ISSN 2414-3146

Received 17 December 2017
Accepted 19 December 2017

Edited by J. Simpson, University of Otago, New Zealand

Keywords: crystal structure; isocyanide; NC. $\cdot \mathrm{Br}$ contacts.

CCDC reference: 1812522

Structural data: full structural data are available from iucrdata.iucr.org

# 2,6-Dibromo-4-chlorophenyl isocyanide 

Wayland E. Noland* and Kenneth J. Tritch

Department of Chemistry, University of Minnesota, 207 Pleasant St SE, Minneapolis, MN 55455, USA. *Correspondence e-mail: nolan001@umn.edu

Molecules of the title compound, $\mathrm{C}_{7} \mathrm{H}_{2} \mathrm{Br}_{2} \mathrm{ClN}$ (RNC), are bisected by a mirror plane that passes through the chloro and isocyano groups. The isocyano C atom is bisected by two NC••Br contacts, one per Br atom. The resulting centric $R_{2}^{2}(10)$ rings form ribbons along [010], which align to form a nearly planar sheet structure that is very similar to the sheets observed in several related 2,6dibromophenyl cyanides and isocyanides. The crystal of RNC is isomorphous with the corresponding cyanide, with solely translational stacking between sheets. This is in contrast to the 2,4,6-tribromophenyl cyanide and isocyanide, which occur as different polytypes.


## Chemical scheme



## Structure description

The title isocyanide (RNC) is presented to add to the library of corresponding cyanide/ isocyanide pairs in the study of cyano/isocyano-halo short contacts. The molecular structure of RNC (Fig. 1) has typical geometry, with the largest distortion being displacement of C 14 toward the center of the benzene ring such that the $\mathrm{C} 13-\mathrm{C} 14-\mathrm{C} 13^{\prime}$ angle is $122.2(2)^{\circ}$. RNC is nearly planar, with a mean deviation of 0.002 (2) $\AA$ from the best-fit benzene plane for ring atoms (C11-C14), and 0.026 (3) $\AA$ for substituent atoms ( $\mathrm{Br} 11 / \mathrm{Cl} 11 / \mathrm{N} 11 / \mathrm{C} 15$ ). Centric $\mathrm{N} 11 \equiv \mathrm{C} 15 \cdots \mathrm{Br} 11$ contacts are the main supramolecular interaction (Table 1). Two such contacts bisect each C15 atom, forming ribbons of $R_{2}^{2}(10)$ rings along [010]. Adjacent ribbons translate along [201], forming nearly-planar sheets parallel to ( $\overline{1} 02$ ), with no short contacts between ribbons (Fig. 2). Adjacent sheets stack translationally. RNC is isomorphous with 2,6-dibromo-4-chlorobenzonitrile (RCN; Britton, 2005). This outcome answers a question about the polytypism observed in this series of 2,6-dibromo compounds. The most common ( $Z=2$ ) polytpe of 2,4,6-tribromobenzonitrile (Britton et al., 2016) is isomorphous with RCN and RNC. However, 2,4,6-tribromophenyl isocyanide is exclusively reported as a $Z=8$ polytype with mixed translational and centric stacking. It was therefore postulated that RNC might also occur


Figure 1
The molecular structure of RNC, showing the atomic numbering and displacement ellipsoids at the $50 \%$ probability level. Unlabelled atoms are related by the $\left(x, \frac{3}{2}-y, z\right)$ symmetry operation.


Figure 2
The sheet structure of RNC, viewed along [20 $\overline{1}]$. For the four upper molecules, two adjacent layers are shown, illustrating the translational stacking mode. Dashed magenta lines represent short contacts in the front layer. Molecules in the rear layer are drawn with smaller balls and sticks, lower opacity, and green dashed lines representing short contacts.

Table 1
Contact geometry $\left(\AA,^{\circ}\right)$.

| $\mathrm{N} \equiv \mathrm{C} \cdots \mathrm{Br}$ | $\mathrm{N} \equiv \mathrm{C}$ | $\mathrm{C} \cdots \mathrm{Br}$ | $\mathrm{N} \equiv \mathrm{C} \cdots \mathrm{Br}$ |
| :--- | :--- | :--- | :--- |
| $\mathrm{N} 11 \equiv \mathrm{C} 15 \cdots \mathrm{Br} 11^{\mathrm{i}}$ | $1.161(4)$ | $3.125(2)$ | $135.95(3)$ |

Symmetry code: (i) $-x, 1-y, 1-z$
mainly or exclusively as the $Z=8$ polytype, however, that structure has not yet been observed.

