

ISSN 2414-3146

Received 15 December 2017 Accepted 12 January 2018

Edited by H. Ishida, Okayama University, Japan

Keywords: crystal structure; charge-transfer complex; 4,6-dimethyldibenzothiophene; 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane.

CCDC reference: 1816551

Structural data: full structural data are available from iucrdata.iucr.org

The 2:1 charge-transfer complex of 4,6-dimethyldibenzothiophene and 7,7,8,8-tetracyano-2,3,5,6tetrafluoroquinodimethane

Takuya Fujii and Hideo Yamakado*

Faculty of Systems Engineering, Wakayama University, Sakaedani 930, Wakayama 640-8510, Japan. *Correspondence e-mail: yamakado@sys.wakayama-u.ac.jp

The title compound, $2C_{14}H_{12}S \cdot C_{12}N_4F_4$, was obtained by using 4,6-dimethyldibenzothiophene (DMDBT) as an electron donor and 7,7,8,8-tetracyano-2,3,5,6-tetrafluoroquinodimethane (F₄TCNQ) as an electron acceptor. The asymmetric unit consists of one DMDBT molecule and one half of an F₄TCNQ molecule, which lies on an inversion centre. In the crystal, the DMDBT and F₄TCNQ molecules form a 2:1 unit *via* a charge-transfer interaction, with a centroid–centroid distance of 3.3681 (15) Å between the five-membered ring of DMDBT and the six-membered ring of F₄TCNQ. An F···F contact [2.911 (1) Å] is also observed.

Structure description

4,6-Dimethyldibenzothiophene (DMDBT) is one of the sulfur compounds contained in light oil. Hydrodesulfurization is used to remove the sulfur compounds in light oil. However, DMDBT is difficult to desulfurize because the two methyl groups interfere with the reaction of hydrodesulfurization. Although Milenkovic *et al.* (1999) succeeded in desulfurizing from light oil by the formation of charge-transfer complexes using 2,4,5,7-tetranitro-9-fluorene (TNF) as an electron acceptor, the crystal structure of DMDBT–TNF was not determined. The crystal structures of DMDBT and 7,7,8,8-tetracyano-2,3,5,6-tetrafluoroquinodimethane (F₄TCNQ) have been determined by Meille *et al.* (1996) and Krupskaya *et al.* (2015), respectively. In this study, we obtained a novel complex using DMDBT as a donor and F₄TCNQ as an acceptor, and determined the crystal structure.

The asymmetric unit consists of one DMDBT molecule and one half of an F_4TCNQ molecule, which lies on an inversion centre (Fig. 1). A donor-acceptor-donor 2:1 unit is

Figure 1

The molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level and H atoms are shown as small spheres. [Symmetry code: (i) -x + 2, -y + 1, -z.]

formed *via* a charge-transfer interaction (Fig. 2); the centroidcentroid distance between the five-membered ring of DMDBT and the six-membered ring of F_4TCNQ is 3.3681 (15) Å. The units are stacked in a column along [110]. An $F \cdots F$ contact [2.911 (1) Å] is also observed (Fig. 3).

Figure 2

A packing diagram of the title compound, showing the 2:1 electron donor and acceptor unit.

Figure 3

A packing diagram of the title compound, showing the $F\!\cdots\!F$ contacts as blue dashed lines.

Tal	ble	1	
Ex	peri	mental	details

Crystal data	
Chemical formula	$2C_{14}H_{12}S \cdot C_{12}F_4N_4$
Mr	700.77
Crystal system, space group	Triclinic, P1
Temperature (K)	93
<i>a</i> , <i>b</i> , <i>c</i> (Å)	7.570 (2), 10.206 (3), 11.549 (4)
α, β, γ (°)	113.400 (2), 90.010 (3), 108.607 (3)
$V(\dot{A}^3)$	767.8 (4)
Ζ	1
Radiation type	Μο Κα
$\mu (\text{mm}^{-1})$	0.24
Crystal size (mm)	$0.42 \times 0.10 \times 0.02$
Data collection	
Diffractometer	Rigaku Saturn724
Absorption correction	Multi-scan (<i>REQAB</i> ; Rigaku, 1998)
T_{\min}, T_{\max}	0.854, 0.995
No. of measured, independent and observed $[F^2 > 2\sigma(F^2)]$ reflec-	6222, 3311, 2887
R	0.021
$(\sin \theta / \lambda)_{max} (\dot{A}^{-1})$	0.644
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.035, 0.091, 1.03
No. of reflections	3311
No. of parameters	228
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({\rm e} {\rm \AA}^{-3})$	0.40, -0.25

Computer programs: CrystalClear (Rigaku, 2008), SIR2014 (Burla et al., 2012), SHELXL2016 (Sheldrick, 2015), ORTEP-3 for Windows (Farrugia, 2012), Crystal-Structure (Rigaku, 2016) and publCIF (Westrip, 2010).

