

ISSN 2414-3146

Received 17 January 2018 Accepted 20 January 2018

Edited by J. Simpson, University of Otago, New Zealand

Keywords: crystal structure; C—H···Cl and C— H···O hydrogen bonding; two-dimensional sheet structure; π - π interactions.

CCDC reference: 1818314

Structural data: full structural data are available from iucrdata.iucr.org

5-(2-Chlorophenyl)-3-(2*H*-chromen-3-yl)-1,2,4-oxadiazole

Nilofar Baral,^a Sabita Nayak,^a Satyanarayan Pal^{b*} and Seetaram Mohapatra^a

^aDepartment of Chemistry, Ravenshaw University, Cuttack, Odisha, India, and ^bP.G. Department of Chemistry, Utkal University, Bhubaneswar, Odisha, India. *Correspondence e-mail: snpal75@gmail.com

In the title compound, $C_{17}H_{11}ClN_2O_2$, the central oxadiazole ring carries 2*H*chromene and 2-chlorophenyl substituents at the 3- and 5-positions, respectively. $C-H\cdots O$ and $C-H\cdots Cl$ hydrogen bonds form two-dimensional sheets parallel to (212), with each individual molecule involved in six of these weak interactions. The sheets are stacked perpendicular to (212) by offset $\pi-\pi$ stacking interactions.

Structure description

Oxadiazole derivatives have attracted considerable interest due to their unique chemical structures and wide variety of biological applications. These include use as antitumour (Maftei *et al.*, 2013), antifungal, antibacterial and anti-inflammatory agents (Rakesh *et al.*, 2009). Chromene (benzopyran) is also an important medicinal pharmacophore. It is an integral part of many natural alkaloids and flavonoids and is known to possess biological activities similar to the oxadiazoles, together with antivascular, antimicrobial and anti-oxidant properties (Gourdeau *et al.*, 2004). Another important feature is its lipophilic nature which helps it to pass readily through cell membranes. We are interested in the design and synthesis of chromene-based oxadiazole derivatives and studies of their biological activity, and we report here the structure of the chromene–oxadiazole derivative 5-(2-chlorophenyl)-3-(2*H*-chromen-3-yl)-1,2,4-oxadiazole.

A perspective view of the molecule is shown in Fig. 1. The molecule is not completely planar. The plane of the central oxadiazole ring is inclined at 1.2 (1)° to the plane of the 2-chlorophenyl ring and 12.24 (9)° to the best-fit plane of the chromene ring system. The C–Cl distance [1.7221 (17) Å] is consistent with the reported values (Hathwar *et al.*, 2010). The bond lengths and angles of the chromene and oxadiazole units are also similar to those reported in the literature (Devarajegowda *et al.*, 2015; Du & Zhao, 2004). In the crystal, weak intermolecular C–H···Cl and C–H···O interactions (Desiraju *et al.*,

Table 1		
Hydrogen-bond	geometry (Å	, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C5-H5\cdots O1^i$	0.93	2.62	3.389 (2)	140
$C14-H14\cdots Cl1^{ii}$	0.93	2.94	3.625 (2)	132
$C2-H2\cdots O2^{iii}$	0.93	2.67	3.550 (2)	158

Symmetry codes: (i) -x + 1, -y + 3, -z + 2; (ii) -x + 2, -y + 1, -z + 2; (iii) x - 1, y, z + 1.

Table 2

 $\pi - \pi$ interaction details (Å, °).

 $\mathit{Cg1}$ and $\mathit{Cg2}$ are the centroids of the C7/N1/C8/N2/O2 and C11–C16 rings, respectively

Centroid (Cg)	Centroid (Cg)	$Cg \cdots Cg$ distance	Dihedral angle	Slippage distance
Cg1	$Cg2^{ m i} \\ Cg1^{ m i}$	3.9370 (11)	14.57 (10)	1.69
Cg2		3.9370 (11)	14.57 (10)	2.318

Symmetry code: (i) -x, -y, -z.

Figure 1

The molecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level.

