ISSN 2414-3146

Received 17 December 2017
Accepted 3 January 2018

Edited by E. R. T. Tiekink, Sunway University, Malaysia

Keywords: crystal structure; pyridine N-oxide; herringbone pattern.

CCDC reference: 1814493

Structural data: full structural data are available from iucrdata.iucr.org

2-Chloro-4-nitropyridine N -oxide

Sarah K Shafer, Will E Lynch and Clifford W Padgett*

Georgia Southern University, 11935 Abercorn St. Savanah GA 31419, USA. *Correspondence e-mail: clifford.padgett@armstrong.edu

In the title compound, $\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{ClN}_{2} \mathrm{O}_{3}$ (systematic name: 2-chloro-4-nitropyridin-1-ium-1-olate), the nitro group is essentially coplanar with the aromatic ring, with a twist angle of $6.48(8)^{\circ}$. The molecular packing exhibits a herringbone pattern with the zigzag running along the b axis; here, there are no short contacts, hydrogen bonds, or $\pi-\pi$ interactions.

Chemical scheme

Structure description

Pyridine N-oxide and related compounds have garnered much interest in organic chemistry since their preparation was first reported by Meisenheimer (1926). A number of recent publications have highlighted their utility in organic transformations such as reactions with Grignard reagents (Andersson et al., 2011), aromatic ring substitutions (Shibata \& Takano, 2015) and aromatic coupling reactions (Wang \& Zhang, 2015). Further, numerous uses in pharmaceutical applications have been realised throughout the years, such as the recent report of uses as an emerging class of therapeutic agents, including thrombin as a potential clotting inhibitor drug (Mfuh \& Larionov, 2015).

In the title compound (Fig. 1), the nitro group is essentially coplanar with the aromatic ring, with a twist angle of $6.48(8)^{\circ}$. The crystal structure (Fig. 2) exhibits a herringbone pattern with the zigzag running along the b axis. The herringbone layer-to-layer distance is 2.947 (4) \AA with a shift of 5.155 (5) \AA. Neighboring molecules of the herringbone are tilted at a $47.08(10)^{\circ}$ (ring-to-ring) angle to each other. The chloro group in one of herringbone chains points to the chloro group in the neighboring one, with a $\mathrm{Cl} \cdots \mathrm{Cl}$ intermolecular distance of 3.708 (2) \AA. In the bends of the chains, the N-oxide aligns with the nitro group with an $\mathrm{O} \cdots \mathrm{O}$ distance of 2.922 (3) A. There are no other short contacts, hydrogen bonds, or $\pi-\pi$ interactions.

This structure is similar to the previously reported structure of 2,6-dichloro-4-nitropyridine N-oxide (Prichard et al., 2015).

Figure 1
A view of the molecular structure of the title compound, with the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

Synthesis and crystallization

2-Chloro-4-nitropyridine N-oxide was purchased from SigmaAldrich and 0.10 g was dissolved in approximately 50 ml of

Molecular packing diagram of title compound viewed along the c axis.

Table 1
Experimental details.
Crystal data
Chemical formula
M_{r}
Crystal system, space group
Temperature (K)
$a, b, c(\AA)$
$V\left(\AA^{3}\right)$
Z
Radiation type
$\mu\left(\mathrm{mm}^{-1}\right)$
Crystal size (mm)
Data collection
Diffractometer
Absorption correction
$T_{\text {min }}, T_{\text {max }}$
$T_{\min }, I_{\text {max }}$
No. of measured, independent and observed $[I>2 \sigma(I)]$ reflections
$R_{\text {int }}$
$\begin{array}{ll}(\sin \theta / \lambda)_{\max }\left(\AA^{-1}\right) & 0.111 \\ & 0.649\end{array}$
Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$	$0.050,0.132,1.06$
No. of reflections	1484
No. of parameters	100
H-atom treatment	H -atom parameters constrained
$\Delta \rho_{\max }, \Delta \rho_{\min }\left(\mathrm{e} \AA^{-3}\right)$	$0.33,-0.33$

Computer programs: CrystalClear (Rigaku, 2009), SHELXT (Sheldrick, 2015b), SHELXL (Sheldrick, 2015a) and OLEX2 (Dolomanov et al., 2009).
chloroform. Diffraction-quality crystals were obtained by slow evaporation of the solvent.

Refinement

Crystal data, data collection, and structure refinement details are summarized in Table 1.

Funding information

The authors acknowledge financial support from Armstrong State University.

