Received 1 December 2017
Accepted 17 January 2018

Edited by M. Weil, Vienna University of Technology, Austria

Keywords: crystal structure; silver; nitrate ligand; disorder.

CCDC reference: 1817527
Structural data: full structural data are available from iucrdata.iucr.org

Bis(nitrilotriacetamide- $\left.\kappa^{4} N, O, O^{\prime}, O^{\prime \prime}\right)$ silver(I) nitrate

Min Ren, Ming Yue and Jingwen Ran*

College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang 438000, People's Republic of China, Hubei Key Laboratory for Processing and Application of Catalytic Materials. *Correspondence e-mail: ranjw@126.com

In the centrosymmetric cation of the title compound, $\left[\mathrm{Ag}\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{O}_{3}\right)_{2}\right] \mathrm{NO}_{3}$, the Ag^{I} ion, lying on a threefold rotoinversion axis, is coordinated by two N atoms and six O atoms from two nitrilotriacetamide ligands, forming a distorted dodecahedral environment. In the crystal, cations and anions are linked through $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen-bonding interactions, leading to a three-dimensional network structure.

Chemical scheme

Structure description

Nitrilotriacetamide (NTA) as a ligand is able to coordinate through various coordination sites. Synthetic aspects of the coordination chemistry of transition metals with nitrilotriacetamide ligands were given in detail some time ago (Smith et al., 1992, 1995). A silver complex of the derivative nitrilotris(N-benzylacetamide) as a ligand was reported by Kang et al. (2007) where the Ag^{I} ion is coordinated by the tetradentate ligand and by a bidentate nitrate anion. The resulting coordination environment is distorted octahedral. As an extension of the structural characterization of silver compounds with mixed ligands derived from NTA and nitrate, we report here on the synthesis and crystal structure of a new mononuclear silver (I) compound, $\left[\mathrm{Ag}\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{O}_{3}\right)_{2}\right]^{+} \cdot \mathrm{NO}_{3}{ }^{-}$.

The Ag^{I} atom of the cation (Fig. 1) is located on a site with point group symmetry $\overline{3}$. (Wyckoff position $1 a$) and is linearly coordinated by the central N atoms of two symmetry-related NTA ligands at distances of 2.417 (2) A. In comparison with a true twofold coordination by N atoms $(\mathrm{Ag}-\mathrm{N} \simeq 2.15 \AA)$, the $\mathrm{Ag}-\mathrm{N}$ bonds are elongated. The overall coordination sphere is supplemented by six symmetry-related O atoms from the two NTA ligands $[\mathrm{Ag}-\mathrm{O}=2.7774$ (14) \AA A , leading to a distorted dodecahedral coordination environment. The nitrate anion is disordered around a $\overline{3}$ axis and is not involved in coordination to the silver cation.

OPEN \odot ACCESS

Figure 1
The molecular entities in the complex title salt. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (1) $-x,-y,-z$; (2) $-y, x-y, z$; (3) $y,-x+y,-z$; (4) $x-y, x,-z$; (5) $-x+y,-x, z$.]

In the crystal structure, $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen-bonding interactions (including a trifurcated hydrogen bond) between the amino functions as donor groups and the weakly bound amide O atoms and nitrate O atoms as acceptor groups consolidate the molecular packing within the three-dimensional network structure (Fig. 2, Table 1).

Synthesis and crystallization

The NTA ligand was prepared according to a literature method (Smith et al., 1995). The title compound was synthesized by adding an aqueous solution of AgNO_{3} (340 mg , 2 mmol) to a solution of the ligand ($752 \mathrm{mg}, 4 \mathrm{mmol}$) in water $(20 \mathrm{ml})$. The mixture was stirred for 30 min at room temperature. The solution was then filtered and the filtrate was allowed to stand in air for one week. Colourless crystals were formed at the bottom of the vessel on slow evaporation of the solvent at room temperature (yield: 41.5%). Selected IR data $\left(\mathrm{cm}^{-1}\right): 3416(v s), 1677(v s), 1358(m), 605(m), 1617(w)$, 1264 (w).