Synthesis and crystallization

The title complex was obtained by mixing an acetonitrile solution (3 ml) of DMDBT (2.2 mg) with an acetonitrile solution (2.5 ml) of F_4TCNQ (2.7 mg), and then concentrating the solution for one day. The obtained black complex showed new charge-transfer bands around 600 nm in the UV–vis absorption spectrum, which were not observed for the raw materials.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1.

Funding information

This work was supported by JSPS KAKENHI grant No. JP17KT0100.

References

Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Mallamo, M., Mazzone, A., Polidori, G. & Spagna, R. (2012). J. Appl. Cryst. 45, 357–361.

- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Krupskaya, Y., Gibertini, M., Marzari, N. & Morpurgo, A. F. (2015). *Adv. Mater.* **27**, 2453–2458.
- Meille, V., Schulz, E., Lemaire, M., Faure, R. & Vrinat, M. (1996). *Tetrahedron*, **52**, 3953–3960.

Milenkovic, A., Schulz, E., Meille, V., Loffreda, D., Forissier, M., Vrinat, M., Sautet, P. & Lemaire, M. (1999). *Energy Fuels*, **13**, 881– 887.

Rigaku (1998). REQAB. Rigaku Corporation, Tokyo, Japan.

Rigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan. Rigaku (2016). CrystalStructure. Rigaku Corporation, Tokyo, Japan. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

full crystallographic data

IUCrData (2018). **3**, x180077 [https://doi.org/10.1107/S2414314618000779]

The 2:1 charge-transfer complex of 4,6-dimethyldibenzothiophene and 7,7,8,8-tetracyano-2,3,5,6-tetrafluoroquinodimethane

Takuya Fujii and Hideo Yamakado

Bis[6,10-dimethyl-8-thiatricyclo[7.4.0.0^{2,7}]trideca-1(9),2,4,6,10,12-hexaene] 2-[4-(dicyanomethylidene)-2,3,5,6-tetrafluorocyclohexa-2,5-dien-1-ylidene]propanedinitrile

Crystal data

 $2C_{14}H_{12}S \cdot C_{12}F_4N_4$ $M_r = 700.77$ Triclinic, $P\overline{1}$ a = 7.570 (2) Å b = 10.206 (3) Å c = 11.549 (4) Å a = 113.400 (2)° $\beta = 90.010$ (3)° $\gamma = 108.607$ (3)° V = 767.8 (4) Å³

Data collection

Rigaku Saturn724 diffractometer Detector resolution: 28.445 pixels mm⁻¹ ω scans Absorption correction: multi-scan (*REQAB*; Rigaku, 1998) $T_{\min} = 0.854, T_{\max} = 0.995$ 6222 measured reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.035$ $wR(F^2) = 0.091$ S = 1.033311 reflections 228 parameters 0 restraints Primary atom site location: structure-invariant direct methods Z = 1 F(000) = 360.00 $D_x = 1.516 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71075 \text{ Å}$ Cell parameters from 2475 reflections $\theta = 3.7-27.5^{\circ}$ $\mu = 0.24 \text{ mm}^{-1}$ T = 93 K Prism, black $0.42 \times 0.10 \times 0.02 \text{ mm}$

3311 independent reflections 2887 reflections with $F^2 > 2\sigma(F^2)$ $R_{int} = 0.021$ $\theta_{max} = 27.3^\circ, \ \theta_{min} = 3.7^\circ$ $h = -8 \rightarrow 9$ $k = -13 \rightarrow 13$ $l = -14 \rightarrow 12$

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.047P)^2 + 0.4352P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.40$ e Å⁻³ $\Delta\rho_{min} = -0.25$ e Å⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F^2 . R-factor (gt) are based on F. The threshold expression of $F^2 > 2.0$ sigma(F^2) is used only for calculating R-factor (gt).

