

ISSN 2414-3146

Received 19 December 2017 Accepted 21 December 2017

Edited by L. Van Meervelt, Katholieke Universiteit Leuven, Belgium

Keywords: crystal structure; imidazolidine-2,4dione; benzyl; hydrogen bond; π - π stacking.

CCDC reference: 1813053

Structural data: full structural data are available from iucrdata.iucr.org

3-Benzyl-5,5-diphenylimidazolidine-2,4-dione

Walid Guerrab,^a* Rachida Akrad,^a Mhammed Ansar,^a Jamal Taoufik,^a Joel T. Mague^b and Youssef Ramli^a

^aLaboratory of Medicinal Chemistry, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat, Morocco, and ^bDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA. *Correspondence e-mail: gerrab_walid@yahoo.com

The asymmetric unit of the title compound, $C_{22}H_{18}N_2O_2$, consists of two independent molecules differing primarily in the orientation of the benzyl substituent. The two independent molecules are associated through complementary $C-H\cdots\pi$ interactions and are elaborated into corrugated sheets by paired $N-H\cdotsO$ and $C-H\cdotsO$ hydrogen bonds. Additional $C-H\cdotsO$ hydrogen bonds bind the sheets together.

Structure description

As a continuation of our studies of phenytoin derivatives (Ramli, Akrad *et al.*, 2017; Ramli, Guerrab *et al.*, 2017; Akrad *et al.*, 2017; Guerrab *et al.*, 2017*a,b,c*), we report herein the synthesis and crystal structure of the new title 5,5-diphenylimidazolidine derivative.

The asymmetric unit of the title compound consists of two independent molecules which differ in the orientations of the benzyl groups (Fig. 1). Thus the N1-C4-C5-C6 torsion angle is 26.89 (15)°, while the N3-C26-C27-C28 torsion angle is 70.96 (13)°. Each imidazolidine-2,4-dione ring has two phenyl groups attached to the 5-position. The C11–C16 and C17–C22 phenyl rings are inclined to the C1/C2/N1/C3/N2 ring by 71.62 (6) and 72.22 (7)°, respectively, while the C33–C38 and C39–C44 phenyl rings are inclined to the C23/C24/N3/C25/N4 ring by 70.22 (6) and 77.25 (7)°, respectively.

In the crystal, the two independent molecules are associated through $C-H\cdots\pi$ interactions (C8–H8···Cg7 and C31–H31···Cg3; Table 1 and Fig. 1; Cg3 and Cg7 are the centroids of the C11–C16 and C33–C38 phenyl rings, respectively) and are coupled to a second such unit by inversion-related C15–H15···O3 hydrogen bonds and offset $\pi-\pi$ stacking interactions between C27–C32 phenyl rings [Table 1 and Fig. 2; centroid– centroid distance = 3.9033 (8) Å. Inversion-related N2–H2···O2 and N4–H4···O4 hydrogen bonds bind this tetramolecular unit to two further similar units to ultimately

Figure 1

The asymmetric unit with labeling scheme and 50% probability displacement ellipsoids. The C-H··· π (ring) interactions are shown by dashed lines.

form a thick, corrugated sheet (Table 1 and Fig. 2). The sheets are linked *via* C15-H15 \cdots O3 hydrogen bonds (Table 1 and Figs. 3 and 4).

Figure 2

Detail of the interactions forming one corrugated sheet. $N-H\cdots O$ and $C-H\cdots O$ hydrogen bonds are shown, respectively, by blue and black dashed lines while $C-H\cdots \pi(\text{ring})$ and $\pi-\pi$ stacking interactions are shown by green and orange dashed lines.

Figure 3

Detail of the C-H···O hydrogen bonding holding the sheets together viewed along the *a*-axis direction. Color codes are the same as in Fig. 2.

 Table 1

 Hydrogen-bond geometry (Å, °).

Cg3 and Cg7 are the centroids of the C11–C16 and C33–C38 phenyl rings, respectively.

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N2 - H2 \cdots O2^{i}$	0.918 (16)	1.930 (16)	2.8446 (13)	173.3 (14)
$N4-H4\cdots O4^{ii}$	0.916 (15)	1.958 (15)	2.8613 (12)	168.3 (14)
$C8 - H8 \cdot \cdot \cdot Cg7$	0.985 (16)	2.987 (16)	3.5734 (14)	119.3 (11)
C15-H15···O3 ⁱⁱⁱ	0.978 (15)	2.451 (16)	3.3830 (17)	159.2 (13)
$C19-H19\cdots Cg7^{iv}$	0.983 (17)	2.732 (17)	3.6805 (15)	162.4 (14)
$C22 - H22 \cdot \cdot \cdot O3^{v}$	0.973 (13)	2.586 (14)	3.3111 (15)	131.4 (11)
$C31 - H31 \cdots Cg3$	0.981 (16)	2.917 (15)	3.8944 (15)	174.2 (12)
$C41 - H41 \cdots Cg3^{vi}$	0.951 (17)	2.830 (17)	3.6570 (15)	146.0 (15)

Symmetry codes: (i) -x + 1, -y + 1, -z; (ii) -x + 2, -y, -z + 1; (iii) -x + 2, -y + 1, -z + 1; (iv) x, y + 1, z - 1; (v) -x + 1, -y + 1, -z + 1; (vi) x, y - 1, z + 1.

Synthesis and crystallization

To a solution of 5,5-diphenylimidazolidine-2,4-dione (3.96 mol, 1 g) in 20 ml of dimethylformamide (DMF) were added one equivalent of benzyl chloride (3.96 mol), K_2CO_3 (3.96 mol) and a catalytic amount of tetrabutylammonium bromide. The solution was heated under reflux for 3 h. The progress was monitored by TLC and after completion the solid material was removed by filtration and the solvent evaporated under vacuum. The solid product was purified by recrystallization from ethanol solution to afford colorless block-like crystals of the title compound (yield 69%).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

Packing viewed along the *a*-axis direction. Color codes are the same as in Fig. 2.

Table 2Experimental details.

