

ISSN 2414-3146

Received 5 January 2018 Accepted 9 January 2018

Edited by J. Simpson, University of Otago, New Zealand

‡ Additional corresponding author, e-mail: kariukib@cardiff.ac.uk.

Keywords: crystal structure; hydrogen bond; carbamate.

CCDC reference: 1815604

Structural data: full structural data are available from iucrdata.iucr.org

Methyl N-(2-bromo-4-chlorophenyl)carbamate

Gamal A. El-Hiti,^a* Keith Smith,^b Amany S. Hegazy,^b Mohammed B. Alshammari^c and Benson M. Kariuki^b‡

^aCornea Research Chair, Department of Optometry, College of Applied Medical Sciences, King Saud University, PO Box 10219, Riyadh 11433, Saudi Arabia, ^bSchool of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, Wales, and ^cChemistry Department, College of Sciences and Humanities, Prince Sattam bin Abdulaziz University, PO Box 83, Al-Kharij 11942, Saudi Arabia. *Correspondence e-mail: gelhiti@ksu.edu.sa

In the title molecule, $C_8H_7BrClNO_2$, the bromochlorophenyl ring is inclined to the methylcarbamate unit by 32.73 (7)°. In the crystal, N-H···O hydrogen bonds form chains of molecules parallel to [100].

Structure description

Carbamate derivatives show a variety of biological activities (Krátký *et al.*, 2014; Smith *et al.*, 2014; Yang *et al.*, 2012). They can be synthesized using a variety of convenient processes (Blaser *et al.*, 2012; Smith *et al.*, 2012; Ibrahim *et al.*, 2011; Porzelle *et al.*, 2009; Lee *et al.*, 2009; Lebel & Leogane, 2006; Caddick *et al.*, 2003). The X-ray crystal structure of the related *tert*-butyl 2-phenylethylcarbamate was published recently (El-Hiti *et al.*, 2016).

In the title molecule (Fig. 1), the dihedral angle between the bromochlorophenyl and methylcarbamate groups is $32.73 (7)^{\circ}$. In the crystal, N-H···O hydrogen bonds, Table 1, form chains parallel to [100], (Fig. 2).

Synthesis and crystallization

The title compound was synthesized from the reaction of 2-bromo-4-chloroaniline and dimethyl dicarbonate in dichloromethane in the presence of triethylamine. Recrystallization of the crude product from diethyl ether solution gave the title compound as colourless crystals, m.p. 88–89°C (lit. 86–89 °C; Moghaddam *et al.*, 2016).

An ORTEP representation (50% probability level) of the title molecule.

Figure 2

A segment of the crystal structure, viewed along b, showing the N-H···O hydrogen bonds as dotted lines.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

Funding information

This project was supported by King Saud University, Deanship of Scientific Research, Research Chairs and Cardiff University.

References

- Agilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.
- Blaser, A., Palmer, B. D., Sutherland, H. S., Kmentova, I., Franzblau, S. G., Wan, B., Wang, Y., Ma, Z., Thompson, A. M. & Denny, W. A. (2012). *J. Med. Chem.* 55, 312–326.
- Caddick, S., Judd, D. B., Lewis, A. K. de K., Reich, M. T. & Williams, M. R. V. (2003). *Tetrahedron*, **59**, 5417–5423.
- Cambridge Soft (2001). CHEMDRAW Ultra. Cambridge Soft Corporation, Cambridge, Massachusetts, USA.

Table 1	
Hydrogen-bond geometry (Å, $^{\circ}$).	

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$N1-H1\cdotsO1^{i}$	0.88	2.19	2.885 (2)	135

Symmetry code: (i) x + 1, y, z.

Table 2 Experimental details

Crystal data	
Chemical formula	C ₈ H ₇ BrClNO ₂
M _r	264.51
Crystal system, space group	Triclinic, $P\overline{1}$
Temperature (K)	150
a, b, c (Å)	4.6637 (3), 9.4598 (6), 11.9898 (7)
α, β, γ (°)	111.639 (5), 101.035 (5), 93.712 (5)
$V(Å^3)$	477.25 (5)
Ζ	2
Radiation type	Cu Ka
$\mu (\mathrm{mm}^{-1})$	8.19
Crystal size (mm)	$0.31 \times 0.20 \times 0.15$
Data collection	
Diffractometer	Agilent SuperNova, Dual, Cu at zero, Atlas
Absorption correction	Gaussian (CrysAlis PRO; Agilent, 2014)
T_{\min}, T_{\max}	0.776, 0.891
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	2938, 1847, 1777
R _{int}	0.019
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.623
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.024, 0.063, 1.08
No. of reflections	1847
No. of parameters	119
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({\rm e} \ {\rm \AA}^{-3})$	0.30, -0.61

