ISSN 2414-3146

Received 8 January 2018
Accepted 9 January 2018

Edited by J. Simpson, University of Otago, New Zealand

Keywords: crystal structure; nitrile; C—H...N hydrogen bonds; $\mathrm{C} \equiv \mathrm{N} \cdots \mathrm{H}$ contacts.

CCDC reference: 1580004

Structural data: full structural data are available from iucrdata.iucr.org

3,5-Dibromobenzonitrile

Wayland E. Noland* and Kenneth J. Tritch

Department of Chemistry, University of Minnesota, 207 Pleasant St SE, Minneapolis, MN 55455, USA. *Correspondence e-mail: nolan001@umn.edu

Molecules of the title compound (I), $\mathrm{C}_{7} \mathrm{H}_{3} \mathrm{Br}_{2} \mathrm{~N}$, lie on a crystallographic mirror plane that bisects the benzene ring and the cyano group. In the crystal, no $\mathrm{C} \equiv \mathrm{N} \cdots \mathrm{Br}$ or $\mathrm{Br} \cdots \mathrm{Br}$ short contacts are observed. Head-to-tail $C(7)$ chains form based on weak hydrogen bonding between the the para H atom and the cyano N atom. Although molecules of (I) pack differently than 3,5-difluorobenzonitrile, both compounds have similarly distorted benzene rings. For (I), the endocyclic bond angles are $121.16(16)^{\circ}$ and $117.78(16)^{\circ}$ about the ipso and para C atoms, respectively.

Chemical scheme

Structure description

Cyano-halo $(\mathrm{C} \equiv \mathrm{N} \cdots X)$ short contacts are commonly observed in crystals of halogenated benzonitriles, especially when $X=\mathrm{Br}$ or I. The strength of these contacts correlates with halogen polarizability (Desiraju \& Harlow, 1989). Depending on the nature of the 4substituent, 2,6-dibromo-3,5-unsubstituted benzonitriles usually form sheet structures based on each cyano group being bisected by two $\mathrm{C} \equiv \mathrm{N} \cdots \mathrm{Br}$ contacts (Noland \& Tritch, 2017), or have $\mathrm{Br} \cdots \mathrm{Br}$ contacts as the primary supramolecular interaction (Noland et al., 2017). As of the most recent update of the Cambridge Structural Database (Version 5.37, May 2017; Groom et al., 2016), 3,5-difluorobenzonitrile is the only example with the X and H atoms transposed from the former arrangement (Britton, 2002). Our objective was to determine whether the title nitrile (I) would be isomorphous with 3,5-difluorobenzonitrile, or if a packing motif based on $\mathrm{C} \equiv \mathrm{N} \cdots \mathrm{Br}$ or $\mathrm{Br} \cdots \mathrm{Br}$ interactions would be observed.

Although the planarity of molecules of (I) (Fig. 1) is not crystallographically imposed, the mean deviation of ring atoms ($\mathrm{C} 1-\mathrm{C} 4$) from the best-fit plane is less than 0.001 (1) \AA. Interestingly, neither $\mathrm{C} \equiv \mathrm{N} \cdots \mathrm{Br}$ nor $\mathrm{Br} \cdots \mathrm{Br}$ short contacts are observed in the crystal of (I). Instead, $C(7)$ head-to-tail chains of weak $\mathrm{C} 4-\mathrm{H} 4 \cdots \mathrm{~N} 7$ hydrogen bonds form (Table 1). Chains of this type are commonly observed from 4-halobenzonitriles as

Figure 1
The molecular structure of (I), showing the atomic numbering and displacement ellipsoids at the 50% probability level. Unlabelled atoms are related by the $\left(x, \frac{1}{2}-y, z\right)$ symmetry operation.
$\mathrm{C} \equiv \mathrm{N} \cdots X$ contacts (Desiraju \& Harlow, 1989). In the title crystal, the $C(7)$ chains form along [101] and align to form translationally stacked sheets parallel to (101) (Fig. 2a). Adjacent chains within each sheet are antiparallel (Fig. 3), whereas corresponding chains in adjacent sheets are parallel. This differs greatly from the packing of 3,5 -difluorobenzonitrile (Fig. 2b), in which a sheet structure forms based on cyano N atoms bisected by weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds with ortho H atoms. Weak F. . F contacts were observed in the difluoro analog, adding to the surprise that (I) does not form $\mathrm{Br} \cdots \mathrm{Br}$ short contacts. Even though (I) and the difluoro analog pack differently, the benzene rings in both molecules are similarly distorted (Fig. 2), supporting Britton's hypothesis that these distortions are mainly due to intramolecular substituent effects, rather than supramolecular effects in the crystals (Britton, 2002).