1999) are found. C14-H14···Cl1 hydrogen bonds form inversion dimers enclosing $R_2^2(24)$ rings, while a second inversion dimer forms through C5-H5···O1 contacts with an $R_2^2(10)$ ring motif (Bernstein *et al.*, 1995). A C2-H2···O2 interaction completes the hydrogen-bonding network, forming sheets of molecules parallel to (212), with each individual molecule in the sheet bound to four others through six nonclassical hydrogen-bonding interactions (Table 1 and

Figure 2

A view of two-dimensional sheet structure formed from $C-H\cdots O$ and $C-H\cdots Cl$ hydrogen bonds (cyan dotted lines).

Table 3	
Experimental details.	
Crystal data	
Chemical formula	$C_{17}H_{11}CIN_2O_2$
$M_{\rm r}$	310.73
Crystal system, space group	Triclinic, $P\overline{1}$
Temperature (K)	296
a, b, c (Å)	8.7208 (4), 8.7703 (3), 9.6278 (4)
α, β, γ (°)	86.035 (3), 80.227 (3), 79.352 (2)
$V(Å^3)$	712.65 (5)
Ζ	2
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	0.28
Crystal size (mm)	$0.40 \times 0.28 \times 0.20$
Data collection	
Diffractometer	Bruker APEXII
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	11000, 3518, 2452
R _{int}	0.028
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.668
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.046, 0.134, 1.11
No. of reflections	3518
No. of parameters	199
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({\rm e} {\rm \AA}^{-3})$	0.38, -0.26

Computer programs: APEX2 and SAINT (Bruker, 2014), SHELXT2014 (Sheldrick, 2015a), SHELXL2014 (Sheldrick, 2015b), ORTEP-3 for Windows and WinGX (Farrugia, 2012), Mercury (Macrae et al., 2008), publCIF (Westrip, 2010) and PLATON (Spek, 2009).

Fig. 2). Adjacent sheets are linked by inversion related offset π - π stacking interactions (Table 2 and Fig. 3), forming a threedimensional network.

Synthesis and crystallization

This compound was prepared by the treatment of N-hydroxy-2H-chromene-3-carboximidamide (1 equiv.) with 2-chlorobenzoic acid (0.8 equiv.) in the presence of ethylene dicarboimide (EDCI, 1.2 equiv) and N-hydroxybenzotriazole

Figure 3

Packing of the title compound, showing the π - π interactions stacking adjacent molecular sheets (dark blue dotted lines show the π - π interactions and cyan dotted lines indicate hydrogen bonds).

Figure 4 The synthetic scheme for the title compound.

(HOBt, 1.2 equiv.) in dry DMF at 353 K for 6 h (Fig. 4). The reaction mixture was extracted with water and ethyl acetate. The pure compound was isolated by column chromatography, eluting with 2–5% ethyl acetate/hexane. The solvents were evaporated and dried to give the title compound in 75% yield (m.p. 478 K). Colourless rectangular crystals were obtained by slow evaporation of a solution of the compound in a dichloromethane/hexane mixture. ¹H NMR (400 MHz, CDCl₃): δ 8.01 (*d*, *J* = 8.0 Hz, 2H), 7.37–7.33 (*m*, 3H), 7.21–7.17 (*m*, 2H), 6.94 (*t*, *J* = 8.0 Hz, 1H), 6.89 (*d*, *J* = 8.0 Hz, 1H), 5.26 (*s*, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 173.9, 166.0, 154.7, 134.8, 131.9, 131.6, 131.1, 128.6, 128.5, 128.4, 127.2, 126.8, 121.9, 121.4, 119.2, 116.2, 64.2.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3.

Acknowledgements

We thank the School of Chemistry, University of Hyderabad for the single-crystal X-ray data collection.

Funding information

Funding for this research was provided by: Council of Scientific and Industrial Research (grant No. 02(0218)/14/EMR-II to SM; Fast Track grant No. SB/FT/CS-87/2012 to SM); Council of Scientific and Industrial Research (grant No. 02(0134)/13/EMR-II to SN); Defence Research and Development Organisation (grant no. ERIP/ER/1203083/M/01/1643 to SM and SN).