Crystal data	
Chemical formula	$C_{22}H_{18}N_2O_2$
$M_{ m r}$	342.38
Crystal system, space group	Triclinic, P1
Temperature (K)	100
a, b, c (Å)	8.8897 (5), 13.2911 (7), 16.6864 (9)
α, β, γ (°)	67.900 (1), 81.027 (1), 74.294 (1)
$V(Å^3)$	1755.27 (17)
Ζ	4
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	0.08
Crystal size (mm)	$0.37 \times 0.21 \times 0.19$
Data collection	
Diffractometer	Bruker SMART APEX CCD
Absorption correction	Multi-scan (<i>SADABS</i> ; Bruker, 2016)
T_{\min}, T_{\max}	0.90, 0.98
No. of measured, independent and	34377, 9388, 7122
observed $[I > 2\sigma(I)]$ reflections	
R _{int}	0.035
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.689
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.047, 0.129, 1.03
No. of reflections	9388
No. of parameters	613
H-atom treatment	All H-atom parameters refined
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$	0.43, -0.20

Computer programs: *APEX3* and *SAINT* (Bruker, 2016), *SHELXT* (Sheldrick, 2015*a*), *SHELXL2016* (Sheldrick, 2015*b*), *DIAMOND* (Brandenburg & Putz, 2012) and *SHELXTL* (Sheldrick, 2008).

Acknowledgements

JTM thanks Tulane University for support of the Tulane Crystallography Laboratory.

References

Akrad, R., Mague, J. T., Guerrab, W., Taoufik, J., Ansar, M. & Ramli, Y. (2017). *IUCrData*, **2**, x170033.

Brandenburg, K. & Putz, H. (2012). *DIAMOND*. Crystal Impact GbR, Bonn, Germany.

Bruker (2016). *APEX3, SADABS* and *SAINT*. Bruker AXS Inc., Madison, Wisconsin, USA.

Guerrab, W., Akrad, R., Ansar, M., Taoufik, J., Mague, J. T. & Ramli, Y. (2017*a*). *IUCrData*, **2**, x171534.

Guerrab, W., Akrad, R., Ansar, M., Taoufik, J., Mague, J. T. & Ramli, Y. (2017b). *IUCrData*, **2**, x171591.

Guerrab, W., Akrad, R., Ansar, M., Taoufik, J., Mague, J. T. & Ramli, Y. (2017c). *IUCrData*, **2**, x171591.

Ramli, Y., Akrad, R., Guerrab, W., Taoufik, J., Ansar, M. & Mague, J. T. (2017). *IUCrData*, **2**, x170098.

Ramli, Y., Guerrab, W., Moussaif, A., Taoufik, J., Essassi, E. M. & Mague, J. T. (2017). *IUCrData*, 2, x171041.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.

Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.

full crystallographic data

IUCrData (2018). 3, x171832 [https://doi.org/10.1107/S2414314617018326]

3-Benzyl-5,5-diphenylimidazolidine-2,4-dione

Walid Guerrab, Rachida Akrad, Mhammed Ansar, Jamal Taoufik, Joel T. Mague and Youssef Ramli

Z = 4

F(000) = 720 $D_x = 1.296 \text{ Mg m}^{-3}$

 $\theta = 2.4 - 29.2^{\circ}$

 $\mu = 0.08 \text{ mm}^{-1}$

Block, colourless

 $0.37 \times 0.21 \times 0.19 \text{ mm}$

 $\theta_{\rm max} = 29.3^{\circ}, \ \theta_{\rm min} = 1.7^{\circ}$

34377 measured reflections

9388 independent reflections

7122 reflections with $I > 2\sigma(I)$

T = 100 K

 $R_{\rm int} = 0.035$

 $h = -12 \longrightarrow 12$ $k = -18 \longrightarrow 18$

 $l = -22 \rightarrow 22$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 9954 reflections

3-Benzyl-5,5-diphenylimidazolidine-2,4-dione

Crystal data

 $C_{22}H_{18}N_{2}O_{2}$ $M_{r} = 342.38$ Triclinic, $P\overline{1}$ a = 8.8897 (5) Å b = 13.2911 (7) Å c = 16.6864 (9) Å $a = 67.900 (1)^{\circ}$ $\beta = 81.027 (1)^{\circ}$ $\gamma = 74.294 (1)^{\circ}$ $V = 1755.27 (17) \text{ Å}^{3}$

Data collection

Bruker SMART APEX CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator Detector resolution: 8.3333 pixels mm⁻¹ φ and ω scans Absorption correction: multi-scan (*SADABS*; Bruker, 2016) $T_{\min} = 0.90, T_{\max} = 0.98$

Refinement

Refinement on F^2 Secondary atom site location: difference Fourier Least-squares matrix: full map $R[F^2 > 2\sigma(F^2)] = 0.047$ Hydrogen site location: difference Fourier map $wR(F^2) = 0.129$ All H-atom parameters refined S = 1.03 $w = 1/[\sigma^2(F_o^2) + (0.0832P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ 9388 reflections 613 parameters $(\Delta/\sigma)_{\rm max} = 0.001$ 0 restraints $\Delta \rho_{\rm max} = 0.43 \ {\rm e} \ {\rm \AA}^{-3}$ Primary atom site location: structure-invariant $\Delta \rho_{\rm min} = -0.20 \ {\rm e} \ {\rm \AA}^{-3}$ direct methods