Table 1
Contact geometry $\left(\AA,{ }^{\circ}\right)$.

$\mathrm{D}-\mathrm{H} \cdots \mathrm{A}$	$\mathrm{D}-\mathrm{H}$	$\mathrm{H} \cdots \mathrm{A}$	$\mathrm{D} \cdots \mathrm{A}$	$\mathrm{D}-\mathrm{H} \cdots \mathrm{A}$
$\mathrm{C} 4-\mathrm{H} 4 \cdots \mathrm{~N} 7^{\mathrm{i}}$	0.95	2.51	$3.443(3)$	168

Symmetry code: (i) $1+x, y,-1+z$.

Figure 3
The arrangement of $C(7)$ chains in the crystal of (I), viewed roughly along [101]. Dashed magenta lines represent short contacts.

Figure 4
The synthesis of (I).

Synthesis and crystallization

3,5-Dibromobenzonitrile (I): 3,5-Dibromobenzamide [(II), Fig. 4] (Sigma-Aldrich, Inc. No. 680389; 962 mg), dichloromethane (30 ml), and triethylamine (1.4 ml) were combined in a round-bottomed flask. The resulting mixture was stirred at $290 \mathrm{~K} . \mathrm{POCl}_{3}(320 \mu \mathrm{~L})$ was added dropwise. After 4 h , the reaction mixture was washed with hydrochloric acid ($1 \mathrm{M}, 2 \times$ 25 ml), and then NaHCO_{3} solution ($0.5 \mathrm{M}, 50 \mathrm{ml}$). The organic

(b)

Figure 2
The sheet structures in crystals of (a) compound (I), viewed along [301]; (b) 3,5-difluorobenzonitrile, viewed roughly along [100]. Bond angles about the ortho and meta C atoms are denoted in light blue. Dashed magenta lines represent short contacts.

Table 2
Experimental details.

Crystal data	
Chemical formula	$\mathrm{C}_{7} \mathrm{H}_{3} \mathrm{Br}_{2} \mathrm{~N}$
$M_{\text {r }}$	260.92
Crystal system, space group	Monoclinic, $P 2_{1} / m$
Temperature (K)	100
$a, b, c(\AA)$	4.0047 (2), 13.2585 (8), 7.3356 (4)
β (${ }^{\circ}$	97.440 (3)
$V\left(\AA^{3}\right)$	386.21 (4)
Z	2
Radiation type	Mo K α
$\mu\left(\mathrm{mm}^{-1}\right)$	10.41
Crystal size (mm)	$0.20 \times 0.07 \times 0.05$
Data collection	
Diffractometer	Bruker AXS VENTURE PHOTON-II
Absorption correction	Multi-scan (SADABS; Krause et al., 2015)
$T_{\text {min }}, T_{\text {max }}$	0.231, 0.625
No. of measured, independent and observed $[I>2 \sigma(I)]$ reflections	8873, 1945, 1696
$R_{\text {int }}$	0.036
$(\sin \theta / \lambda)_{\text {max }}\left(\AA^{-1}\right)$	0.834
Refinement	
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$	0.024, 0.058, 1.07
No. of reflections	1945
No. of parameters	53
H -atom treatment	H-atom parameters constrained
$\underline{\Delta \rho_{\text {max }}}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$	0.98, -0.49