Figure 2
The packing diagram for the title compound, viewed along the c axis, with hydrogen bonds drawn as dashed lines.

Table 1
Hydrogen-bond geometry $\left(\AA^{\circ},^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2-\mathrm{H} 2 B \cdots \mathrm{O} 1^{\mathrm{i}}$	0.86	2.15	$2.969(2)$	159
$\mathrm{~N} 2-\mathrm{H} 2 A \cdots 2^{\mathrm{iii}}$	0.86	2.42	$3.256(4)$	163
$\mathrm{~N} 2-\mathrm{H} 2 A \cdots \mathrm{O}^{\mathrm{iii}}$	0.86	2.22	$2.880(4)$	133
$\mathrm{~N} 2-\mathrm{H} 2 A \cdots \mathrm{O}^{\text {iv }}$	0.86	2.59	$3.058(2)$	115

Symmetry codes: (i) $-x+y+\frac{2}{3},-x+\frac{1}{3}, z+\frac{1}{3}$; (ii) $y+\frac{1}{3},-x+y+\frac{2}{3},-z+\frac{2}{3}$; (iii)
$x-\frac{2}{3}, y-\frac{1}{3}, z-\frac{1}{3}$; (iv) $y+\frac{2}{3},-x+y+\frac{1}{3},-z+\frac{1}{3}$.

Table 2
Experimental details.
Crystal data
Chemical formula
M_{r}
Crystal system, space group
Temperature (K)
$a, c(\AA)$
$V\left(\AA^{3}\right)$
Z
Radiation type
$\mu\left(\mathrm{mm}^{-1}\right)$
Crystal size (mm)
Data collection
Diffractometer
Absorption correction
$T_{\text {min }}, T_{\text {max }}$
No. of measured, independent and observed $[I>2 \sigma(I)]$ reflections
$R_{\text {int }}$
$(\sin \theta / \lambda)_{\max }\left(\AA^{-1}\right)$
Refinement
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$
No. of reflections
No. of parameters
H -atom treatment
$\Delta \rho_{\max }, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$
$\left[\mathrm{Ag}\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{O}_{3}\right)_{2}\right] \mathrm{NO}_{3}$
546.27

Trigonal, $R \overline{3}$
291
11.6518 (16), 12.590 (3)
1480.3 (5)

3
Mo $K \alpha$
1.09
$0.30 \times 0.26 \times 0.24$

Bruker APEXII CCD
Multi-scan (SADABS; Bruker, 2005)
0.736, 0.780

4800, 761, 748
0.017
0.649

Computer programs: APEX2 and SAINT (Bruker, 2005), SHELXS97 and SHELXTL (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), DIAMOND (Brandenburg, 1999) and publCIF (Westrip, 2010).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. The N atom of the nitrate group is located on a position with point group symmetry $\overline{3}$. (Wyckoff position $1 b$). Hence the unique O atom of the nitrate group is equally disordered around the $\overline{3}$ axis and was treated with half-occupancy.

Funding information

This research was supported by the Natural Science Foundation of Hubei Provincial Department of Education 77 (D20152901).

References

Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Kang, D., Park, K.-M., Lee, S. Y., Lee, S. S. \& Choi, K. S. (2007). Bull. Korean Chem. Soc. 28, 2546-2548.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.

Smith, D. A., Sucheck, S. \& Pinkerton, A. A. (1992). J. Chem. Soc. Chem. Commun. pp. 367-368.
Smith, D. A., Sucheck, S., Cramer, S. \& Baker, D. (1995). Synth. Commun. 25, 4123-4132.
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

full crystallographic data

IUCrData (2018). 3, x180101 [https://doi.org/10.1107/S2414314618001013]

Bis(nitrilotriacetamide- $\left.\kappa^{4} N, O, O^{\prime}, O^{\prime \prime}\right)$ silver(I) nitrate

Min Ren, Ming Yue and Jingwen Ran

Bis(nitrilotriacetamide $-\kappa^{4} N, O, O^{\prime}, O^{\prime \prime}$)silver(I) nitrate

