

ISSN 2414-3146

Received 3 January 2018 Accepted 8 January 2018

Edited by J. Simpson, University of Otago, New Zealand

‡ Additional corresponding author, e-mail: kariukib@cardiff.ac.uk.

Keywords: crystal structure; hydrogen bonding; thiourea; synthesis.

CCDC reference: 1815356

Structural data: full structural data are available from iucrdata.iucr.org

1-(2-Bromo-4-methylphenyl)-3,3-dimethylthiourea

Gamal A. El-Hiti,^a* Keith Smith,^b Amany S. Hegazy,^b Mohammed B. Alshammari^c and Benson M. Kariuki^b‡

^aCornea Research Chair, Department of Optometry, College of Applied Medical Sciences, King Saud University, PO Box 10219, Riyadh 11433, Saudi Arabia, ^bSchool of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, Wales, and ^cChemistry Department, College of Sciences and Humanities, Prince Sattam bin Abdulaziz University, PO Box 83, Al-Kharij 11942, Saudi Arabia. *Correspondence e-mail: gelhiti@ksu.edu.sa

The bromomethylphenyl and dimethylthiourea groups of the molecule of the title compound, $C_{10}H_{13}BrN_2S$, are inclined to one another at an interplanar angle of 55.13 (6)°. In the crystal, molecules are stacked along the *b* axis and intermolecular N-H···S contacts form chains of molecules along [010].

Structure description

Thioureas show various biological activities (Yao *et al.*, 2012; Kocyigit-Kaymakcioglu *et al.*, 2013; Korkmaz *et al.*, 2015; Yang *et al.*, 2015; Tahir *et al.*, 2015; Shakeel *et al.*, 2016) and therefore their syntheses are always of interest (Kong *et al.*, 2015; Nguyen *et al.*, 2014; Maki *et al.*, 2014; Chau *et al.* 2014; Maddani & Prabhu, 2010). The X-ray crystal structures of some 1-(2-bromophenyl)-3,3-dimethylthiourea derivatives have been published recently (El-Hiti *et al.*, 2014, 2017): as part of our ongoing studies in this area, we now describe the synthesis and structure of the title compound.

The asymmetric unit comprises one molecule of the title compound (Fig. 1). The molecule is not planar, as indicated by an intramolecular interplanar angle of 55.13 (6) between the bromomethylphenyl and dimethylthiourea groups.

In the crystal, molecules are stacked along the *b*-axis and $N-H\cdots S$ intermolecular contacts, Table 1, form chains of molecules along [010], Fig. 2.

Synthesis and crystallization

The title compound was synthesized by the reaction of equimolar quantities of 2-bromo-4-methylphenyl isothiocyanate and dimethylamine in dry dichloromethane at 20°C for 1 h. Water was added and the organic layer was separated, dried over anhydrous

Figure 1

ORTEP representation (50% probability) of the asymmetric unit of $C_{10}H_{13}BrN_2S.$

Figure 2

Crystal packing showing $N-H \cdots S$ contacts as dashed lines. H atoms not involved in hydrogen bonding have been omitted for clarity.

magnesium sulfate and evaporated under vacuum. The crude product was recrystallized using a solvent mixture of diethyl ether and hexane (1:2 by volume) to give colourless crystals of the title compound, m.p. 174–175°C (lit. 173–175°C; Smith *et al.*, 1996).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

Funding information

The project was supported by King Saud University, Deanship of Scientific Research, Research Chairs and Cardiff University.

References

- Agilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.
- Cambridge Soft (2001). CHEMDRAW Ultra. Cambridge Soft Corporation, Cambridge, Massachusetts, USA.
- Chau, C.-M., Chuan, T.-J. & Liu, K.-L. (2014). RSC Adv. 4, 1276– 1282.
- El-Hiti, G. A., Smith, K., Hegazy, A. S., Alotaibi, M. H. & Kariuki, B. M. (2014). Acta Cryst. E70, 0704.

Table 1 Hydrogen-bond geometry (Å, °).							
$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$			
$N1 - H1 \cdots S1^{i}$	0.86	2.60	3.309 (2)	140			

Symmetry code: (i) $-x + \frac{1}{2}$, $y - \frac{1}{2}$, $-z + \frac{1}{2}$.

Table 2

Experimental details.