Special details

Experimental. The diffraction data were obtained from 3 sets of 400 frames, each of width 0.5° in ω , collected at $\varphi = 0.00, 90.00$ and 180.00° and 2 sets of 800 frames, each of width 0.45° in φ , collected at $\omega = -30.00$ and 210.00° . The scan time was 15 sec/frame.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \text{sigma}(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.46307 (9)	0.62158 (7)	0.26376 (5)	0.02014 (18)	
O2	0.41552 (9)	0.41700 (7)	0.10586 (5)	0.01982 (18)	
N1	0.42911 (10)	0.49893 (7)	0.20433 (6)	0.01533 (19)	
N2	0.53687 (11)	0.56296 (8)	0.07157 (6)	0.0166 (2)	
H2	0.5562 (16)	0.5738 (12)	0.0136 (10)	0.031 (4)*	
C1	0.55306 (12)	0.63913 (9)	0.11229 (7)	0.0145 (2)	
C2	0.47733 (12)	0.58910 (9)	0.20364 (7)	0.0149 (2)	
C3	0.45820 (12)	0.48636 (9)	0.12306 (7)	0.0149 (2)	
C4	0.34479 (13)	0.43039 (9)	0.27741 (7)	0.0171 (2)	
H4A	0.2760 (16)	0.4038 (11)	0.2521 (9)	0.023 (3)*	
H4B	0.2729 (14)	0.4810 (11)	0.3073 (8)	0.017 (3)*	
C5	0.44722 (13)	0.33415 (9)	0.34260 (7)	0.0158 (2)	
C6	0.59706 (14)	0.33556 (10)	0.35577 (8)	0.0218 (2)	
H6	0.6439 (17)	0.3995 (12)	0.3179 (10)	0.029 (4)*	
C7	0.68251 (15)	0.24753 (11)	0.42072 (9)	0.0269 (3)	
H7	0.787 (2)	0.2494 (14)	0.4296 (11)	0.049 (5)*	
C8	0.61849 (16)	0.15808 (11)	0.47286 (8)	0.0271 (3)	
H8	0.6812 (17)	0.0949 (13)	0.5171 (10)	0.037 (4)*	
C9	0.46925 (15)	0.15669 (10)	0.46011 (8)	0.0253 (3)	
H9	0.4252 (17)	0.0926 (13)	0.4982 (10)	0.036 (4)*	
C10	0.38403 (14)	0.24386 (9)	0.39524 (8)	0.0195 (2)	
H10	0.2836 (18)	0.2390 (12)	0.3863 (10)	0.031 (4)*	
C11	0.72450 (12)	0.63221 (9)	0.12231 (7)	0.0162 (2)	
C12	0.84449 (14)	0.54637 (10)	0.11023 (8)	0.0232 (3)	
H12	0.8223 (16)	0.4901 (12)	0.0918 (10)	0.030 (4)*	
C13	0.99862 (15)	0.54048 (11)	0.12297 (9)	0.0289 (3)	
H13	1.0850 (17)	0.4806 (13)	0.1125 (10)	0.034 (4)*	
C14	1.03148 (15)	0.61956 (11)	0.14806 (9)	0.0278 (3)	
H14	1.1406 (17)	0.6137 (12)	0.1550 (10)	0.032 (4)*	
C15	0.91174 (15)	0.70524 (11)	0.16108 (8)	0.0246 (3)	
H15	0.9348 (17)	0.7615 (12)	0.1788 (10)	0.031 (4)*	
C16	0.75873 (14)	0.71171 (10)	0.14773 (7)	0.0193 (2)	
H16	0.6712 (16)	0.7742 (12)	0.1554 (9)	0.025 (4)*	
C17	0.46350 (12)	0.75773 (9)	0.06344 (7)	0.0162 (2)	
C18	0.52722 (14)	0.81724 (11)	-0.01667 (8)	0.0242 (3)	
H18	0.6320 (17)	0.7822 (12)	-0.0394 (9)	0.029 (4)*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

C19	0.44513 (16)	0.92154 (11)	-0.06618 (9)	0.0307 (3)
H19	0.4912 (18)	0.9621 (13)	-0.1228 (11)	0.040 (4)*
C20	0.29701 (17)	0.96691 (11)	-0.03676 (9)	0.0311 (3)
H20	0.2361 (19)	1.0421 (15)	-0.0736(11)	0.048 (5)*
C21	0.23330 (15)	0.90881 (10)	0.04282 (9)	0.0264 (3)
H21	0.1283 (17)	0.9397 (12)	0.0645 (10)	0.032 (4)*
C22	0.31651 (13)	0.80461 (10)	0.09334 (8)	0.0197 (2)
H22	0.2682 (15)	0.7666 (11)	0.1492 (9)	0.018 (3)*
03	0.93894 (9)	0.15756 (7)	0.74756 (5)	0.02053 (18)
04	1.08049 (9)	0.12056 (7)	0.48298 (5)	0.01794 (17)
N3	1.02428 (10)	0.16291(7)	0.60887 (6)	0.01483 (19)
N4	0.97167 (11)	0.00894(8)	0.60916 (6)	0.01509 (19)
H4	0.9496 (16)	-0.0385(12)	0.5869 (10)	0.028 (4)*
C23	0.90976(12)	0.01422(9)	0.69460(7)	0.020(1)
C24	0.95666(12)	0.01122(9) 0.11981(9)	0.69160(7)	0.0112(2)
C25	1.02959(12)	0.09768 (9)	0.55874(7)	0.0131(2) 0.0142(2)
C25	1.02959(12) 1.07362(13)	0.09700(9)	0.55674(7) 0.57491(8)	0.0142(2)
U20 H26A	1.07302(13) 1.0927(14)	0.20001(0)	0.57491(0) 0.6270(8)	0.0170(2)
H26R	1.0927(14) 1.1744(16)	0.2304(10) 0.2570(11)	0.0279(0) 0.5407(0)	0.013(3)
C27	0.04845(13)	0.2570(11) 0.36346(0)	0.5407(9)	0.025(3)
C27	0.94045(13)	0.30340(9) 0.40374(10)	0.52575(7)	0.0103(2)
U20	0.81100(13)	0.40374(10) 0.2722(11)	0.30040(0)	0.0202(2)
П20 С20	0.7907(13)	0.3732(11) 0.48024(10)	0.0300 (9)	$0.022(3)^{\circ}$
U29	0.09581(14)	0.48924(10)	0.52008(9)	0.0249(3)
H29	0.5967 (18)	0.5154 (13)	0.5524 (10)	0.035 (4)*
C30	0./1236(15)	0.53480 (10)	0.43050 (9)	0.0263(3)
H30	0.6324 (17)	0.5932 (13)	0.3983 (10)	0.034 (4)*
C31	0.84781 (15)	0.49567 (10)	0.38734 (9)	0.0263(3)
H31	0.8640 (17)	0.5277 (12)	0.3241 (10)	0.032 (4)*
C32	0.96564 (14)	0.41008 (10)	0.43409 (8)	0.0218 (2)
H32	1.0621 (16)	0.3829 (11)	0.4053 (9)	0.022 (3)*
C34	0.62781 (13)	0.13002 (10)	0.69994 (8)	0.0190 (2)
C33	0.73129 (12)	0.02977 (9)	0.70213 (7)	0.0154 (2)
H34	0.6690 (16)	0.1930 (12)	0.6980 (9)	0.026 (4)*
C35	0.46692 (13)	0.14080 (10)	0.70126 (8)	0.0225 (3)
H35	0.3947 (16)	0.2127 (12)	0.6996 (9)	0.029 (4)*
C36	0.40973 (14)	0.05239 (11)	0.70489 (8)	0.0240 (3)
H36	0.2969 (17)	0.0578 (12)	0.7054 (9)	0.029 (4)*
C37	0.51247 (14)	-0.04803 (11)	0.70741 (9)	0.0261 (3)
H37	0.4742 (17)	-0.1106 (13)	0.7111 (10)	0.033 (4)*
C38	0.67266 (13)	-0.05915 (10)	0.70605 (8)	0.0217 (2)
H38	0.7440 (15)	-0.1331 (11)	0.7076 (9)	0.022 (3)*
C39	0.99171 (12)	-0.08471 (9)	0.76898 (7)	0.0157 (2)
C40	0.92049 (14)	-0.11020 (11)	0.85220 (8)	0.0237 (3)
H40	0.8138 (18)	-0.0666 (13)	0.8619 (10)	0.038 (4)*
C41	0.99948 (16)	-0.19464 (12)	0.92151 (9)	0.0297 (3)
H41	0.9464 (19)	-0.2089 (14)	0.9773 (11)	0.042 (4)*
C42	1.15024 (16)	-0.25295 (11)	0.90813 (9)	0.0281 (3)
H42	1.2059 (17)	-0.3099 (13)	0.9576 (10)	0.034 (4)*
	2 6	· · · · ·	· · · ·	