Crystal data

$\left[\mathrm{Ag}\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{O}_{3}\right)_{2}\right] \mathrm{NO}_{3}$
$M_{r}=546.27$
Trigonal, $R \overline{3}$
$a=11.6518$ (16) \AA
$c=12.590(3) \AA$
$V=1480.3(5) \AA^{3}$
$Z=3$
$F(000)=834$
$D_{\mathrm{x}}=1.838 \mathrm{Mg} \mathrm{m}^{-3}$
$D_{\mathrm{m}}=1.838 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} measured by not measured
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 761 reflections
$\theta=1.0-27.5^{\circ}$
$\mu=1.09 \mathrm{~mm}^{-1}$
$T=291 \mathrm{~K}$
Cuboid, colorless
$0.30 \times 0.26 \times 0.24 \mathrm{~mm}$

Data collection

Bruker APEXII CCD

diffractometer
Radiation source: fine-focus sealed tube
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
$T_{\min }=0.736, T_{\max }=0.780$
4800 measured reflections

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.023$
$w R\left(F^{2}\right)=0.059$
$S=1.12$
761 reflections
48 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

761 independent reflections
748 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.017$
$\theta_{\text {max }}=27.5^{\circ}, \theta_{\text {min }}=3.5^{\circ}$
$h=-15 \rightarrow 15$
$k=-15 \rightarrow 14$
$l=-16 \rightarrow 15$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>2 \operatorname{sigma}\left(\mathrm{~F}^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F , and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$	Occ. (<1)
Ag1	0.0000	0.0000	0.0000	$0.03254(13)$	
O1	$0.17358(13)$	$-0.06869(14)$	$0.09278(10)$	$0.0376(3)$	
N1	0.0000	0.0000	$0.19194(18)$	$0.0229(4)$	
N2	$0.29870(16)$	$-0.01709(18)$	$0.24078(15)$	$0.0418(4)$	
H2A	0.3432	-0.0526	0.2178	0.050^{*}	
H2B	0.3155	0.0195	0.3024	0.050^{*}	
C1	$0.13626(15)$	$0.05180(16)$	$0.23128(13)$	$0.0279(3)$	0.033^{*}
H1A	0.1341	0.0411	0.3078	0.033^{*}	
H1B	0.1879	0.1458	0.2158	$0.0269(3)$	
C2	$0.20369(15)$	$-0.01821(15)$	$0.18150(13)$	$0.0288(7)$	
N3	1.0000	0.0000	0.5000	$0.0452(6)^{*}$	0.5
O2	$0.9536(3)$	$0.0759(3)$	$0.5023(2)$		

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ag1	$0.04075(16)$	$0.04075(16)$	$0.01610(17)$	$0.02038(8)$	0.000	0.000
O1	$0.0383(6)$	$0.0522(8)$	$0.0289(6)$	$0.0275(6)$	$-0.0018(5)$	$-0.0065(5)$
N1	$0.0229(6)$	$0.0229(6)$	$0.0230(10)$	$0.0114(3)$	0.000	0.000
N2	$0.0368(8)$	$0.0525(9)$	$0.0434(9)$	$0.0278(7)$	$-0.0116(7)$	$-0.0045(7)$
C1	$0.0266(7)$	$0.0311(7)$	$0.0252(7)$	$0.0140(6)$	$-0.0047(6)$	$-0.0037(6)$
C2	$0.0226(7)$	$0.0271(7)$	$0.0280(7)$	$0.0102(6)$	$0.0012(6)$	$0.0042(6)$
N 3	$0.0328(10)$	$0.0328(10)$	$0.0209(15)$	$0.0164(5)$	0.000	0.000

Geometric parameters (\AA, ${ }^{\circ}$)