-	
Crystal data	
Chemical formula	$C_{10}H_{13}BrN_2S$
Mr	273.19
Crystal system, space group	Monoclinic, $P2_1/n$
Temperature (K)	296
<i>a</i> , <i>b</i> , <i>c</i> (Å)	12.2617 (7), 8.0222 (4), 12.7397 (7)
β (°)	112.380 (6)
$V(Å^3)$	1158.76 (12)
Ζ	4
Radiation type	Cu Ka
$\mu (\text{mm}^{-1})$	6.22
Crystal size (mm)	$0.22\times0.12\times0.05$
Data collection	
Diffractometer	Agilent SuperNova, Dual, Cu at zero, Atlas
Absorption correction	Gaussian (CrysAlis PRO; Agilent, 2014)
T_{\min}, T_{\max}	0.926, 0.976
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	7605, 2318, 2035
R _{int}	0.030
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.624
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.038, 0.115, 1.06
No. of reflections	2318
No. of parameters	130
H-atom treatment	H-atom parameters constrained
$\Delta ho_{\rm max}, \Delta ho_{\rm min} \ ({ m e} \ { m \AA}^{-3})$	0.54, -0.64

Computer programs: CrysAlis PRO (Agilent, 2014), SHELXS2013 (Sheldrick, 2008), SHELXL2013 (Sheldrick, 2015), ORTEP-3 for Windows and WinGX (Farrugia, 2012) and CHEMDRAW Ultra (Cambridge Soft, 2001).

El-Hiti, G. A., Smith, K., Hegazy, A. S., Alotaibi, M. H. & Kariuki, B. M. (2017). Z. Kristallogr. New Cryst. Struct. 232, 31–32.

Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.

- Kocyigit-Kaymakcioglu, B., Celen, A. O., Tabanca, N., Ali, A., Khan, S. L. Khan, L. A., & Wedge, D. E. (2012). Malamilar, 18, 2562, 2576.
- S. I., Khan, I. A. & Wedge, D. E. (2013). Molecules, 18, 3562–3576.
 Kong, X., Yao, Z., He, Z., Xu, W. & Yao, J. (2015). Med. Chem. Commun. 6, 867–870.
- Korkmaz, N., Obaidi, O. A., Senturk, M., Astley, D., Ekinci, D. & Supuran, C. T. (2015). J. Enzyme Inhib. Med. Chem. 30, 75–80.
- Maddani, M. R. & Prabhu, K. R. (2010). J. Org. Chem. 75, 2327-2332.

Maki, T., Tsuritani, T. & Yasukata, T. (2014). Org. Lett. 16, 1868-1871.

- Nguyen, T. B., Ermolenko, L. & Al-Mourabit, A. (2014). Synthesis, 46, 3172–3179.
- Shakeel, A., Altaf, A. A., Qureshi, A. M. & Badshan, A. (2016). J. Drug Des. Med. Chem. 2, 10–20.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Smith, K., Shukla, A. P. & Matthews, I. (1996). Sulfur Lett. 20, 121– 137.
- Tahir, S., Badshah, A., Hussain, R. A., Tahir, M. N., Tabassum, S., Patujo, J. A. & Rauf, M. K. (2015). J. Mol. Struct. 1099, 215–225.
- Yang, M., Pickard, A. J., Qiao, X., Gueble, M. J., Day, C. S., Kucera, G. L. & Bierbach, U. (2015). *Inorg. Chem.* 54, 3316–3324.
- Yao, J., Chen, J., He, Z., Sun, W. & Xu, W. (2012). *Bioorg. Med. Chem.* **20**, 2923–2929.

full crystallographic data

IUCrData (2018). **3**, x180045 [https://doi.org/10.1107/S2414314618000457]

1-(2-Bromo-4-methylphenyl)-3,3-dimethylthiourea

Gamal A. El-Hiti, Keith Smith, Amany S. Hegazy, Mohammed B. Alshammari and Benson M. Kariuki