	X	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
S1	0.50372 (5)	0.19776 (4)	0.00985 (3)	0.01267 (11)
F1	0.66794 (11)	0.46548 (10)	-0.11943 (8)	0.01555 (19)
F2	0.73704 (12)	0.60156 (10)	0.13100 (8)	0.0156 (2)
N1	1.37660 (19)	0.69718 (16)	0.40939 (13)	0.0196 (3)
N2	0.8594 (2)	0.75756 (17)	0.42387 (13)	0.0234 (3)
C1	1.0005 (2)	0.24541 (16)	0.16420 (14)	0.0134 (3)
H1	1.106198	0.219533	0.132407	0.016*
C2	1.0013 (2)	0.31783 (17)	0.29404 (14)	0.0144 (3)
H2	1.107384	0.340458	0.351784	0.017*
C3	0.8466 (2)	0.35811 (16)	0.34113 (14)	0.0149 (3)
H3	0.850956	0.408757	0.430689	0.018*
C4	0.6867 (2)	0.32626 (16)	0.26081 (14)	0.0135 (3)
C5	0.6874 (2)	0.25106 (16)	0.12964 (14)	0.0123 (3)
C6	0.6322 (2)	0.12100 (16)	-0.10872 (14)	0.0120 (3)
C7	0.5684 (2)	0.05155 (16)	-0.24017 (14)	0.0134 (3)
C8	0.6910 (2)	-0.00336 (16)	-0.31948 (14)	0.0150 (3)
H8	0.652923	-0.051750	-0.409160	0.018*
C9	0.8694 (2)	0.01070 (17)	-0.27078 (14)	0.0151 (3)
Н9	0.949518	-0.027864	-0.327803	0.018*
C10	0.9300 (2)	0.08007 (16)	-0.14069 (14)	0.0134 (3)
H10	1.050959	0.089629	-0.108152	0.016*
C11	0.8102 (2)	0.13592 (16)	-0.05784 (14)	0.0119 (3)
C12	0.8422 (2)	0.21067 (15)	0.08018 (13)	0.0116 (3)
C13	0.5213 (2)	0.36983 (18)	0.31136 (15)	0.0174 (3)
H13A	0.514343	0.452297	0.290378	0.026*
H13B	0.536587	0.404189	0.404152	0.026*
H13C	0.405198	0.281435	0.272533	0.026*
C14	0.3773 (2)	0.03761 (17)	-0.29078 (15)	0.0167 (3)
H14A	0.371282	0.139434	-0.266854	0.025*
H14B	0.280501	-0.018362	-0.254580	0.025*
H14C	0.355357	-0.017344	-0.383911	0.025*
C15	0.83036 (19)	0.48166 (16)	-0.06107 (14)	0.0114 (3)
C16	0.86612 (19)	0.55144 (16)	0.06696 (14)	0.0117 (3)
C17	1.03840 (19)	0.57591 (15)	0.13883 (13)	0.0113 (3)
C18	1.0752 (2)	0.64812 (16)	0.26997 (14)	0.0131 (3)
C19	1.2464 (2)	0.67300 (16)	0.34279 (14)	0.0146 (3)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