## Synthesis and crystallization

RNC was prepared over 3 steps (Fig. 3). 4-Chloroaniline ( 3.50 g ; Acros Organics Co., No. 10859) was brominated according to the procedure described by Noland \& Tritch (2017), giving 2,6-dibromo-4-chloroaniline (RNH2) as colourless needles [61\% yield, m.p. 364-366 K (lit. 366-368 K; Miura et al., 1998)]; ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.39(s, 2 \mathrm{H})$, $4.54(s, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz, $\mathrm{CDCl}_{3}$ ) $\delta 141.1,131.4,122.8$, 108.6. A portion of the RNH2 ( 1.15 g ) was formylated according to the procedure described by Britton et al. (2016), with dichloromethane in the place of tetrahydrofuran, giving 2,6-dibromo-4-chloroformanilide (RFA) as colourless needles ( $90 \%$ yield, m.p. $485-487 \mathrm{~K}$ dec.) ; ${ }^{1} \mathrm{H}$ NMR ( 500 MHz , DMSO-d6, 2 conformers obs.) $\delta 10.12$ ( $s, 1 \mathrm{H}$, major), 9.89 ( $s$, 1 H , minor), 8.30 ( $s, 1 \mathrm{H}$, major), 8.10 ( $s, 1 \mathrm{H}$, minor), $7.93(s, 2 \mathrm{H}$, both); ${ }^{13} \mathrm{C}$ NMR ( 126 MHz , DMSO-d6) $\delta 159.6,134.1,133.2$, 131.7, 124.2. A portion of the RFA ( 313 mg ) was dehydrated according to the procedure described by Britton et al. (2016), with dichloromethane in the place of 1,2-dichloroethane, giving RNC as a brown powder. Crystals suitable for X-ray diffraction (colourless needles) were prepared by slow


RNC





RNH2
RFA

Figure 3
The synthesis of RNC.

Table 2
Experimental details.

| Crystal data |  |
| :---: | :---: |
| Chemical formula | $\mathrm{C}_{7} \mathrm{H}_{2} \mathrm{Br}_{2} \mathrm{ClN}$ |
| $M_{\text {r }}$ | 295.37 |
| Crystal system, space group | Monoclinic, $P 2_{1} / m$ |
| Temperature (K) | 100 |
| $a, b, c(\AA)$ | 4.7215 (4), 10.0181 (9), 8.7689 (8) |
| $\beta$ ( ${ }^{\circ}$ ) | 93.023 (4) |
| $V\left(\mathrm{~A}^{3}\right)$ | 414.20 (6) |
| Z | 2 |
| Radiation type | Mo $K \alpha$ |
| $\mu\left(\mathrm{mm}^{-1}\right)$ | 10.03 |
| Crystal size (mm) | $0.20 \times 0.20 \times 0.12$ |
| Data collection |  |
| Diffractometer | Bruker VENTURE PHOTON-II |
| Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
| $T_{\text {min }}, T_{\text {max }}$ | 0.057, 0.156 |
| No. of measured, independent and observed $[I>2 \sigma(I)]$ reflections | 7071, 1334, 1239 |
| $R_{\text {int }}$ | 0.037 |
| $(\sin \theta / \lambda)_{\text {max }}\left(\AA^{-1}\right)$ | 0.715 |
| Refinement |  |
| $R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$ | 0.021, 0.050, 1.08 |
| No. of reflections | 1334 |
| No. of parameters | 58 |
| H -atom treatment | H -atom parameters constrained |
| $\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$ | 0.51, -0.90 |

Computer programs: APEX3 and SAINT (Bruker, 2012), SHELXT2014 (Sheldrick, 2015a), SHELXL2014 (Sheldrick, 2015b), Mercury (Macrae et al., 2008) and publCIF (Westrip, 2010).
evaporation of a solution in chloroform and cyclohexane, followed by decantation, and then washing with pentane (78\% yield, m.p. 377-378 K); ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$ ) $\delta 7.69$ ( $s$, $\mathrm{H} 13 A$ ); ${ }^{13} \mathrm{C}$ NMR ( $126 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$ ) $\delta 174.7$ (C15), 136.4 (C14), 132.6 (C13), 127.4 (C11), 121.7 (C12); IR ( $\mathrm{KBr}, \mathrm{cm}^{-1}$ )

3074, 2132, 1578, 1561, 1540, 1433, 1375, 1117, 857, 840, 749, 661.