References

- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Desiraju, G. R. & Steiner, T. (1999). In *The Weak Hydrogen Bond in Structural Chemistry and Biology*. New York: Oxford University Press Inc.
- Devarajegowda, H. C., Suchetan, P. A., Sreenivasa, S., Srinivasa, H. T. & Palakshamurthy, B. S. (2015). *Acta Cryst.* E**71**, o374–o375.
- Du, M. & Zhao, X.-J. (2004). Acta Cryst. C60, 054-056.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Gourdeau, H., Leblond, L., Hamelin, B., Desputeau, C., Dong, K., Kianicka, I., Custeau, D., Boudreau, C., Geerts, L., Cai, S. X., Drewe, J., Labrecque, D., Kasibhatla, S. & Tseng, B. (2004). *Mol. Cancer Ther.* 3, 1375–1384.
- Hathwar, V., Roopan, S. M., Subashini, R., Khan, F. N. & Guru Row, T. N. (2010). J. Chem. Sci. **122**, 677–685.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- Maftei, C. V., Fodor, E., Jones, P. G., Franz, M. H., Kelter, G., Fiebig, H. & Neda, I. (2013). *Beilstein J. Org. Chem.* 9, 2202–2215.
- Rakesh, D. S., Sun, D., Lee, R. B., Tangallapally, R. P. & Lee, R. E. (2009). Eur. J. Med. Chem. 44, 460–472.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

full crystallographic data

IUCrData (2018). **3**, x180129 [https://doi.org/10.1107/S2414314618001293]

5-(2-Chlorophenyl)-3-(2H-chromen-3-yl)-1,2,4-oxadiazole

Nilofar Baral, Sabita Nayak, Satyanarayan Pal and Seetaram Mohapatra

5-(2-Chlorophenyl)-3-(2H-chromen-3-yl)-1,2,4-oxadiazole

Crystal data	
$C_{17}H_{11}CIN_{2}O_{2}$ $M_{r} = 310.73$ Triclinic, $P\overline{1}$ $a = 8.7208 (4) \text{ Å}$ $b = 8.7703 (3) \text{ Å}$ $c = 9.6278 (4) \text{ Å}$ $a = 86.035 (3)^{\circ}$ $\beta = 80.227 (3)^{\circ}$ $\gamma = 79.352 (2)^{\circ}$ $V = 712.65 (5) \text{ Å}^{3}$	Z = 2 F(000) = 320 $D_x = 1.448 \text{ Mg m}^{-3}$ Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 2986 reflections $\theta = 2.4-26.6^{\circ}$ $\mu = 0.28 \text{ mm}^{-1}$ T = 296 K Rectangular block, colourless $0.40 \times 0.28 \times 0.20 \text{ mm}$
Data collection	
Bruker APEXII diffractometer Radiation source: sealed tube φ and ω scans 11000 measured reflections 3518 independent reflections	2452 reflections with $I > 2\sigma(I)$ $R_{int} = 0.028$ $\theta_{max} = 28.3^{\circ}, \ \theta_{min} = 2.2^{\circ}$ $h = -11 \rightarrow 11$ $k = -11 \rightarrow 11$ $l = -12 \rightarrow 12$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.046$ $wR(F^2) = 0.134$ S = 1.11 3518 reflections 199 parameters 0 restraints	Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0629P)^2 + 0.0537P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.38 \text{ e} \text{ Å}^{-3}$ $\Delta\rho_{min} = -0.26 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
C11	0.52115 (6)	0.91781 (6)	1.30274 (6)	0.0650 (2)