Computer programs: APEX3 and SAINT (Bruker, 2012), SHELXT2014 (Sheldrick, 2015a), SHELXL2014 (Sheldrick, 2015b), Mercury (Macrae et al., 2008) and publCIF (Westrip, 2010).
portion was filtered through basic alumina ($4 \mathrm{~cm} \times 2 \mathrm{~cm}$, length \times diameter). The filter was washed with dichloromethane (20 ml). The combined filtrate was concentrated in a rotary evaporator, giving an off-white powder ($750 \mathrm{mg}, 83 \%$). Crystals suitable for X-ray diffraction (colourless needles) were prepared by slow evaporation of a solution in chloroform and cyclohexane, followed by decantation, and then washing with pentane. M.p. 367-368 K (lit. 368-369 K; Ishii et al., 2013); ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.917(t, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 4)$, $7.739(d, J=1.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 2) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ
139.0 ($1 \mathrm{C}, \mathrm{C} 4$), 133.6 ($2 \mathrm{C}, \mathrm{C} 2$), 123.7 ($2 \mathrm{C}, \mathrm{C} 3$), 116.0 (1 C , C7), 115.6 (1 C, C1); IR (KBr, cm^{-1}) 3072, 2961, 2922, 2236, 1551, 1418, 1198, 1109, 864, 759, 666; MS (EI, m/z) M^{+} calculated for $\mathrm{C}_{7} \mathrm{H}_{3}{ }^{81} \mathrm{Br}^{79} \mathrm{BrN} 260.8606$, found 260.8605.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

Acknowledgements

The authors thank Victor G. Young, Jr. (X-Ray Crystallographic Laboratory, University of Minnesota) for assistance with the crystallographic determination, the Wayland E. Noland Research Fellowship Fund at the University of Minnesota Foundation for generous financial support of this project, and Doyle Britton (deceased July 7, 2015) for providing the basis of this project.

References

Britton, D. (2002). Acta Cryst. E58, o840-o841.
Bruker (2012). APEX2 and SAINT. Bruker AXS, Inc., Madison, WI, USA.
Desiraju, G. R. \& Harlow, R. L. (1989). J. Am. Chem. Soc. 111, 67576764.

Groom, C. R., Bruno, I. J., Lightfoot, M. P. \& Ward, S. C. (2016). Acta Cryst. B72, 171-179.
Ishii, G., Harigae, R., Moriyama, K. \& Togo, H. (2013). Tetrahedron, 69, 1462-1469.
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. \& Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. \& Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.
Noland, W. E., Shudy, J. E., Rieger, J. L., Tu, Z. H. \& Tritch, K. J. (2017). Acta Cryst. E73, 1913-1916.

Noland, W. E. \& Tritch, K. J. (2017). IUCrData, 2, x171617.
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

full crystallographic data

IUCrData (2018). 3, x180059 [https://doi.org/10.1107/S2414314618000597]

3,5-Dibromobenzonitrile

Wayland E. Noland and Kenneth J. Tritch

3,5-Dibromobenzonitrile

Crystal data

$\mathrm{C}_{7} \mathrm{H}_{3} \mathrm{Br}_{2} \mathrm{~N}$
$M_{r}=260.92$
Monoclinic, $P 2_{1} / m$
$a=4.0047$ (2) \AA
$b=13.2585$ (8) \AA
$c=7.3356$ (4) \AA
$\beta=97.440(3)^{\circ}$
$V=386.21$ (4) \AA^{3}
$Z=2$
$F(000)=244$

Data collection

Bruker AXS VENTURE PHOTON-II diffractometer
Radiation source: micro-focus
φ and ω scans
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
$T_{\text {min }}=0.231, T_{\text {max }}=0.625$
8873 measured reflections

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.024$
$w R\left(F^{2}\right)=0.058$
$S=1.07$
1945 reflections
53 parameters
0 restraints
Hydrogen site location: inferred from neighbouring sites
$D_{\mathrm{x}}=2.244 \mathrm{Mg} \mathrm{m}^{-3}$
Melting point: 367 K
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 2765 reflections
$\theta=2.8-36.4^{\circ}$
$\mu=10.41 \mathrm{~mm}^{-1}$
$T=100 \mathrm{~K}$
Needle, colourless
$0.20 \times 0.07 \times 0.05 \mathrm{~mm}$

1945 independent reflections
1696 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.036$
$\theta_{\text {max }}=36.4^{\circ}, \theta_{\text {min }}=2.8^{\circ}$
$h=-6 \rightarrow 6$
$k=-20 \rightarrow 22$
$l=-12 \rightarrow 12$

H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0202 P)^{2}+0.2462 P\right]$
where $P=\left(F_{0}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\text {max }}=0.98$ e \AA^{-3}
$\Delta \rho_{\min }=-0.49 \mathrm{e}^{-3}$
Extinction correction: SHELXL2014
(Sheldrick, 2015b),
$\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$
Extinction coefficient: 0.0102 (18)