data reports

C43	1.22097 (15)	-0.22835 (11)	0.82558 (9)	0.0286 (3)
H43	1.3276 (19)	-0.2691 (14)	0.8144 (11)	0.043 (4)*
C44	1.14211 (13)	-0.14453 (10)	0.75585 (8)	0.0223 (3)
H44	1.1949 (17)	-0.1309 (13)	0.6975 (10)	0.037 (4)*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0268 (4)	0.0196 (4)	0.0143 (4)	-0.0054 (3)	0.0002 (3)	-0.0068 (3)
O2	0.0239 (4)	0.0199 (4)	0.0184 (4)	-0.0089(3)	-0.0015 (3)	-0.0071 (3)
N1	0.0163 (4)	0.0155 (4)	0.0130 (5)	-0.0044 (3)	-0.0001(3)	-0.0035 (4)
N2	0.0200 (5)	0.0186 (5)	0.0136 (5)	-0.0079 (4)	0.0016 (4)	-0.0071 (4)
C1	0.0171 (5)	0.0144 (5)	0.0126 (5)	-0.0043 (4)	-0.0007 (4)	-0.0049 (4)
C2	0.0141 (5)	0.0156 (5)	0.0133 (5)	-0.0020 (4)	-0.0017 (4)	-0.0040 (4)
C3	0.0135 (5)	0.0156 (5)	0.0147 (5)	-0.0015 (4)	-0.0025 (4)	-0.0050(4)
C4	0.0158 (5)	0.0182 (5)	0.0147 (5)	-0.0057 (4)	0.0005 (4)	-0.0022 (4)
C5	0.0196 (5)	0.0146 (5)	0.0114 (5)	-0.0025 (4)	0.0001 (4)	-0.0041 (4)
C6	0.0227 (6)	0.0195 (5)	0.0219 (6)	-0.0058 (5)	-0.0045 (5)	-0.0039 (5)
C7	0.0246 (6)	0.0268 (6)	0.0270 (7)	-0.0011 (5)	-0.0109 (5)	-0.0067 (5)
C8	0.0349 (7)	0.0219 (6)	0.0177 (6)	0.0032 (5)	-0.0083 (5)	-0.0036 (5)
C9	0.0340 (7)	0.0169 (5)	0.0181 (6)	-0.0044 (5)	0.0025 (5)	-0.0011 (5)
C10	0.0216 (5)	0.0175 (5)	0.0182 (6)	-0.0047 (4)	0.0017 (4)	-0.0058 (5)
C11	0.0168 (5)	0.0174 (5)	0.0121 (5)	-0.0058 (4)	-0.0014 (4)	-0.0011 (4)
C12	0.0204 (6)	0.0203 (6)	0.0269 (7)	-0.0034 (5)	-0.0029 (5)	-0.0065 (5)
C13	0.0192 (6)	0.0248 (6)	0.0349 (8)	-0.0013 (5)	-0.0029 (5)	-0.0040 (6)
C14	0.0202 (6)	0.0312 (7)	0.0254 (7)	-0.0106 (5)	-0.0083 (5)	0.0034 (5)
C15	0.0294 (6)	0.0252 (6)	0.0183 (6)	-0.0142 (5)	-0.0067 (5)	0.0006 (5)
C16	0.0231 (5)	0.0201 (5)	0.0142 (5)	-0.0078 (5)	-0.0010 (4)	-0.0037 (5)
C17	0.0179 (5)	0.0156 (5)	0.0150 (5)	-0.0044 (4)	-0.0030 (4)	-0.0042 (4)
C18	0.0244 (6)	0.0256 (6)	0.0169 (6)	-0.0048 (5)	-0.0005 (5)	-0.0020 (5)
C19	0.0342 (7)	0.0282 (7)	0.0198 (7)	-0.0084 (6)	-0.0034 (5)	0.0041 (5)
C20	0.0350 (7)	0.0193 (6)	0.0304 (7)	-0.0010 (5)	-0.0103 (6)	0.0004 (5)
C21	0.0238 (6)	0.0205 (6)	0.0314 (7)	0.0001 (5)	-0.0035 (5)	-0.0082 (5)
C22	0.0202 (5)	0.0187 (5)	0.0196 (6)	-0.0050 (4)	-0.0001 (4)	-0.0061 (5)
O3	0.0254 (4)	0.0232 (4)	0.0177 (4)	-0.0090 (3)	0.0012 (3)	-0.0110 (4)
O4	0.0209 (4)	0.0201 (4)	0.0137 (4)	-0.0082 (3)	0.0022 (3)	-0.0059 (3)
N3	0.0171 (4)	0.0144 (4)	0.0141 (5)	-0.0055 (3)	0.0001 (3)	-0.0053 (4)
N4	0.0188 (4)	0.0156 (4)	0.0122 (5)	-0.0063 (4)	0.0012 (3)	-0.0055 (4)
C23	0.0160 (5)	0.0145 (5)	0.0120 (5)	-0.0035 (4)	0.0004 (4)	-0.0051 (4)
C24	0.0141 (5)	0.0162 (5)	0.0148 (5)	-0.0032 (4)	-0.0012 (4)	-0.0053 (4)
C25	0.0122 (4)	0.0156 (5)	0.0146 (5)	-0.0025 (4)	-0.0018 (4)	-0.0051 (4)
C26	0.0171 (5)	0.0153 (5)	0.0200 (6)	-0.0071 (4)	-0.0001 (4)	-0.0057 (4)
C27	0.0189 (5)	0.0144 (5)	0.0185 (6)	-0.0072 (4)	-0.0014 (4)	-0.0061 (4)
C28	0.0220 (6)	0.0207 (6)	0.0194 (6)	-0.0058 (5)	-0.0005 (5)	-0.0085 (5)
C29	0.0218 (6)	0.0224 (6)	0.0319 (7)	-0.0024 (5)	-0.0029 (5)	-0.0123 (5)
C30	0.0285 (6)	0.0171 (5)	0.0325 (7)	-0.0066 (5)	-0.0102 (5)	-0.0036 (5)
C31	0.0344 (7)	0.0212 (6)	0.0204 (6)	-0.0116 (5)	-0.0037 (5)	0.0003 (5)
C32	0.0247 (6)	0.0194 (5)	0.0208 (6)	-0.0096(5)	0.0029 (5)	-0.0052(5)