C20	0.9484 (2	2) 0.700	676 (17)	0.35044 (14)	0.0156 (3)	
Atomic displacement parameters (\mathring{A}^2)						
	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.01041 (17)	0.01487 (18)	0.01270 (18)	0.00466 (13)	0.00217 (13)	0.00553 (13)
F1	0.0113 (4)	0.0217 (5)	0.0136 (4)	0.0073 (3)	-0.0004 (3)	0.0062 (4)
F2	0.0127 (4)	0.0201 (4)	0.0142 (4)	0.0091 (3)	0.0050 (3)	0.0048 (3)
N1	0.0190 (7)	0.0225 (7)	0.0150 (6)	0.0063 (5)	0.0002 (5)	0.0064 (5)
N2	0.0234 (7)	0.0268 (7)	0.0163 (7)	0.0101 (6)	0.0058 (6)	0.0045 (6)
C1	0.0128 (7)	0.0123 (7)	0.0163 (7)	0.0044 (5)	0.0037 (6)	0.0072 (6)
C2	0.0128 (7)	0.0155 (7)	0.0158 (7)	0.0039 (5)	0.0001 (5)	0.0081 (6)
С3	0.0173 (7)	0.0144 (7)	0.0123 (7)	0.0041 (6)	0.0026 (6)	0.0059 (6)
C4	0.0136 (7)	0.0123 (7)	0.0150 (7)	0.0039 (5)	0.0040 (5)	0.0067 (5)
C5	0.0113 (6)	0.0114 (6)	0.0145 (7)	0.0023 (5)	0.0014 (5)	0.0070 (5)
C6	0.0116 (6)	0.0093 (6)	0.0147 (7)	0.0024 (5)	0.0026 (5)	0.0057 (5)
C7	0.0132 (7)	0.0107 (7)	0.0153 (7)	0.0020 (5)	0.0012 (5)	0.0063 (5)
C8	0.0172 (7)	0.0127 (7)	0.0126 (7)	0.0036 (6)	0.0011 (6)	0.0040 (5)
С9	0.0154 (7)	0.0129 (7)	0.0163 (7)	0.0060 (6)	0.0046 (6)	0.0047 (6)
C10	0.0125 (7)	0.0119 (7)	0.0166 (7)	0.0045 (5)	0.0026 (5)	0.0065 (5)
C11	0.0123 (7)	0.0087 (6)	0.0139 (7)	0.0017 (5)	0.0014 (5)	0.0054 (5)
C12	0.0134 (7)	0.0093 (6)	0.0131 (7)	0.0034 (5)	0.0030 (5)	0.0061 (5)
C13	0.0156 (7)	0.0225 (8)	0.0156 (7)	0.0089 (6)	0.0051 (6)	0.0076 (6)
C14	0.0146 (7)	0.0174 (7)	0.0156 (7)	0.0042 (6)	-0.0007 (6)	0.0055 (6)
C15	0.0089 (6)	0.0115 (6)	0.0140 (7)	0.0032 (5)	0.0012 (5)	0.0059 (5)
C16	0.0101 (6)	0.0114 (6)	0.0148 (7)	0.0045 (5)	0.0049 (5)	0.0060 (5)
C17	0.0119 (7)	0.0096 (6)	0.0128 (7)	0.0028 (5)	0.0026 (5)	0.0056 (5)
C18	0.0138 (7)	0.0118 (7)	0.0122 (7)	0.0032 (5)	0.0024 (5)	0.0047 (5)
C19	0.0183 (7)	0.0134 (7)	0.0100 (7)	0.0040 (6)	0.0040 (6)	0.0040 (5)
C20	0.0166 (7)	0.0149 (7)	0.0119(7)	0.0032 (6)	-0.0007 (6)	0.0041 (6)

Geometric parameters (Å, °)

<u>81—C5</u>	1.7500 (15)	C8—C9	1.405 (2)
S1—C6	1.7520 (15)	C8—H8	0.9500
F1-C15	1.3322 (17)	C9—C10	1.384 (2)
F2—C16	1.3350 (15)	С9—Н9	0.9500
N1—C19	1.148 (2)	C10-C11	1.4003 (19)
N2-C20	1.147 (2)	C10—H10	0.9500
C1—C2	1.383 (2)	C11—C12	1.448 (2)
C1—C12	1.400 (2)	C13—H13A	0.9800
C1—H1	0.9500	C13—H13B	0.9800
C2—C3	1.402 (2)	C13—H13C	0.9800
C2—H2	0.9500	C14—H14A	0.9800
C3—C4	1.393 (2)	C14—H14B	0.9800
С3—Н3	0.9500	C14—H14C	0.9800
C4—C5	1.401 (2)	C15—C16	1.344 (2)
C4—C13	1.5015 (19)	C15-C17 ⁱ	1.4466 (19)