References

Andersson, H., Olsson, R. \& Almqvist, F. (2011). Org. Biomol. Chem. 9, 337-346.
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. \& Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.
Meisenheimer, J. (1926). Ber. Dtsch. Chem. Ges. A/B, 59, 1848-1853.
Mfuh, A. M. \& Larionov, O. V. (2015). Curr. Med. Chem. 22, 28192857.

Prichard, A. M., Lynch, W. E. \& Padgett, C. W. (2015). Acta Cryst. E71, o775.
Rigaku (1998). REQAB. Rigaku Corporation, Tokyo, Japan.
Rigaku (2009). CrystalClear. Rigaku Corporation, Tokyo, Japan.
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
Shibata, T. \& Takano, H. (2015). Org. Chem. Front. 2, 383-387.
Wang, Y. \& Zhang, L. (2015). Synthesis, 47, 289-305.

full crystallographic data

IUCrData (2018). 3, x180016 [https://doi.org/10.1107/S2414314618000160]

2-Chloro-4-nitropyridine N -oxide

Sarah K Shafer, Will E Lynch and Clifford W Padgett

2-Chloro-4-nitropyridine N -oxide

Crystal data

$\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{ClN}_{2} \mathrm{O}_{3}$
$M_{r}=174.54$
Orthorhombic, $P b c a$
$a=5.9238$ (14) \AA
$b=9.735$ (2) \AA
$c=22.444$ (8) \AA
$V=1294.3(5) \AA^{3}$
$Z=8$
$F(000)=704$

Data collection

Rigaku XtalLab mini CCD
diffractometer
ω scans
Absorption correction: multi-scan
(REQAB;Rigaku, 1998)
$T_{\min }=0.741, T_{\text {max }}=1.000$
11029 measured reflections
$D_{\mathrm{x}}=1.791 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 2672 reflections
$\theta=2.1-27.5^{\circ}$
$\mu=0.54 \mathrm{~mm}^{-1}$
$T=176 \mathrm{~K}$
Prism, colorless
$0.34 \times 0.18 \times 0.08 \mathrm{~mm}$

1485 independent reflections
1088 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.111$
$\theta_{\text {max }}=27.5^{\circ}, \theta_{\text {min }}=1.8^{\circ}$
$h=-7 \rightarrow 7$
$k=-12 \rightarrow 12$
$l=-28 \rightarrow 28$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.050$
$w R\left(F^{2}\right)=0.132$
$S=1.06$
1484 reflections
100 parameters
0 restraints
Primary atom site location: dual

> Hydrogen site location: inferred from \quad neighbouring sites
> H -atom parameters constrained
> $w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.056 P)^{2}+0.245 P\right]$
> where $P=\left(F_{0}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
> $(\Delta / \sigma)_{\max }<0.001$
> $\Delta \rho_{\max }=0.33$ e \AA^{-3}
> $\Delta \rho_{\min }=-0.33$ e \AA^{-3}