01	0.61910 (15)	1.27500 (14)	0.95744 (13)	0.0529 (3)
O2	1.09361 (16)	0.89357 (16)	0.61902 (13)	0.0601 (4)
N1	0.69651 (16)	1.03574 (15)	1.03518 (15)	0.0418 (3)
N2	0.75145 (19)	1.21176 (18)	0.86047 (16)	0.0536 (4)
C3	0.2109 (2)	1.3029 (2)	1.3854 (2)	0.0597 (5)
H3	0.1264	1.3352	1.4559	0.072*
C4	0.2528 (2)	1.4042 (2)	1.2754 (2)	0.0602 (5)
H4	0.1969	1.5052	1.2720	0.072*
C5	0.3759 (2)	1.3563 (2)	1.1718 (2)	0.0527 (5)
Н5	0.4019	1.4259	1.0981	0.063*
C6	0.4649 (2)	1.20576 (19)	1.17225 (18)	0.0409 (4)
C7	0.5951 (2)	1.16306 (19)	1.05849 (18)	0.0401 (4)
C8	0.7906 (2)	1.07079 (19)	0.91245 (17)	0.0410 (4)
C9	0.9241 (2)	0.9627 (2)	0.84305 (17)	0.0408 (4)
C17	0.9677 (2)	0.81924 (19)	0.89577 (18)	0.0421 (4)
H17	0.9143	0.7866	0.9814	0.051*
C16	1.09781 (19)	0.71486 (19)	0.81982 (18)	0.0426 (4)
C11	1.1551 (2)	0.7555 (2)	0.6807 (2)	0.0492 (4)
C12	1.2678 (3)	0.6539 (3)	0.5981 (2)	0.0649 (6)
H12	1.3036	0.6817	0.5048	0.078*
C13	1.3268 (3)	0.5112 (3)	0.6547 (3)	0.0706 (6)
H13	1.4018	0.4422	0.5987	0.085*
C15	1.1619 (2)	0.5702 (2)	0.8749 (2)	0.0526 (5)
H15	1.1270	0.5414	0.9680	0.063*
C14	1.2766 (3)	0.4691 (2)	0.7928 (2)	0.0634 (6)
H14	1.3194	0.3734	0.8306	0.076*
C10	1.0205 (2)	1.0176 (2)	0.7108 (2)	0.0544 (5)
H10A	0.9526	1.0945	0.6607	0.065*
H10B	1.1017	1.0674	0.7362	0.065*
C1	0.4216 (2)	1.1052 (2)	1.28580 (19)	0.0448 (4)
C2	0.2945 (2)	1.1539 (2)	1.3905 (2)	0.0550 (5)
H2	0.2658	1.0855	1.4643	0.066*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.0698 (4)	0.0491 (3)	0.0657 (3)	0.0012 (2)	-0.0008 (3)	0.0144 (2)
01	0.0564 (8)	0.0409 (7)	0.0530 (7)	0.0005 (6)	0.0021 (6)	0.0062 (6)
O2	0.0636 (9)	0.0618 (8)	0.0435 (7)	0.0030 (7)	0.0058 (6)	0.0027 (6)
N1	0.0400 (8)	0.0382 (7)	0.0443 (8)	-0.0025 (6)	-0.0040 (6)	0.0007 (6)
N2	0.0542 (10)	0.0472 (8)	0.0510 (9)	0.0000 (7)	0.0033 (7)	0.0038 (7)
C3	0.0527 (12)	0.0641 (13)	0.0588 (12)	-0.0051 (10)	0.0000 (10)	-0.0152 (10)
C4	0.0564 (12)	0.0483 (11)	0.0706 (14)	0.0004 (9)	-0.0031 (11)	-0.0086 (10)
C5	0.0533 (11)	0.0406 (10)	0.0595 (12)	-0.0028 (8)	-0.0022 (9)	-0.0016 (8)
C6	0.0390 (9)	0.0390 (9)	0.0457 (9)	-0.0064 (7)	-0.0090 (8)	-0.0040 (7)
C7	0.0424 (9)	0.0374 (8)	0.0418 (9)	-0.0083 (7)	-0.0102 (7)	0.0014 (7)
C8	0.0399 (9)	0.0423 (9)	0.0408 (9)	-0.0074 (7)	-0.0080(7)	0.0018 (7)
C9	0.0382 (9)	0.0446 (9)	0.0387 (9)	-0.0061 (7)	-0.0045 (7)	-0.0033 (7)