data reports

C5—C12	1.4105 (19)	C16—C17	1.442 (2)
C6—C7	1.402 (2)	C17—C18	1.377 (2)
C6—C11	1.408 (2)	C18—C20	1.438 (2)
C7—C8	1.393 (2)	C18—C19	1.439 (2)
C7—C14	1.502 (2)		
C5—S1—C6	91.18 (7)	C10-C11-C12	128.65 (13)
C2—C1—C12	119.20 (13)	C6-C11-C12	112.03 (12)
C2—C1—H1	120.4	C1—C12—C5	119.36 (13)
C12—C1—H1	120.4	C1—C12—C11	128.77 (13)
C1—C2—C3	120.50 (14)	C5—C12—C11	111.87 (13)
C1—C2—H2	119.7	C4—C13—H13A	109.5
C3—C2—H2	119.7	C4—C13—H13B	109.5
C4—C3—C2	122.11 (14)	H13A—C13—H13B	109.5
С4—С3—Н3	118.9	C4—C13—H13C	109.5
С2—С3—Н3	118.9	H13A—C13—H13C	109.5
C3—C4—C5	116.59 (13)	H13B—C13—H13C	109.5
C3—C4—C13	122.05 (13)	C7—C14—H14A	109.5
C5—C4—C13	121.35 (13)	C7—C14—H14B	109.5
C4—C5—C12	122.23 (13)	H14A—C14—H14B	109.5
C4—C5—S1	125.29 (11)	C7—C14—H14C	109.5
C12—C5—S1	112.48 (11)	H14A—C14—H14C	109.5
C7—C6—C11	122.66 (13)	H14B—C14—H14C	109.5
C7—C6—S1	124.90 (11)	F1—C15—C16	118.90(12)
C11—C6—S1	112.45 (11)	F1-C15-C17 ⁱ	118.30 (12)
C8—C7—C6	116.35 (13)	C16—C15—C17 ⁱ	122.80 (13)
C8—C7—C14	122.58 (14)	F2-C16-C15	118.70 (13)
C6—C7—C14	121.07 (13)	F2-C16-C17	118.20 (12)
C7—C8—C9	121.94 (14)	C15—C16—C17	123.10(13)
С7—С8—Н8	119.0	C18—C17—C16	123.02 (13)
С9—С8—Н8	119.0	C18—C17—C15 ⁱ	122.88 (13)
C10—C9—C8	120.80 (13)	C16-C17-C15 ⁱ	114.10 (13)
С10—С9—Н9	119.6	C17—C18—C20	124.50 (13)
С8—С9—Н9	119.6	C17—C18—C19	123.55 (13)
C9—C10—C11	118.93 (13)	C20—C18—C19	111.96 (13)
C9—C10—H10	120.5	N1—C19—C18	174.55 (15)
C11—C10—H10	120.5	N2—C20—C18	173.74 (16)
C10—C11—C6	119.32 (13)		
	()		
C12—C1—C2—C3	-0.9 (2)	C7—C6—C11—C12	-179.64 (12)
C1—C2—C3—C4	0.7 (2)	S1—C6—C11—C12	0.22 (15)
C2—C3—C4—C5	0.2 (2)	C2-C1-C12-C5	0.4 (2)
C2—C3—C4—C13	-179.84 (13)	C2-C1-C12-C11	-179.92 (13)
C3—C4—C5—C12	-0.7 (2)	C4—C5—C12—C1	0.5 (2)
C13—C4—C5—C12	179.28 (13)	S1—C5—C12—C1	-179.87 (11)
C3—C4—C5—S1	179.65 (11)	C4—C5—C12—C11	-179.28 (13)
C13—C4—C5—S1	-0.3 (2)	S1—C5—C12—C11	0.39 (15)
C6—S1—C5—C4	179.43 (13)	C10-C11-C12-C1	0.1 (2)

C6—S1—C5—C12	-0.22 (11)	C6-C11-C12-C1	179.90 (14)
C5—S1—C6—C7	179.85 (13)	C10-C11-C12-C5	179.81 (14)
C5—S1—C6—C11	0.00 (11)	C6-C11-C12-C5	-0.39 (17)
C11—C6—C7—C8	0.2 (2)	F1-C15-C16-F2	0.2 (2)
S1—C6—C7—C8	-179.66 (11)	C17 ⁱ —C15—C16—F2	179.72 (12)
C11—C6—C7—C14	179.91 (13)	F1-C15-C16-C17	-179.32 (12)
S1—C6—C7—C14	0.1 (2)	C17 ⁱ —C15—C16—C17	0.2 (2)
C6—C7—C8—C9	-0.4 (2)	F2-C16-C17-C18	0.1 (2)
C14—C7—C8—C9	179.90 (14)	C15—C16—C17—C18	179.65 (13)
C7—C8—C9—C10	0.2 (2)	F2-C16-C17-C15 ⁱ	-179.71 (11)
C8—C9—C10—C11	0.2 (2)	C15—C16—C17—C15 ⁱ	-0.2 (2)
C9—C10—C11—C6	-0.4 (2)	C16—C17—C18—C20	0.2 (2)
C9—C10—C11—C12	179.42 (14)	C15 ⁱ —C17—C18—C20	-179.97 (13)
C7—C6—C11—C10	0.2 (2)	C16—C17—C18—C19	179.89 (13)
S1—C6—C11—C10	-179.95 (11)	C15 ⁱ —C17—C18—C19	-0.3 (2)

Symmetry code: (i) -x+2, -y+1, -z.