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Carbon-bound H -atoms were placed in calculated positions $(\mathrm{C}-\mathrm{H}=0.95 \AA$) and were included in the refinement in the riding model approximation, with $U_{\text {iso }}(\mathrm{H})$ set to $1.2 U_{\text {equiv }}(\mathrm{C})$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\mathrm{iso}}{ }^{*} / U_{\mathrm{eq}}$
C11	$0.84970(12)$	$0.41241(8)$	$0.70078(3)$	$0.0328(3)$
O1	$1.0061(3)$	$0.4471(2)$	$0.58347(8)$	$0.0308(5)$
O2	$0.1310(3)$	$0.7204(2)$	$0.67343(9)$	$0.0394(6)$
O3	$0.1031(3)$	$0.7656(2)$	$0.57923(8)$	$0.0327(5)$
N1	$0.8139(3)$	$0.5062(2)$	$0.59237(9)$	$0.0230(5)$
N2	$0.2001(4)$	$0.7138(2)$	$0.62205(9)$	$0.0272(5)$
C1	$0.7126(4)$	$0.5030(3)$	$0.64730(10)$	$0.0241(6)$
C2	$0.5117(4)$	$0.5703(3)$	$0.65747(11)$	$0.0249(6)$
H2	0.445346	0.569168	0.695020	0.030^{*}
C3	$0.4116(4)$	$0.6391(3)$	$0.61119(11)$	$0.0244(6)$
C4	$0.5083(4)$	$0.6418(3)$	$0.55541(11)$	$0.0252(6)$
H4	0.438517	0.688058	0.524175	0.030^{*}
C5	$0.7094(4)$	$0.5752(3)$	$0.54681(11)$	$0.0257(6)$
H5	0.776304	0.576716	0.509329	0.031^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C11	$0.0334(4)$	$0.0350(4)$	$0.0301(4)$	$0.0086(3)$	$-0.0052(3)$	$0.0017(3)$
O1	$0.0223(10)$	$0.0284(11)$	$0.0418(12)$	$0.0070(9)$	$0.0068(8)$	$-0.0018(8)$
O2	$0.0331(12)$	$0.0453(14)$	$0.0397(12)$	$0.0094(10)$	$0.0090(9)$	$-0.0013(10)$
O3	$0.0255(10)$	$0.0300(11)$	$0.0425(12)$	$0.0013(9)$	$-0.0069(8)$	$0.0048(9)$
N1	$0.0210(12)$	$0.0174(11)$	$0.0307(11)$	$-0.0014(10)$	$0.0032(8)$	$-0.0024(9)$
N2	$0.0209(12)$	$0.0248(12)$	$0.0360(13)$	$-0.0017(10)$	$0.0012(9)$	$-0.0006(10)$
C1	$0.0261(14)$	$0.0212(13)$	$0.0249(12)$	$-0.0009(12)$	$-0.0037(10)$	$-0.0013(10)$
C2	$0.0235(14)$	$0.0258(14)$	$0.0255(13)$	$-0.0027(12)$	$0.0021(10)$	$-0.0012(10)$
C3	$0.0198(13)$	$0.0225(13)$	$0.0308(14)$	$-0.0016(11)$	$-0.0006(11)$	$-0.0030(10)$
C4	$0.0253(14)$	$0.0247(14)$	$0.0257(14)$	$-0.0017(11)$	$-0.0033(10)$	$0.0017(10)$
C5	$0.0279(14)$	$0.0269(14)$	$0.0224(13)$	$-0.0050(12)$	$0.0026(10)$	$0.0003(11)$

Geometric parameters (\AA, ${ }^{\circ}$)

$\mathrm{C} 11-\mathrm{C} 1$	$1.697(3)$	$\mathrm{C} 1-\mathrm{C} 2$	$1.378(4)$
$\mathrm{O} 1-\mathrm{N} 1$	$1.291(3)$	$\mathrm{C} 2-\mathrm{H} 2$	0.9300
$\mathrm{O} 2-\mathrm{N} 2$	$1.225(3)$	$\mathrm{C} 2-\mathrm{C} 3$	$1.371(4)$
$\mathrm{O} 3-\mathrm{N} 2$	$1.228(3)$	$\mathrm{C} 3-\mathrm{C} 4$	$1.377(4)$
$\mathrm{N} 1-\mathrm{C} 1$	$1.372(4)$	$\mathrm{C} 4-\mathrm{H} 4$	0.9300
$\mathrm{~N} 1-\mathrm{C} 5$	$1.371(3)$	$\mathrm{C} 4-\mathrm{C} 5$	$1.370(4)$
$\mathrm{N} 2-\mathrm{C} 3$	$1.469(4)$	$\mathrm{C} 5-\mathrm{H} 5$	0.9300
			120.6
$\mathrm{O} 1-\mathrm{N} 1-\mathrm{C} 1$	$121.0(2)$	$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2$	$119.0(2)$
$\mathrm{O} 1-\mathrm{N} 1-\mathrm{C} 5$	$120.1(2)$	$\mathrm{C} 2-\mathrm{C} 3-\mathrm{N} 2$	$121.2(3)$
$\mathrm{C} 5-\mathrm{N} 1-\mathrm{C} 1$	$118.9(2)$	$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$119.7(2)$
$\mathrm{O} 2-\mathrm{N} 2-\mathrm{O} 3$	$124.0(3)$	$\mathrm{C} 4-\mathrm{C} 3-\mathrm{N} 2$	120.6

$\mathrm{O} 3-\mathrm{N} 2-\mathrm{C} 3$	$118.2(2)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 11$	$116.0(2)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	$121.1(2)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{Cl} 1$	$122.9(2)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2$	120.6
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 1$	$118.7(2)$

$\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 3$	$118.7(2)$
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{H} 4$	120.6
$\mathrm{~N} 1-\mathrm{C} 5-\mathrm{H} 5$	119.4
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{N} 1$	$121.3(2)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{H} 5$	119.4