C34	0.0209 (5)	0.0176 (5)	0.0173 (6)	-0.0042 (4)	-0.0004 (4)	-0.0054 (5)
C33	0.0155 (5)	0.0175 (5)	0.0123 (5)	-0.0033 (4)	-0.0008 (4)	-0.0046 (4)
C35	0.0195 (5)	0.0235 (6)	0.0189 (6)	0.0011 (5)	-0.0016 (4)	-0.0053 (5)
C36	0.0165 (5)	0.0330 (7)	0.0226 (6)	-0.0052 (5)	-0.0020 (4)	-0.0099 (5)
C37	0.0211 (6)	0.0312 (7)	0.0328 (7)	-0.0110 (5)	0.0021 (5)	-0.0169 (6)
C38	0.0195 (5)	0.0217 (6)	0.0264 (6)	-0.0055 (5)	0.0006 (5)	-0.0117 (5)
C39	0.0170 (5)	0.0157 (5)	0.0145 (5)	-0.0060 (4)	-0.0017 (4)	-0.0037 (4)
C40	0.0225 (6)	0.0267 (6)	0.0170 (6)	-0.0018 (5)	0.0008 (5)	-0.0055 (5)
C41	0.0329 (7)	0.0331 (7)	0.0148 (6)	-0.0036 (6)	-0.0014 (5)	-0.0022 (5)
C42	0.0321 (7)	0.0229 (6)	0.0227 (7)	-0.0021 (5)	-0.0100 (5)	-0.0005 (5)
C43	0.0231 (6)	0.0238 (6)	0.0295 (7)	0.0012 (5)	-0.0036 (5)	-0.0027 (5)
C44	0.0193 (5)	0.0215 (6)	0.0213 (6)	-0.0025 (5)	0.0016 (5)	-0.0048 (5)

Geometric parameters (Å, °)

01—C2	1.2106 (13)	O3—C24	1.2105 (13)
O2—C3	1.2242 (13)	O4—C25	1.2256 (13)
N1—C2	1.3734 (14)	N3—C24	1.3700 (14)
N1—C3	1.4041 (14)	N3—C25	1.4017 (14)
N1—C4	1.4586 (14)	N3—C26	1.4691 (14)
N2—C3	1.3431 (14)	N4—C25	1.3458 (14)
N2—C1	1.4609 (14)	N4—C23	1.4663 (13)
N2—H2	0.918 (16)	N4—H4	0.916 (15)
C1—C17	1.5296 (14)	C23—C39	1.5282 (15)
C1-C11	1.5333 (15)	C23—C33	1.5347 (15)
C1—C2	1.5423 (15)	C23—C24	1.5420 (15)
C4—C5	1.5099 (15)	C26—C27	1.5089 (15)
C4—H4A	0.993 (14)	C26—H26A	0.998 (13)
C4—H4B	1.015 (13)	C26—H26B	0.993 (14)
C5—C6	1.3895 (16)	C27—C32	1.3883 (17)
C5-C10	1.3948 (16)	C27—C28	1.3959 (16)
C6—C7	1.3936 (17)	C28—C29	1.3877 (16)
С6—Н6	1.001 (16)	C28—H28	0.983 (14)
С7—С8	1.3885 (19)	C29—C30	1.3872 (19)
С7—Н7	0.967 (18)	C29—H29	0.995 (15)
С8—С9	1.3820 (19)	C30—C31	1.3824 (19)
C8—H8	0.985 (15)	C30—H30	0.950 (15)
C9—C10	1.3875 (17)	C31—C32	1.3935 (17)
С9—Н9	0.990 (16)	C31—H31	0.981 (16)
С10—Н10	0.951 (15)	С32—Н32	0.965 (14)
C11—C12	1.3883 (15)	C34—C33	1.3904 (15)
C11—C16	1.3931 (16)	C34—C35	1.3957 (16)
C12—C13	1.3961 (17)	C34—H34	0.989 (15)
C12—H12	0.982 (15)	C33—C38	1.3919 (16)
C13—C14	1.3787 (19)	C35—C36	1.3795 (18)
С13—Н13	0.993 (15)	C35—H35	0.990 (14)
C14—C15	1.3910 (19)	C36—C37	1.3882 (17)
C14—H14	0.973 (15)	C36—H36	0.985 (14)