F(000) = 552

 $\theta = 4.2 - 73.6^{\circ}$

 $\mu = 6.22 \text{ mm}^{-1}$

Block, colourless

 $0.22 \times 0.12 \times 0.05 \text{ mm}$

 $\theta_{\rm max} = 74.1^{\circ}, \ \theta_{\rm min} = 4.3^{\circ}$

2318 independent reflections

2035 reflections with $I > 2\sigma(I)$

T = 296 K

 $R_{\rm int} = 0.030$

 $h = -14 \rightarrow 15$

 $l = -12 \rightarrow 15$

 $k = -9 \rightarrow 9$

 $D_{\rm x} = 1.566 {\rm Mg} {\rm m}^{-3}$

Cu *K* α radiation, $\lambda = 1.54184$ Å

Cell parameters from 3751 reflections

1-(2-Bromo-4-methylphenyl)-3,3-dimethylthiourea

Crystal data

C₁₀H₁₃BrN₂S $M_r = 273.19$ Monoclinic, P2₁/n a = 12.2617 (7) Å b = 8.0222 (4) Å c = 12.7397 (7) Å $\beta = 112.380$ (6)° V = 1158.76 (12) Å³ Z = 4

Data collection

Agilent SuperNova, Dual, Cu at zero, Atlas diffractometer ω scans Absorption correction: gaussian (CrysAlis PRO; Agilent, 2014) $T_{\min} = 0.926, T_{\max} = 0.976$ 7605 measured reflections

Refinement

Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.038$	H-atom parameters constrained
$wR(F^2) = 0.115$	$w = 1/[\sigma^2(F_o^2) + (0.072P)^2 + 0.3056P]$
S = 1.06	where $P = (F_o^2 + 2F_c^2)/3$
2318 reflections	$(\Delta/\sigma)_{max} = 0.001$
130 parameters	$\Delta\rho_{max} = 0.54$ e Å ⁻³
0 restraints	$\Delta \rho_{\rm min} = -0.64 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	У	Z	$U_{ m iso}$ */ $U_{ m eq}$	
Brl	0.26065 (3)	0.22909 (5)	0.48048 (3)	0.06494 (17)	
S1	0.18412 (6)	0.22540 (8)	0.06795 (5)	0.0495 (2)	
C2	0.1250 (2)	0.1405 (3)	0.3645 (2)	0.0454 (5)	
N1	0.24617 (18)	0.0533 (3)	0.26170 (17)	0.0477 (5)	
H1	0.2981	-0.0043	0.3139	0.057*	
C1	0.1340 (2)	0.0699 (3)	0.26865 (19)	0.0416 (5)	
N2	0.3930 (2)	0.0961 (3)	0.19709 (19)	0.0511 (5)	
C8	0.2794 (2)	0.1197 (3)	0.18062 (19)	0.0422 (5)	
C6	0.0329 (2)	0.0058 (3)	0.1861 (2)	0.0473 (6)	
H6	0.0372	-0.0438	0.1218	0.057*	
C10	0.4382 (3)	0.1476 (5)	0.1115 (3)	0.0662 (8)	
H10A	0.3850	0.1113	0.0380	0.099*	
H10B	0.5144	0.0984	0.1281	0.099*	
H10C	0.4450	0.2668	0.1120	0.099*	
C5	-0.0743 (2)	0.0146 (4)	0.1981 (2)	0.0495 (6)	
Н5	-0.1414	-0.0287	0.1415	0.059*	
C3	0.0176 (3)	0.1482 (4)	0.3771 (2)	0.0524 (6)	
Н3	0.0137	0.1948	0.4424	0.063*	
C4	-0.0834 (2)	0.0873 (4)	0.2936 (2)	0.0509 (6)	
С9	0.4791 (2)	0.0276 (4)	0.3016 (3)	0.0614 (7)	
H9A	0.4670	0.0750	0.3655	0.092*	
H9B	0.5573	0.0538	0.3063	0.092*	
H9C	0.4699	-0.0912	0.3019	0.092*	
C7	-0.2015 (3)	0.0970 (5)	0.3057 (4)	0.0756 (9)	
H7A	-0.1911	0.0734	0.3828	0.113*	
H7B	-0.2545	0.0169	0.2562	0.113*	
H7C	-0.2337	0.2069	0.2857	0.113*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br1	0.0668 (3)	0.0716 (3)	0.0472 (2)	-0.01503 (14)	0.01142 (17)	-0.00997 (12)
S1	0.0580 (4)	0.0512 (4)	0.0351 (3)	-0.0007(3)	0.0132 (3)	0.0014 (2)
C2	0.0495 (13)	0.0465 (13)	0.0379 (11)	-0.0033 (10)	0.0139 (10)	-0.0002 (9)
N1	0.0414 (10)	0.0630 (13)	0.0398 (10)	0.0077 (9)	0.0166 (9)	0.0107 (9)
C1	0.0420 (11)	0.0471 (12)	0.0380 (11)	0.0036 (9)	0.0179 (9)	0.0049 (9)
N2	0.0460 (11)	0.0609 (13)	0.0501 (11)	-0.0049 (10)	0.0226 (9)	0.0027 (10)
C8	0.0458 (12)	0.0453 (12)	0.0360 (11)	-0.0041 (9)	0.0161 (9)	-0.0058 (9)
C6	0.0494 (13)	0.0545 (14)	0.0372 (11)	0.0016 (11)	0.0155 (10)	-0.0024 (10)
C10	0.0652 (17)	0.081 (2)	0.0662 (18)	-0.0097 (16)	0.0408 (15)	-0.0004 (16)
C5	0.0405 (12)	0.0562 (14)	0.0474 (13)	0.0003 (10)	0.0117 (10)	0.0027 (11)
C3	0.0627 (15)	0.0547 (15)	0.0486 (13)	0.0032 (12)	0.0311 (12)	-0.0037 (11)
C4	0.0475 (13)	0.0550 (15)	0.0549 (14)	0.0060 (11)	0.0248 (11)	0.0075 (11)
С9	0.0436 (13)	0.0743 (19)	0.0638 (17)	-0.0032 (13)	0.0178 (12)	0.0084 (15)
C7	0.0566 (17)	0.091 (3)	0.090 (2)	0.0030 (16)	0.0412 (17)	0.000 (2)