C17	0.0415 (9)	0.0453 (9)	0.0383 (9)	-0.0077 (8)	-0.0034 (7)	-0.0001 (7)
C16	0.0365 (9)	0.0454 (9)	0.0455 (9)	-0.0065 (7)	-0.0045 (7)	-0.0055 (7)
C11	0.0433 (10)	0.0538 (11)	0.0479 (10)	-0.0055 (8)	-0.0036 (8)	-0.0017 (8)
C12	0.0573 (13)	0.0732 (14)	0.0548 (12)	-0.0021 (11)	0.0098 (10)	-0.0084 (10)
C13	0.0588 (13)	0.0673 (14)	0.0755 (15)	0.0068 (11)	0.0050 (12)	-0.0180 (12)
C15	0.0502 (11)	0.0470 (10)	0.0565 (11)	-0.0026 (8)	-0.0045 (9)	-0.0004 (8)
C14	0.0574 (13)	0.0497 (11)	0.0767 (15)	0.0034 (9)	-0.0046 (11)	-0.0071 (10)
C10	0.0570 (12)	0.0520 (11)	0.0474 (10)	-0.0034 (9)	0.0016 (9)	0.0047 (8)
C1	0.0434 (10)	0.0444 (9)	0.0468 (10)	-0.0065 (8)	-0.0095 (8)	-0.0021 (8)
C2	0.0557 (12)	0.0625 (12)	0.0458 (10)	-0.0125 (10)	-0.0030 (9)	-0.0012 (9)

Geometric parameters (Å, °)

Cl1—C1	1.7221 (17)	C9—C17	1.337 (2)
O1—C7	1.352 (2)	C9—C10	1.504 (3)
O1—N2	1.407 (2)	C17—C16	1.445 (2)
O2—C11	1.370 (2)	C17—H17	0.9300
O2—C10	1.434 (2)	C16—C11	1.394 (3)
N1—C7	1.297 (2)	C16—C15	1.396 (2)
N1—C8	1.370 (2)	C11—C12	1.379 (3)
N2—C8	1.308 (2)	C12—C13	1.375 (3)
C3—C2	1.375 (3)	C12—H12	0.9300
C3—C4	1.379 (3)	C13—C14	1.375 (3)
С3—Н3	0.9300	C13—H13	0.9300
C4—C5	1.360 (3)	C15—C14	1.383 (3)
C4—H4	0.9300	C15—H15	0.9300
C5—C6	1.403 (2)	C14—H14	0.9300
С5—Н5	0.9300	C10—H10A	0.9700
C6—C1	1.402 (3)	C10—H10B	0.9700
C6—C7	1.452 (2)	C1—C2	1.390 (3)
С8—С9	1.454 (2)	С2—Н2	0.9300
C7—O1—N2	106.58 (12)	C11—C16—C17	118.38 (16)
C11—O2—C10	117.19 (14)	C15-C16-C17	123.41 (17)
C7—N1—C8	103.21 (14)	O2—C11—C12	117.82 (17)
C8—N2—O1	103.13 (13)	O2—C11—C16	120.90 (16)
C2—C3—C4	119.87 (19)	C12—C11—C16	121.14 (18)
С2—С3—Н3	120.1	C13—C12—C11	119.4 (2)
С4—С3—Н3	120.1	C13—C12—H12	120.3
C5—C4—C3	119.97 (18)	C11—C12—H12	120.3
С5—С4—Н4	120.0	C14—C13—C12	121.0 (2)
С3—С4—Н4	120.0	C14—C13—H13	119.5
C4—C5—C6	122.36 (19)	C12—C13—H13	119.5
С4—С5—Н5	118.8	C14—C15—C16	120.9 (2)
С6—С5—Н5	118.8	C14—C15—H15	119.6
C1—C6—C5	116.77 (17)	C16—C15—H15	119.6
C1—C6—C7	123.92 (15)	C13—C14—C15	119.4 (2)
С5—С6—С7	119.31 (16)	C13—C14—H14	120.3