C15—C16	1.3871 (17)	C37—C38	1.3888 (16)
С15—Н15	0.978 (15)	С37—Н37	0.959 (16)
С16—Н16	1.005 (13)	С38—Н38	1.009 (13)
C17—C22	1.3908 (15)	C39—C44	1.3899 (15)
C17—C18	1.3943 (16)	C39—C40	1.3900 (16)
C18—C19	1.3839 (17)	C40—C41	1.3929 (17)
C18—H18	1.008 (14)	C40—H40	0.993 (15)
C19—C20	1.389 (2)	C41—C42	1.3860 (18)
С19—Н19	0.983 (17)	C41—H41	0.951 (17)
C20—C21	1.3823 (19)	C42—C43	1.3791 (19)
C20—H20	1.009 (17)	C42—H42	0.977 (15)
C21—C22	1.3919 (16)	C43—C44	1.3939 (17)
C21—H21	0.985 (15)	C43—H43	0.984 (16)
C22—H22	0.973 (13)	C44—H44	0.986 (16)
			01900 (10)
C2—N1—C3	111.64 (9)	C24—N3—C25	111.59 (9)
C2—N1—C4	124.66 (9)	C24—N3—C26	124.84 (9)
C3—N1—C4	123.46 (9)	C25—N3—C26	123.38 (9)
C3—N2—C1	113.00 (9)	C25—N4—C23	112.94 (9)
C3—N2—H2	120.6 (10)	C25—N4—H4	121.9 (9)
C1—N2—H2	125.0 (10)	C23—N4—H4	123.2 (9)
N2—C1—C17	109.90 (9)	N4—C23—C39	112.81 (8)
N2—C1—C11	112.56 (8)	N4—C23—C33	109.64 (8)
C17—C1—C11	112.87 (9)	C39—C23—C33	113.22 (9)
N2—C1—C2	100.97 (9)	N4—C23—C24	100.50 (8)
C17—C1—C2	112.28 (8)	C39—C23—C24	108.32 (9)
C11—C1—C2	107.66 (8)	C33—C23—C24	111.65 (8)
O1—C2—N1	126.04 (10)	O3—C24—N3	126.04 (10)
O1—C2—C1	127.35 (10)	O3—C24—C23	126.87 (10)
N1-C2-C1	106.60 (9)	N3—C24—C23	107.09 (9)
O2—C3—N2	128.73 (11)	O4—C25—N4	128.38 (10)
O2—C3—N1	123.75 (10)	O4—C25—N3	124.03 (10)
N2—C3—N1	107.51 (9)	N4—C25—N3	107.59 (9)
N1—C4—C5	114.99 (9)	N3—C26—C27	111.43 (9)
N1—C4—H4A	106.2 (8)	N3—C26—H26A	103.9 (7)
С5—С4—Н4А	111.3 (8)	С27—С26—Н26А	111.4 (7)
N1—C4—H4B	107.8 (8)	N3—C26—H26B	107.1 (8)
C5—C4—H4B	109.6 (7)	С27—С26—Н26В	113.4 (8)
H4A—C4—H4B	106.5 (11)	H26A—C26—H26B	109.1 (11)
C6—C5—C10	119.12 (10)	C32—C27—C28	118.94 (11)
C6—C5—C4	122.60 (10)	C32—C27—C26	121.17 (10)
C10—C5—C4	118.14 (10)	C28—C27—C26	119.88 (10)
C5—C6—C7	120.13 (12)	C29—C28—C27	120.50 (12)
С5—С6—Н6	119.7 (8)	С29—С28—Н28	118.9 (7)
С7—С6—Н6	120.1 (8)	C27—C28—H28	120.6 (7)
C8—C7—C6	120.31 (12)	C30—C29—C28	119.94 (11)
С8—С7—Н7	120.1 (10)	С30—С29—Н29	121.5 (9)
С6—С7—Н7	119.6 (10)	С28—С29—Н29	118.5 (9)