## Refinement

Crystal data, data collection, and structure refinement details are summarized in Table 2.

## Acknowledgements

The authors thank Victor G. Young, Jr. (X-Ray Crystallographic Laboratory, University of Minnesota) for assistance with the crystallographic determination, the Wayland E. Noland Research Fellowship Fund at the University of Minnesota Foundation for generous financial support of this project, and Doyle Britton (deceased July 7, 2015) for providing the basis of this project.

## References

Britton, D. (2005). Acta Cryst. E61, o1726-o1727.
Britton, D., Noland, W. E. \& Tritch, K. J. (2016). Acta Cryst. E72, 178183.

Bruker (2012). APEX2 and SAINT. Bruker AXS, Inc., Madison, Wisconsin, USA.
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. \& Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.
Miura, Y., Momoki, M., Nakatsuji, M. \& Teki, Y. (1998). J. Org. Chem. 63, 1555-1565.
Noland, W. E. \& Tritch, K. J. (2017). IUCrData, 2, x171617.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

## full crystallographic data

# 2,6-Dibromo-4-chlorophenyl isocyanide 

Wayland E. Noland and Kenneth J. Tritch

## 2,6-Dibromo-4-chlorophenyl isocyanide

## Crystal data

$\mathrm{C}_{7} \mathrm{H}_{2} \mathrm{Br}_{2} \mathrm{ClN}$
$M_{r}=295.37$
Monoclinic, $P 2_{1} / m$
$a=4.7215$ (4) $\AA$
$b=10.0181$ (9) $\AA$
$c=8.7689(8) \AA$
$\beta=93.023(4)^{\circ}$
$V=414.20(6) \AA^{3}$
$Z=2$
$F(000)=276$

## Data collection

Bruker VENTURE PHOTON-II diffractometer
Radiation source: micro-focus
$\varphi$ and $\omega$ scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\min }=0.057, T_{\text {max }}=0.156$
7071 measured reflections

## Refinement

Refinement on $F^{2}$
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.021$
$w R\left(F^{2}\right)=0.050$
$S=1.08$
1334 reflections
58 parameters
0 restraints
$D_{\mathrm{x}}=2.368 \mathrm{Mg} \mathrm{m}^{-3}$
Melting point: 377 K
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 2922 reflections
$\theta=2.3-30.5^{\circ}$
$\mu=10.03 \mathrm{~mm}^{-1}$
$T=100 \mathrm{~K}$
Needle, colourless
$0.20 \times 0.20 \times 0.12 \mathrm{~mm}$

1334 independent reflections
1239 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.037$
$\theta_{\text {max }}=30.5^{\circ}, \theta_{\text {min }}=2.3^{\circ}$
$h=-6 \rightarrow 5$
$k=-14 \rightarrow 14$
$l=-12 \rightarrow 12$

> Hydrogen site location: inferred from $\quad$ neighbouring sites
> H -atom parameters constrained
> $w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0194 P)^{2}+0.2636 P\right]$
> $\quad$ where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
> $(\Delta / \sigma)_{\max }=0.001$
> $\Delta \rho_{\max }=0.51 \mathrm{e} \AA^{-3}$
> $\Delta \rho_{\min }=-0.90 \mathrm{e}^{-3}$

## Special details

Experimental. Dr. K. J. Tritch / Prof. W. E. Noland
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters ( $\hat{A}^{2}$ )