Computer programs: CrysAlis PRO (Agilent, 2014), SHELXS2013 (Sheldrick, 2008), SHELXL2013 (Sheldrick, 2015), ORTEP-3 for Windows and WinGX (Farrugia, 2012) and CHEMDRAW Ultra (Cambridge Soft, 2001).

- El-Hiti, G. A., Smith, K., Alshammari, M. B., Ajarim, M. D. & Kariuki, M. B. (2016). Z. Kristallogr. New Cryst. Struct. 231, 1105– 1107.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Ibrahim, T., Tala, S. R., El-Feky, S. A., Abdel-Samii, Z. K. & Katritzky, A. R. (2011). *Synlett*, pp. 2013–2016.
- Krátký, M., Volková, M., Novotná, E., Trejtnar, E., Stolaříková, J. & Vinšová, J. (2014). *Bioorg. Med. Chem.* 22, 4073–4082.
- Lebel, H. & Leogane, O. (2006). Org. Lett. 8, 5717-5720.
- Lee, H.-G., Kim, M.-J., Park, S.-E., Kim, J.-J., Kim, B., Lee, S. & Yoon, Y. (2009). *Synlett*, pp. 2809–2814.
- Moghaddam, F. M., Tavakoli, G., Saeednia, B., Langer, P. & Jafari, B. (2016). J. Org. Chem. 81, 3868–3876.
- Porzelle, A., Woodrow, M. D. & Tomkinson, N. C. O. (2009). Synlett, pp. 798–802.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Smith, K., El-Hiti, G. A. & Alshammari, M. B. (2012). J. Org. Chem. 77, 11210–11215.
- Smith, K., El-Hiti, G. A. & Alshammari, M. B. (2014). Synthesis, 46, 394–402.
- Yang, Y. H., Voak, A., Wilkinson, S. R. & Hu, L. Q. (2012). Bioorg. Med. Chem. Lett. 22, 6583–6586.

full crystallographic data

IUCrData (2018). **3**, x180054 [https://doi.org/10.1107/S2414314618000548]

Methyl N-(2-bromo-4-chlorophenyl)carbamate

Gamal A. El-Hiti, Keith Smith, Amany S. Hegazy, Mohammed B. Alshammari and Benson M. Kariuki

Z = 2F(000) = 260

 $D_{\rm x} = 1.841 {\rm Mg} {\rm m}^{-3}$

 $\theta = 5.1 - 74.1^{\circ}$

 $\mu = 8.19 \text{ mm}^{-1}$

Block, colourless

 $0.31 \times 0.20 \times 0.15 \text{ mm}$

 $\theta_{\text{max}} = 74.0^{\circ}, \ \theta_{\text{min}} = 4.1^{\circ}$

1847 independent reflections

1777 reflections with $I > 2\sigma(I)$

T = 150 K

 $R_{\rm int} = 0.019$

 $h = -5 \rightarrow 5$

 $k = -10 \rightarrow 11$

 $l = -14 \rightarrow 11$

Cu *K* α radiation, $\lambda = 1.54184$ Å

Cell parameters from 2127 reflections

Methyl N-(2-bromo-4-chlorophenyl)carbamate

Crystal data

C₈H₇BrClNO₂ $M_r = 264.51$ Triclinic, P1 a = 4.6637 (3) Å b = 9.4598 (6) Å c = 11.9898 (7) Å a = 111.639 (5)° $\beta = 101.035$ (5)° $\gamma = 93.712$ (5)° V = 477.25 (5) Å³