Ag1-N1 ${ }^{\text {i }}$	2.417 (2)	N2-H2A	0.8593
Ag1-N1	2.417 (2)	N2-H2B	0.8591
Ag1-O1 ${ }^{\text {ii }}$	2.7774 (14)	$\mathrm{C} 1-\mathrm{C} 2$	1.522 (2)
Ag1- $\mathrm{Ol}^{\text {i }}$	2.7774 (14)	C1-H1A	0.9700
Ag1-O1 ${ }^{\text {iii }}$	2.7774 (14)	C1-H1B	0.9700
Ag1-O1 ${ }^{\text {iv }}$	2.7774 (14)	N3-O2 ${ }^{\text {vi }}$	1.247 (3)
Agl-O1	2.7774 (14)	N3-O2 ${ }^{\text {vii }}$	1.247 (3)
$\mathrm{Ag} 1-\mathrm{Ol}^{\text {v }}$	2.7774 (14)	$\mathrm{N} 3-\mathrm{O} 2^{\text {viii }}$	1.247 (3)
O1-C2	1.229 (2)	N3-O2 ${ }^{\text {ix }}$	1.247 (3)
N1-C1 ${ }^{\text {- }}$	1.4737 (17)	N3-O2 ${ }^{\text {x }}$	1.247 (3)
N1-C1	1.4737 (17)	N3-O2	1.247 (3)
N1-C1 ${ }^{\text {ii }}$	1.4738 (17)	$\mathrm{O} 2-\mathrm{O} 2^{\text {viii }}$	1.248 (3)
N2-C2	1.330 (2)	$\mathrm{O} 2-\mathrm{O} 2^{\text {vi }}$	1.248 (3)

$\mathrm{N} 1-\mathrm{Ag} 1-\mathrm{N} 1^{\mathrm{i}}$	180.0
$\mathrm{C} 1^{\mathrm{v}}-\mathrm{N} 1-\mathrm{C} 1$	$109.31(11)$
$\mathrm{C} 1^{\mathrm{v}}-\mathrm{N} 1-\mathrm{C} 1^{\mathrm{ii}}$	$109.30(11)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 1^{\mathrm{ii}}$	$109.31(11)$
$\mathrm{C} 1^{\mathrm{v}}-\mathrm{N} 1-\mathrm{Ag} 1$	$109.64(10)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{Ag} 1$	$109.64(10)$
$\mathrm{C} 1^{\mathrm{ii}}-\mathrm{N} 1-\mathrm{Ag} 1$	$109.64(10)$
$\mathrm{C} 2-\mathrm{N} 2-\mathrm{H} 2 \mathrm{~A}$	120.4
$\mathrm{C} 2-\mathrm{N} 2-\mathrm{H} 2 \mathrm{~B}$	119.6
$\mathrm{H} 2 \mathrm{~A}-\mathrm{N} 2-\mathrm{H} 2 \mathrm{~B}$	120.0
$\mathrm{~N} 1-\mathrm{C} 1-\mathrm{C} 2$	$112.41(13)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	109.1
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	109.1
$\mathrm{~N} 1-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	109.1
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	109.1
$\mathrm{H} 1 \mathrm{~A}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	107.9
$\mathrm{O} 1-\mathrm{C} 2-\mathrm{N} 2$	$123.50(16)$
$\mathrm{O} 1-\mathrm{C} 2-\mathrm{C} 1$	$122.03(14)$
$\mathrm{N} 2-\mathrm{C} 2-\mathrm{C} 1$	$114.46(15)$