Geometric parameters (Å, °)

Br1—C2	1.893 (2)	C10—H10B	0.9600	
S1—C8	1.693 (2)	C10—H10C	0.9600	
C2—C3	1.388 (4)	C5—C4	1.392 (4)	
C2—C1	1.388 (3)	С5—Н5	0.9300	
N1—C8	1.355 (3)	C3—C4	1.379 (4)	
N1—C1	1.418 (3)	С3—Н3	0.9300	
N1—H1	0.8600	C4—C7	1.515 (4)	
C1—C6	1.383 (4)	С9—Н9А	0.9600	
N2—C8	1.340 (3)	С9—Н9В	0.9600	
N2—C9	1.456 (4)	С9—Н9С	0.9600	
N2C10	1.459 (3)	C7—H7A	0.9600	
C6—C5	1.382 (4)	С7—Н7В	0.9600	
С6—Н6	0.9300	С7—Н7С	0.9600	
C10—H10A	0.9600			
$C_{3} - C_{2} - C_{1}$	1211(2)	H10B—C10—H10C	109.5	
$C_3 - C_2 - Br_1$	118.91 (19)	C6-C5-C4	121.0 (2)	
C1 - C2 - Br1	119.99 (19)	С6—С5—Н5	119.5	
C8—N1—C1	126.2 (2)	C4—C5—H5	119.5	
C8—N1—H1	116.9	C4—C3—C2	120.5 (2)	
C1—N1—H1	116.9	С4—С3—Н3	119.7	
C6—C1—C2	118.2 (2)	С2—С3—Н3	119.7	
C6—C1—N1	121.8 (2)	C3—C4—C5	118.4 (2)	
C2—C1—N1	119.8 (2)	C3—C4—C7	121.0 (3)	
C8—N2—C9	123.0 (2)	C5—C4—C7	120.5 (3)	
C8—N2—C10	120.7 (2)	N2—C9—H9A	109.5	
C9—N2—C10	116.1 (2)	N2—C9—H9B	109.5	
N2—C8—N1	114.9 (2)	H9A—C9—H9B	109.5	
N2—C8—S1	122.94 (19)	N2—C9—H9C	109.5	
N1—C8—S1	122.14 (19)	Н9А—С9—Н9С	109.5	
C5—C6—C1	120.7 (2)	H9B—C9—H9C	109.5	
С5—С6—Н6	119.6	C4—C7—H7A	109.5	
С1—С6—Н6	119.6	C4—C7—H7B	109.5	
N2-C10-H10A	109.5	H7A—C7—H7B	109.5	
N2-C10-H10B	109.5	C4—C7—H7C	109.5	
H10A—C10—H10B	109.5	H7A—C7—H7C	109.5	
N2—C10—H10C	109.5	H7B—C7—H7C	109.5	
H10A-C10-H10C	109.5			

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	<i>D</i> —H··· <i>A</i>
N1— $H1$ ···S1 ⁱ	0.86	2.60	3.309 (2)	140

Symmetry code: (i) -x+1/2, y-1/2, -z+1/2.