Data collection

Agilent SuperNova, Dual, Cu at zero, Atlas diffractometer ω scans Absorption correction: gaussian (CrysAlis PRO; Agilent, 2014) $T_{\min} = 0.776$, $T_{\max} = 0.891$ 2938 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.024$	H-atom parameters constrained
$wR(F^2) = 0.063$	$w = 1/[\sigma^2(F_o^2) + (0.040P)^2 + 0.157P]$
S = 1.08	where $P = (F_o^2 + 2F_c^2)/3$
1847 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
119 parameters	$\Delta \rho_{\rm max} = 0.30 \text{ e } \text{\AA}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.61 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
C1	0.5832 (4)	0.2508 (2)	0.08977 (18)	0.0178 (4)
C2	0.7774 (4)	0.3658 (2)	0.19208 (19)	0.0189 (4)
C3	0.7777 (5)	0.3806 (2)	0.31131 (19)	0.0226 (4)
H3	0.9115	0.4585	0.3796	0.027*
C4	0.5803 (5)	0.2806 (3)	0.3295 (2)	0.0242 (4)
C5	0.3866 (5)	0.1654 (2)	0.2315 (2)	0.0230 (4)
Н5	0.2525	0.0973	0.2455	0.028*
C6	0.3903 (5)	0.1504 (2)	0.1125 (2)	0.0210 (4)
H6	0.2592	0.0704	0.0449	0.025*
C7	0.3560 (5)	0.1832 (2)	-0.12754 (19)	0.0194 (4)
C8	0.2102 (6)	0.1130 (3)	-0.3419 (2)	0.0324 (5)
H8A	0.1401	0.0058	-0.3581	0.049*
H8B	0.2882	0.1174	-0.4110	0.049*
H8C	0.0459	0.1726	-0.3323	0.049*
N1	0.5916 (4)	0.2373 (2)	-0.02987 (16)	0.0204 (3)
H1	0.7618	0.2661	-0.0424	0.024*
O1	0.1036 (3)	0.14673 (18)	-0.12501 (14)	0.0242 (3)
O2	0.4400 (3)	0.17650 (19)	-0.23043 (14)	0.0264 (3)
Cl1	0.57621 (15)	0.30115 (7)	0.47984 (5)	0.03750 (16)
Br1	1.04171 (4)	0.50705 (2)	0.16904 (2)	0.02356 (10)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0170 (9)	0.0181 (9)	0.0196 (10)	0.0047 (7)	0.0063 (7)	0.0075 (7)
C2	0.0177 (9)	0.0181 (9)	0.0223 (10)	0.0019 (7)	0.0058 (8)	0.0091 (8)
C3	0.0241 (10)	0.0215 (9)	0.0200 (10)	-0.0003 (8)	0.0033 (8)	0.0070 (8)
C4	0.0310(11)	0.0269 (11)	0.0194 (10)	0.0054 (9)	0.0097 (8)	0.0121 (8)
C5	0.0239 (10)	0.0219 (10)	0.0264 (11)	0.0013 (8)	0.0099 (8)	0.0115 (8)
C6	0.0202 (10)	0.0197 (9)	0.0222 (10)	0.0002 (7)	0.0058 (8)	0.0072 (8)
C7	0.0208 (10)	0.0194 (9)	0.0194 (10)	0.0048 (7)	0.0066 (8)	0.0079 (8)
C8	0.0341 (12)	0.0413 (13)	0.0194 (10)	0.0026 (10)	0.0017 (9)	0.0117 (10)
N1	0.0157 (8)	0.0256 (9)	0.0198 (8)	-0.0002 (6)	0.0058 (6)	0.0084 (7)
01	0.0159 (7)	0.0315 (8)	0.0243 (8)	0.0010 (6)	0.0052 (6)	0.0101 (6)
O2	0.0219 (8)	0.0402 (9)	0.0198 (7)	0.0013 (6)	0.0049 (6)	0.0152 (7)
Cl1	0.0549 (4)	0.0381 (3)	0.0208 (3)	-0.0052 (3)	0.0122 (2)	0.0132 (2)
Br1	0.02532 (14)	0.02146 (14)	0.02454 (14)	-0.00329 (9)	0.00644 (9)	0.01045 (10)

Geometric parameters (Å, °)

C1—C6	1.400 (3)	С5—Н5	0.9500
C1—N1	1.401 (3)	С6—Н6	0.9500
C1—C2	1.404 (3)	C7—O1	1.214 (3)
C2—C3	1.384 (3)	C7—O2	1.345 (2)
C2—Br1	1.890 (2)	C7—N1	1.354 (3)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	D—H…A
N1—H1···O1 ⁱ	0.88	2.19	2.885 (2)	135

Symmetry code: (i) x+1, y, z.