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C9—C8—C7	119.67 (11)	C31—C30—C29	120.16 (12)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С9—С8—Н8	120.5 (9)	С31—С30—Н30	119.4 (9)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С7—С8—Н8	119.8 (9)	С29—С30—Н30	120.4 (9)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C8—C9—C10	120.23 (12)	C30—C31—C32	119.80 (12)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С8—С9—Н9	118.6 (9)	C30—C31—H31	121.4 (8)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С10—С9—Н9	121.2 (9)	С32—С31—Н31	118.8 (8)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C9—C10—C5	120.53 (11)	C27—C32—C31	120.66 (11)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C9—C10—H10	118.3 (9)	С27—С32—Н32	118.3 (8)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C5-C10-H10	121.1 (9)	C31—C32—H32	121.1 (8)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C12—C11—C16	119.64 (11)	C_{33} — C_{34} — C_{35}	119.93 (11)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C12-C11-C1	121 58 (10)	C33—C34—H34	119.6 (8)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C16-C11-C1	118 72 (9)	C35—C34—H34	120 5 (8)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$C_{11} - C_{12} - C_{13}$	120.00(12)	C_{34} C_{33} C_{38}	120.3(0) 119.35(10)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C11 - C12 - H12	120.60 (12)	C_{34} C_{33} C_{23}	122 86 (10)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C13 - C12 - H12	119.4 (8)	C_{38} C_{33} C_{23}	117 67 (9)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C_{14} C_{13} C_{12} C_{12}	119.98 (12)	$C_{36} = C_{35} = C_{34}$	120.38(11)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$C_{14} = C_{13} = C_{12}$	110.8 (0)	C_{36} C_{35} C_{35} H_{35}	120.56 (11)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$C_{12} = C_{13} = H_{13}$	119.0(9) 120.2(0)	$C_{30} = C_{35} = H_{35}$	120.0(8)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$C_{12} = C_{13} = M_{13}$	120.2(9) 120.38(11)	$C_{34} = C_{35} = 1155$	119.0(8)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$C_{13} = C_{14} = C_{13}$	120.36(11) 117.6(0)	$C_{35} = C_{30} = C_{37}$	119.94 (11)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C15 - C14 - H14	117.0(9) 122.0(0)	$C_{33} = C_{30} = H_{30}$	122.2(8)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C15—C14—H14	122.0(9)	$C_{3} = C_{30} = H_{30}$	117.9 (8)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C16 - C15 - C14	119.69 (12)	$C_{36} = C_{37} = C_{38}$	119.91 (12)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C16—C15—H15	119.8 (8)	$C_{30} = C_{37} = H_{37}$	120.8 (8)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С14—С15—Н15	120.5 (8)	C38—C37—H37	119.3 (8)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C15—C16—C11	120.30 (11)	C37—C38—C33	120.49 (11)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C15—C16—H16	120.7 (8)	С37—С38—Н38	117.8 (8)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С11—С16—Н16	119.0 (8)	С33—С38—Н38	121.7 (8)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C22—C17—C18	119.23 (10)	C44—C39—C40	119.25 (10)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C22—C17—C1	122.18 (10)	C44—C39—C23	120.75 (10)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C18—C17—C1	118.43 (9)	C40—C39—C23	119.82 (9)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C19—C18—C17	120.52 (11)	C39—C40—C41	120.20 (11)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C19—C18—H18	120.1 (8)	C39—C40—H40	119.4 (9)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C17—C18—H18	119.3 (8)	C41—C40—H40	120.4 (9)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C18—C19—C20	119.97 (12)	C42—C41—C40	120.24 (12)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C18—C19—H19	119.5 (9)	C42—C41—H41	122.5 (10)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С20—С19—Н19	120.5 (9)	C40—C41—H41	117.3 (10)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C21—C20—C19	119.90 (12)	C43—C42—C41	119.73 (12)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C21—C20—H20	120.2 (10)	C43—C42—H42	120.8 (9)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С19—С20—Н20	119.9 (10)	C41—C42—H42	119.4 (9)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C20—C21—C22	120.26 (12)	C42—C43—C44	120.30 (11)
C22—C21—H21118.8 (9)C44—C43—H43118.5 (10)C17—C22—C21120.10 (12)C39—C44—C43120.26 (11)C17—C22—H22122.1 (7)C39—C44—H44121.6 (9)C21—C22—H22117.8 (7)C43—C44—H44118.1 (9)C3—N2—C1—C17 -114.96 (10)C25—N4—C23—C39 -120.60 (10)	C20—C21—H21	120.9 (9)	C42—C43—H43	121.2 (10)
C17—C22—C21120.10 (12)C39—C44—C43120.26 (11)C17—C22—H22122.1 (7)C39—C44—H44121.6 (9)C21—C22—H22117.8 (7)C43—C44—H44118.1 (9)C3—N2—C1—C17 $-114.96 (10)$ C25—N4—C23—C39 $-120.60 (10)$	C22—C21—H21	118.8 (9)	C44—C43—H43	118.5 (10)
C17—C22—H22 122.1 (7) C39—C44—H44 121.6 (9) C21—C22—H22 117.8 (7) C43—C44—H44 118.1 (9) C3—N2—C1—C17 -114.96 (10) C25—N4—C23—C39 -120.60 (10)	C17—C22—C21	120.10 (12)	C39—C44—C43	120.26 (11)
C21—C22—H22 117.8 (7) C43—C44—H44 118.1 (9) C3—N2—C1—C17 -114.96 (10) C25—N4—C23—C39 -120.60 (10)	C17—C22—H22	122.1 (7)	C39—C44—H44	121.6 (9)
C3—N2—C1—C17 -114.96 (10) C25—N4—C23—C39 -120.60 (10)	C21—C22—H22	117.8 (7)	C43—C44—H44	118.1 (9)
C3—N2—C1—C17 -114.96 (10) C25—N4—C23—C39 -120.60 (10)				~ /
	C3—N2—C1—C17	-114.96 (10)	C25—N4—C23—C39	-120.60 (10)
C3—N2—C1—C11 118.31 (10) C25—N4—C23—C33 112.22 (10)	C3—N2—C1—C11	118.31 (10)	C25—N4—C23—C33	112.22 (10)