|  | $x$ | $y$ | $z$ | $U_{\text {iso }} * / U_{\text {eq }}$ |
| :--- | :--- | :--- | :--- | :--- |
| Br11 | $0.34536(4)$ | $0.46686(2)$ | $0.69204(2)$ | $0.01601(7)$ |
| C111 | $1.09879(12)$ | 0.7500 | $1.06960(7)$ | $0.01600(12)$ |
| C11 | $0.3949(5)$ | 0.7500 | $0.7040(3)$ | $0.0141(4)$ |
| N11 | $0.1793(5)$ | 0.7500 | $0.5901(2)$ | $0.0153(4)$ |
| C12 | $0.5017(3)$ | $0.62936(17)$ | $0.76251(19)$ | $0.0136(3)$ |
| C13 | $0.7193(3)$ | $0.62865(17)$ | $0.87580(19)$ | $0.0140(3)$ |
| H13A | 0.7934 | 0.5469 | 0.9156 | $0.017^{*}$ |
| C14 | $0.8258(5)$ | 0.7500 | $0.9296(3)$ | $0.0140(4)$ |
| C15 | $0.0001(6)$ | 0.7500 | $0.4941(3)$ | $0.0195(5)$ |

Atomic displacement parameters $\left(\AA^{2}\right)$

|  | $U^{11}$ | $U^{22}$ | $U^{33}$ | $U^{12}$ | $U^{13}$ | $U^{23}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Br11 | $0.02047(10)$ | $0.01162(10)$ | $0.01577(10)$ | $-0.00213(6)$ | $-0.00046(7)$ | $-0.00098(6)$ |
| C111 | $0.0151(3)$ | $0.0176(3)$ | $0.0150(3)$ | 0.000 | $-0.0022(2)$ | 0.000 |
| C11 | $0.0153(10)$ | $0.0157(11)$ | $0.0113(10)$ | 0.000 | $0.0019(8)$ | 0.000 |
| N 11 | $0.0185(10)$ | $0.0140(9)$ | $0.0134(9)$ | 0.000 | $0.0000(8)$ | 0.000 |
| C 12 | $0.0156(7)$ | $0.0125(7)$ | $0.0130(7)$ | $-0.0016(6)$ | $0.0030(6)$ | $-0.0017(6)$ |
| C 13 | $0.0155(7)$ | $0.0127(7)$ | $0.0139(8)$ | $0.0011(6)$ | $0.0014(6)$ | $0.0003(6)$ |
| C14 | $0.0136(10)$ | $0.0149(11)$ | $0.0136(10)$ | 0.000 | $0.0016(8)$ | 0.000 |
| C15 | $0.0253(13)$ | $0.0139(10)$ | $0.0189(12)$ | 0.000 | $-0.0036(10)$ | 0.000 |

Geometric parameters ( $A,{ }^{\circ}$ )

| Br11-C12 | 1.8785 (17) | N11-C15 | 1.161 (4) |
| :---: | :---: | :---: | :---: |
| C111-C14 | 1.733 (3) | C12-C13 | 1.391 (3) |
| C11-N11 | 1.388 (3) | C13-C14 | 1.389 (2) |
| C11-C12 ${ }^{\text {i }}$ | 1.397 (2) | C13-H13A | 0.9500 |
| C11-C12 | 1.397 (2) | C14-C13 ${ }^{\text {i }}$ | 1.389 (2) |
| N11-C11-C12 ${ }^{\text {i }}$ | 120.09 (11) | C14-C13-C12 | 118.60 (17) |
| N11-C11-C12 | 120.09 (11) | C14-C13-H13A | 120.7 |
| C12 ${ }^{\text {i }}$ C11- C 12 | 119.8 (2) | C12-C13-H13A | 120.7 |
| C15-N11-C11 | 179.6 (3) | C13--C14-C13 | 122.2 (2) |
| C13-C12-C11 | 120.38 (17) | C13--C14-C111 | 118.90 (11) |
| C13-C12-Br11 | 119.55 (13) | C13-C14-Cl11 | 118.90 (11) |
| C11-C12-Br11 | 120.06 (14) |  |  |
| N11-C11-C12-C13 | 179.51 (19) | C11-C12-C13-C14 | 0.4 (3) |
| C12- $\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 13$ | -1.8 (3) | Br11-C12-C13-C14 | -178.03 (15) |
| N11-C11-C12-Br11 | -2.1 (3) | $\mathrm{C} 12-\mathrm{C} 13-\mathrm{C} 14-\mathrm{C13}^{\text {i }}$ | 1.1 (3) |
| C12 ${ }^{\text {i }} \mathrm{C} 11-\mathrm{C} 12-\mathrm{Br} 11$ | 176.61 (11) | C12-C13-C14-Cl11 | -179.48(14) |

[^0]
[^0]:    Symmetry code: (i) $x,-y+3 / 2, z$.