Special details

Experimental. Dr. K. J. Tritch / Prof. W. E. Noland
Geometry. All esds (except the esd in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }} * / U_{\mathrm{eq}}$
Br3	$0.84613(4)$	$0.46259(2)$	$0.21614(2)$	$0.02026(6)$
N7	$0.2774(5)$	0.2500	$0.8775(3)$	$0.0261(4)$
C1	$0.5455(5)$	0.2500	$0.5751(2)$	$0.0136(3)$
C2	$0.6134(3)$	$0.34183(11)$	$0.49387(18)$	$0.0148(2)$
H2	0.5664	0.4041	0.5495	0.018^{*}
C3	$0.7512(3)$	$0.33975(11)$	$0.32980(18)$	$0.0143(2)$
C4	$0.8227(5)$	0.2500	$0.2449(3)$	$0.0150(3)$
H4	0.9172	0.2500	0.1326	0.018^{*}
C7	$0.3995(5)$	0.2500	$0.7444(3)$	$0.0175(3)$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br3	$0.02244(8)$	$0.01753(8)$	$0.02213(8)$	$-0.00043(5)$	$0.00792(5)$	$0.00604(5)$
N7	$0.0229(9)$	$0.0394(12)$	$0.0169(8)$	0.000	$0.0062(7)$	0.000
C1	$0.0129(7)$	$0.0181(8)$	$0.0105(6)$	0.000	$0.0039(5)$	0.000
C2	$0.0148(5)$	$0.0158(6)$	$0.0141(5)$	$0.0004(4)$	$0.0036(4)$	$-0.0005(4)$
C3	$0.0139(5)$	$0.0159(6)$	$0.0136(5)$	$-0.0001(4)$	$0.0035(4)$	$0.0021(4)$
C4	$0.0151(7)$	$0.0180(8)$	$0.0123(7)$	0.000	$0.0036(6)$	0.000
C7	$0.0167(8)$	$0.0213(9)$	$0.0147(8)$	0.000	$0.0031(6)$	0.000

Geometric parameters ($\AA,{ }^{\circ}$)

$\mathrm{Br} 3-\mathrm{C} 3$	$1.8906(13)$	$\mathrm{C} 2-\mathrm{C} 3$	$1.3878(18)$
$\mathrm{N} 7-\mathrm{C} 7$	$1.147(3)$	$\mathrm{C} 2-\mathrm{H} 2$	0.9500
$\mathrm{C} 1-\mathrm{C} 2^{\mathrm{i}}$	$1.3977(16)$	$\mathrm{C} 3-\mathrm{C} 4$	$1.3898(17)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.3977(16)$	$\mathrm{C} 4-\mathrm{C} 3^{\mathrm{i}}$	$1.3898(17)$
$\mathrm{C} 1-\mathrm{C} 7$	$1.439(3)$	$\mathrm{C} 4-\mathrm{H} 4$	0.9500
			$119.38(11)$
$\mathrm{C} 2^{\mathrm{i}}-\mathrm{C} 1-\mathrm{C} 2$	$121.16(16)$	$\mathrm{C} 2-\mathrm{C} 3-\mathrm{Br} 3$	$118.37(10)$
$\mathrm{C} 2^{\mathrm{i}}-\mathrm{C} 1-\mathrm{C} 7$	$119.42(8)$	$\mathrm{C} 4-\mathrm{C} 3-\mathrm{Br} 3$	$117.78(16)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 7$	$119.42(8)$	$\mathrm{C} 3^{\mathrm{i}}-\mathrm{C} 4-\mathrm{C} 3$	121.1
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 1$	$118.28(13)$	$\mathrm{C} 3-\mathrm{C} 4-\mathrm{H} 4$	121.1
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2$	120.9	$\mathrm{C} 3-\mathrm{C} 4-\mathrm{H} 4$	$178.8(2)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2$	120.9	$\mathrm{~N} 7-\mathrm{C} 7-\mathrm{C} 1$	
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$122.25(13)$	$\mathrm{C} 4-\mathrm{C} 2-\mathrm{C} 3-\mathrm{Br} 3$	$180.00(12)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$-0.1(3)$	$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 3^{\mathrm{i}}$	$0.1(3)$
$\mathrm{C} 7-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$-179.38(17)$	$\mathrm{Br} 3-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 3^{\mathrm{i}}$	$-179.91(9)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$			

Symmetry code: (i) $x,-y+1 / 2, z$.