C3—N2—C1—C2	3.78 (11)	C25—N4—C23—C24	-5.46 (11)
C3—N1—C2—O1	177.87 (10)	C25—N3—C24—O3	178.72 (10)
C4—N1—C2—O1	3.27 (16)	C26—N3—C24—O3	-6.11 (17)
C3—N1—C2—C1	-2.49 (11)	C25—N3—C24—C23	-0.65 (11)
C4—N1—C2—C1	-177.09 (9)	C26—N3—C24—C23	174.52 (9)
N2-C1-C2-O1	178.98 (10)	N4—C23—C24—O3	-175.88 (10)
C17—C1—C2—O1	-64.02 (14)	C39—C23—C24—O3	-57.40 (14)
C11—C1—C2—O1	60.83 (13)	C33—C23—C24—O3	67.93 (14)
N2—C1—C2—N1	-0.65 (10)	N4—C23—C24—N3	3.48 (10)
C17—C1—C2—N1	116.35 (9)	C39—C23—C24—N3	121.96 (9)
C11—C1—C2—N1	-118.81 (9)	C33—C23—C24—N3	-112.71 (9)
C1—N2—C3—O2	174.03 (10)	C23—N4—C25—O4	-175.29 (10)
C1—N2—C3—N1	-5.44 (12)	C23—N4—C25—N3	5.39 (12)
C2—N1—C3—O2	-174.58 (10)	C24—N3—C25—O4	177.82 (9)
C4—N1—C3—O2	0.09 (16)	C26—N3—C25—O4	2.57 (16)
C2—N1—C3—N2	4.92 (12)	C24—N3—C25—N4	-2.82(12)
C4—N1—C3—N2	179.59 (9)	C26—N3—C25—N4	-178.07(9)
C2-N1-C4-C5	-87.88(12)	C_{24} N3 $-C_{26}$ $-C_{27}$	-95.07(12)
C3—N1—C4—C5	98.14 (12)	C_{25} N3 $-C_{26}$ $-C_{27}$	79.55 (12)
N1—C4—C5—C6	26.89 (15)	N3—C26—C27—C32	-107.67(12)
N1-C4-C5-C10	-157.39(10)	N3—C26—C27—C28	70.96 (13)
C10—C5—C6—C7	0.13 (17)	C32—C27—C28—C29	-0.20(17)
C4—C5—C6—C7	175.80 (11)	C26—C27—C28—C29	-178.86(11)
C5—C6—C7—C8	-0.21(19)	C27—C28—C29—C30	0.40 (18)
C6-C7-C8-C9	-0.05(19)	C_{28} C_{29} C_{30} C_{31}	-0.37(19)
C7—C8—C9—C10	0.38 (19)	C_{29} C_{30} C_{31} C_{32}	0.14 (19)
C8-C9-C10-C5	-0.47(18)	C28—C27—C32—C31	-0.04(18)
C6-C5-C10-C9	0.21 (17)	C_{26} C_{27} C_{32} C_{31}	178.61 (11)
C4-C5-C10-C9	-175.66(10)	C_{30} C_{31} C_{32} C_{27}	0.06 (19)
N_{2} C1 - C11 - C12	-12.47(15)	C_{35} C_{34} C_{33} C_{38}	-0.31(17)
C17-C1-C11-C12	-137.58(11)	C_{35} — C_{34} — C_{33} — C_{23}	175.69 (10)
C_{2} C_{1} C_{11} C_{12}	97 93 (12)	N4-C23-C33-C34	-107.02(12)
N_2 C1 C11 C12	170.28 (10)	C_{39} C_{23} C_{33} C_{34}	126.03 (11)
C_{17} C_{11} C_{11} C_{16}	45 17 (13)	C_{24} C_{23} C_{33} C_{34}	3 45 (15)
C_{2} C_{1} C_{11} C_{16}	-79.32(12)	N4-C23-C33-C38	69.04 (13)
C_{16} C_{11} C_{12} C_{13}	-0.44(18)	C_{39} C_{23} C_{33} C_{38}	-57.91(13)
C1 - C11 - C12 - C13	-177.67(11)	C_{24} C_{23} C_{33} C_{38}	179 52 (10)
$C_{11} - C_{12} - C_{13} - C_{14}$	0.4(2)	C_{33} C_{34} C_{35} C_{36}	0.12(18)
C12 - C13 - C14 - C15	0.1(2) 0.2(2)	C_{34} C_{35} C_{36} C_{37}	0.12(10) 0.12(19)
C_{13} C_{14} C_{15} C_{16}	-0.76(19)	C_{35} C_{36} C_{37} C_{38}	-0.2(2)
C_{14} C_{15} C_{16} C_{11}	0.70(18)	$C_{36} = C_{37} = C_{38} = C_{33}$	-0.02(2)
C_{12} C_{11} C_{16} C_{15}	-0.10(17)	C_{34} C_{33} C_{38} C_{37}	0.02(19)
C1 - C11 - C16 - C15	177 20 (10)	C_{23} C_{33} C_{38} C_{37}	-17594(11)
N_{2} $-C_{1}$ $-C_{17}$ $-C_{22}$	100 75 (12)	$N4-C^{23}-C^{39}-C^{44}$	23 53 (15)
$C_{11} - C_{1} - C_{17} - C_{22}$	$-132\ 70\ (11)$	C_{33} C_{23} C_{39} C_{44}	148 79 (11)
$C_{-C_{1}-C_{1}-C_{2}}$	-10.78(15)	$C_{23} = C_{23} = C_{39} = C_{44}$	-86.81(12)
N_{2} C_{1} C_{17} C_{22}	-74 61 (13)	$N4-C^{23}-C^{39}-C^{40}$	-161 42 (10)
$C_{11} = C_{12} = C_{13} = C_{13}$	51.94(14)	C_{33} C_{23} C_{30} C_{40}	-3616(14)
-01 - 01 - 01 - 010	(דו) ד(033 - 023 - 037 - 040	50.10(14)

data reports

C2—C1—C17—C18	173.85 (10)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	88.24 (12)
C22—C17—C18—C19	-0.30 (19)		0.13 (19)
C1—C17—C18—C19	175.21 (12)		-174.99 (12)
C17—C18—C19—C20	-1.0 (2)		0.7 (2)
C18—C19—C20—C21	1.4 (2)		-1.1 (2)
C19—C20—C21—C22	-0.5 (2)		0.6 (2)
C18—C17—C22—C21	1.23 (18)		-0.63 (19)
C1—C17—C22—C21	-174.10 (11)		174.45 (11)
C1—C17—C22—C21	-1/4.10 (11)	C23—C39—C44—C43	0.3 (2)
C20—C21—C22—C17	-0.9 (2)	C42—C43—C44—C39	

Hydrogen-bond geometry (Å, °)

Cg3 and Cg7 are the centroids of the C11–C16 and C33–C38 phenyl rings, respectively.

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
N2—H2···O2 ⁱ	0.918 (16)	1.930 (16)	2.8446 (13)	173.3 (14)
N4—H4····O4 ⁱⁱ	0.916 (15)	1.958 (15)	2.8613 (12)	168.3 (14)
C8—H8… <i>Cg</i> 7	0.985 (16)	2.987 (16)	3.5734 (14)	119.3 (11)
С15—Н15…ОЗ ^{іїі}	0.978 (15)	2.451 (16)	3.3830 (17)	159.2 (13)
C19—H19··· <i>Cg</i> 7 ^{iv}	0.983 (17)	2.732 (17)	3.6805 (15)	162.4 (14)
C22—H22···O3 ^v	0.973 (13)	2.586 (14)	3.3111 (15)	131.4 (11)
С31—Н31…Сg3	0.981 (16)	2.917 (15)	3.8944 (15)	174.2 (12)
C41—H41···· $Cg3^{vi}$	0.951 (17)	2.830 (17)	3.6570 (15)	146.0 (15)

Symmetry codes: (i) -*x*+1, -*y*+1, -*z*; (ii) -*x*+2, -*y*, -*z*+1; (iii) -*x*+2, -*y*+1, -*z*+1; (iv) *x*, *y*+1, *z*-1; (v) -*x*+1, -*y*+1, -*z*+1; (vi) *x*, *y*-1, *z*+1.