N1—C7—O1	112.46 (15)	C15—C14—H14	120.3
N1—C7—C6	131.83 (16)	O2—C10—C9	112.57 (15)
O1—C7—C6	115.70 (14)	O2-C10-H10A	109.1
N2—C8—N1	114.61 (15)	C9-C10-H10A	109.1
N2—C8—C9	121.46 (16)	O2—C10—H10B	109.1
N1—C8—C9	123.93 (15)	C9—C10—H10B	109.1
С17—С9—С8	122.38 (16)	H10A-C10-H10B	107.8
С17—С9—С10	119.06 (16)	C2-C1-C6	120.70 (17)
C8—C9—C10	118.51 (15)	C2-C1-Cl1	117.01 (15)
C9—C17—C16	120.03 (16)	C6—C1—C11	122.29 (14)
С9—С17—Н17	120.0	C3—C2—C1	120.32 (19)
С16—С17—Н17	120.0	C3—C2—H2	119.8
C11—C16—C15	118.04 (17)	C1—C2—H2	119.8
C7—O1—N2—C8	0.60 (18)	C9—C17—C16—C15	172.52 (17)
C2—C3—C4—C5	0.4 (3)	C10-02-C11-C12	-159.35 (17)
C3—C4—C5—C6	-0.5 (3)	C10-O2-C11-C16	24.9 (3)
C4—C5—C6—C1	-0.2 (3)	C15-C16-C11-O2	177.84 (16)
C4—C5—C6—C7	-179.70 (17)	C17—C16—C11—O2	2.3 (3)
C8—N1—C7—O1	0.53 (18)	C15-C16-C11-C12	2.2 (3)
C8—N1—C7—C6	-178.65 (17)	C17—C16—C11—C12	-173.26 (17)
N2—O1—C7—N1	-0.73 (19)	O2-C11-C12-C13	-176.98 (19)
N2—O1—C7—C6	178.58 (14)	C16-C11-C12-C13	-1.2 (3)
C1-C6-C7-N1	-1.2 (3)	C11—C12—C13—C14	-0.8 (4)
C5—C6—C7—N1	178.26 (17)	C11-C16-C15-C14	-1.3 (3)
C1—C6—C7—O1	179.69 (15)	C17—C16—C15—C14	173.99 (18)
C5—C6—C7—O1	-0.9 (2)	C12-C13-C14-C15	1.7 (4)
O1—N2—C8—N1	-0.3 (2)	C16—C15—C14—C13	-0.7 (3)
O1—N2—C8—C9	179.76 (15)	C11—O2—C10—C9	-40.1 (2)
C7—N1—C8—N2	-0.1 (2)	C17—C9—C10—O2	30.5 (2)
C7—N1—C8—C9	179.81 (16)	C8—C9—C10—O2	-152.22 (15)
N2—C8—C9—C17	178.75 (16)	C5—C6—C1—C2	1.1 (3)
N1—C8—C9—C17	-1.2 (3)	C7—C6—C1—C2	-179.50 (16)
N2-C8-C9-C10	1.6 (3)	C5—C6—C1—Cl1	-179.00 (13)
N1-C8-C9-C10	-178.30 (16)	C7—C6—C1—Cl1	0.4 (2)
C8—C9—C17—C16	177.80 (15)	C4—C3—C2—C1	0.4 (3)
C10—C9—C17—C16	-5.1 (3)	C6—C1—C2—C3	-1.2 (3)
C9—C17—C16—C11	-12.2 (3)	Cl1—C1—C2—C3	178.89 (15)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···· A	D—H···A
C5—H5…O1 ⁱ	0.93	2.62	3.389 (2)	140
C14—H14····Cl1 ⁱⁱ	0.93	2.94	3.625 (2)	132
C2—H2····O2 ⁱⁱⁱ	0.93	2.67	3.550 (2)	158

Symmetry codes: (i) -*x*+1, -*y*+3, -*z*+2; (ii) -*x*+2, -*y*+1, -*z*+2; (iii) *x*-1, *y*, *z*+1.