.528 \text{ Mg m}^{-3}$ Melting point: 327 K Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 9919 reflections $\theta = 2.9-40.3^{\circ}$ $\mu = 0.12 \text{ mm}^{-1}$ T = 150 KNeedle, colourless $0.48 \times 0.17 \times 0.09 \text{ mm}$

18662 measured reflections 4005 independent reflections 3735 reflections with $I > 2\sigma(I)$ $R_{int} = 0.021$ $\theta_{max} = 40.3^{\circ}, \ \theta_{min} = 3.3^{\circ}$ $h = -6 \rightarrow 6$ $k = -12 \rightarrow 12$ $l = -22 \rightarrow 22$

Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0643P)^2 + 0.0066P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.38 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -0.21 \text{ e } \text{Å}^{-3}$ Absolute structure: Flack *x* determined using 1595 quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$ (Parsons *et al.*, 2013). Absolute structure parameter: -0.02 (13)

Special details

Experimental. Polymorph I

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	X	у	Ζ	$U_{ m iso}*/U_{ m eq}$
O01	0.3805 (2)	0.36964 (11)	0.47803 (5)	0.02774 (14)
O02	0.5659 (2)	0.81726 (10)	0.79109 (6)	0.02858 (15)
O03	0.3141 (2)	0.75360 (14)	0.93565 (6)	0.03273 (17)
N01	0.39008 (18)	0.71338 (9)	0.84537 (5)	0.01838 (11)
C01	0.26607 (18)	0.52935 (9)	0.79964 (5)	0.01429 (10)
C02	0.1223 (2)	0.39635 (11)	0.86644 (6)	0.01736 (12)
H02	0.101303	0.424953	0.939430	0.021*
C03	0.0102 (2)	0.22081 (11)	0.82413 (6)	0.01891 (13)
H03	-0.087439	0.127606	0.868273	0.023*
C04	0.0419 (2)	0.18223 (10)	0.71667 (6)	0.01706 (12)
H04	-0.036577	0.062838	0.687503	0.020*
C05	0.18828 (17)	0.31822 (9)	0.65163 (5)	0.01416 (10)
C06	0.30344 (19)	0.49536 (10)	0.69286 (5)	0.01405 (10)
H06	0.403384	0.588642	0.649244	0.017*
C07	0.2287 (2)	0.26924 (11)	0.53892 (6)	0.01863 (12)
H07	0.129789	0.151915	0.512489	0.022*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O01	0.0390 (3)	0.0266 (3)	0.0188 (2)	-0.0037 (3)	0.0094 (2)	-0.0013 (2)
O02	0.0373 (3)	0.0184 (2)	0.0311 (3)	-0.0106 (3)	0.0088 (3)	-0.0032 (2)
O03	0.0461 (4)	0.0320 (3)	0.0209 (3)	-0.0065 (3)	0.0074 (3)	-0.0112 (3)
N01	0.0201 (3)	0.0162 (2)	0.0187 (2)	-0.00059 (19)	0.00057 (19)	-0.00306 (18)
C01	0.0145 (2)	0.0137 (2)	0.0148 (2)	-0.00082 (17)	0.00209 (18)	-0.00065 (17)
C02	0.0185 (3)	0.0190 (3)	0.0148 (2)	-0.0012 (2)	0.0030 (2)	0.00250 (19)
C03	0.0203 (3)	0.0171 (3)	0.0196 (3)	-0.0025 (2)	0.0034 (2)	0.0042 (2)
C04	0.0173 (3)	0.0139 (2)	0.0200 (3)	-0.00153 (19)	0.0015 (2)	0.0017 (2)
C05	0.0143 (2)	0.0129 (2)	0.0153 (2)	0.00052 (19)	0.00169 (18)	0.00008 (19)
C06	0.0148 (2)	0.0132 (2)	0.0145 (2)	-0.00045 (17)	0.00272 (17)	0.00045 (17)
C07	0.0216 (3)	0.0172 (2)	0.0174 (3)	0.0010 (2)	0.0028 (2)	-0.0031 (2)

Geometric parameters (Å, °)

O01—C07	1.2152 (10)	C03—C04	1.3941 (10)
O02—N01	1.2262 (9)	С03—Н03	0.9500
O03—N01	1.2271 (9)	C04—C05	1.3974 (9)
N01—C01	1.4711 (9)	C04—H04	0.9500

C01—C06	1.3836 (9)	C05—C06	1.3992 (10)
C01—C02	1.3928 (9)	C05—C07	1.4797 (9)
C02—C03	1.3909 (11)	C06—H06	0.9500
C02—H02	0.9500	C07—H07	0.9500
O03—N01—O02 O03—N01—C01 O02—N01—C01 C06—C01—C02 C06—C01—N01 C03—C02—C01 C03—C02—H02 C01—C02—H02 C02—C03—C04 C02—C03—H03 C04—C03—H03	123.79 (8) 118.29 (7) 117.92 (6) 123.15 (6) 118.48 (6) 118.36 (6) 118.65 (6) 120.7 120.7 119.72 (6) 120.1	C03—C04—C05 C03—C04—H04 C05—C04—H04 C04—C05—C06 C04—C05—C07 C06—C05—C07 C01—C06—C05 C01—C06—H06 C05—C06—H06 O01—C07—C05 O01—C07—H07 C05—C07—H07	120.36 (6) 119.8 119.8 120.73 (6) 118.69 (6) 120.56 (6) 117.39 (6) 121.3 121.3 124.13 (7) 117.9
O03—N01—C01—C06	170.48 (8)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-0.38 (10)
O02—N01—C01—C06	-10.01 (10)		177.92 (7)
O03—N01—C01—C02	-10.63 (11)		0.25 (10)
O02—N01—C01—C02	168.88 (7)		179.09 (6)
C06—C01—C02—C03	-0.08 (11)		-0.02 (9)
N01—C01—C02—C03	-178.92 (7)		-178.30 (6)
C01—C02—C03—C04	-0.34 (11)		-173.33 (8)
C02—C03—C04—C05	0.56 (11)		4.98 (12)