$\mathrm{O} 2^{\text {vi }}-\mathrm{N} 3-\mathrm{O} 2^{\text {vii }}$	180.0
$\mathrm{O} 2{ }^{\text {vi }}-\mathrm{N} 3-\mathrm{O} 2^{\text {viii }}$	119.947 (12)
$\mathrm{O} 2{ }^{\text {vii }}-\mathrm{N} 3-\mathrm{O} 2^{\text {viii }}$	60.053 (12)
$\mathrm{O} 2{ }^{\text {vi }}-\mathrm{N} 3-\mathrm{O} 2^{\text {ix }}$	60.053 (12)
$\mathrm{O} 2{ }^{\text {vii }}-\mathrm{N} 3-\mathrm{O} 2^{\text {ix }}$	119.947 (12)
$\mathrm{O} 2^{\text {viii }}-\mathrm{N} 3-\mathrm{O} 2^{\text {ix }}$	180.0 (3)
$\mathrm{O} 2^{\mathrm{vi}}-\mathrm{N} 3-\mathrm{O} 2^{\mathrm{x}}$	119.947 (13)
$\mathrm{O} 2^{\text {vii }}-\mathrm{N} 3-\mathrm{O} 2^{\mathrm{x}}$	60.053 (12)
$\mathrm{O} 2^{\text {viii }}$ - $\mathrm{N} 3-\mathrm{O} 2^{\mathrm{x}}$	119.947 (12)
$\mathrm{O} 2^{\mathrm{ix}}-\mathrm{N} 3-\mathrm{O} 2^{\mathrm{x}}$	60.053 (12)
$\mathrm{O} 2{ }^{\text {vi }}-\mathrm{N} 3-\mathrm{O} 2$	60.054 (12)
$\mathrm{O} 2{ }^{\text {vii }}-\mathrm{N} 3-\mathrm{O} 2$	119.946 (12)
$\mathrm{O} 2{ }^{\text {viii }}-\mathrm{N} 3-\mathrm{O} 2$	60.052 (12)
$\mathrm{O} 2{ }^{\mathrm{ix}}-\mathrm{N} 3-\mathrm{O} 2$	119.948 (13)
$\mathrm{O} 2^{\mathrm{x}}-\mathrm{N} 3-\mathrm{O} 2$	180.0 (2)
$\mathrm{N} 3-\mathrm{O} 2-\mathrm{O} 2{ }^{\text {viii }}$	59.974 (6)
$\mathrm{N} 3-\mathrm{O} 2-\mathrm{O} 2^{\text {vi }}$	59.973 (6)
$\mathrm{O} 2{ }^{\text {viii }}-\mathrm{O} 2-\mathrm{O} 2^{\text {vi }}$	119.79 (5)

$\mathrm{C} 1{ }^{\mathrm{v}}-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	$68.5(2)$
$\mathrm{C} 1 \mathrm{i}^{\mathrm{ii}}-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	$-171.88(13)$
$\mathrm{Ag} 1-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	$-51.68(13)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{O} 1$	$27.5(2)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{N} 2$	$-153.92(16)$
$\mathrm{O} 2^{\mathrm{vi}}-\mathrm{N} 3-\mathrm{O} 2-\mathrm{O} 2^{\mathrm{viii}}$	$175.4(5)$

$\mathrm{O}^{\text {vii }}-\mathrm{N} 3-\mathrm{O} 2-\mathrm{O} 2^{\text {viii }}$	$-4.6(5)$
$\mathrm{O} 2^{\mathrm{ix}}-\mathrm{N} 3-\mathrm{O} 2-\mathrm{O}^{\text {viii }}$	180.0
$\mathrm{O}^{\text {vii }}-\mathrm{N} 3-\mathrm{O} 2-\mathrm{O}^{\text {vi }}$	180.0
$\mathrm{O}^{\text {viii }}-\mathrm{N} 3-\mathrm{O} 2-\mathrm{O}^{\text {vi }}$	$-175.4(5)$
$\mathrm{O} 2^{\mathrm{ix}}-\mathrm{N} 3-\mathrm{O} 2-\mathrm{O} 2^{\text {vi }}$	$4.6(5)$

Symmetry codes: (i) $-x,-y,-z$; (ii) $-y, x-y, z$; (iii) $y,-x+y,-z$; (iv) $x-y, x,-z$; (v) $-x+y,-x, z$; (vi) $y+1,-x+y+1,-z+1$; (vii) $-y+1, x-y-1, z$; (viii) $x-y$, $x-1,-z+1$; (ix) $-x+y+2,-x+1, z$; (x) $-x+2,-y,-z+1$.

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2 — \mathrm{H} 2 B \cdots \mathrm{O} 1^{\text {xi }}$	0.86	2.15	$2.969(2)$	159
$\mathrm{~N} 2 — \mathrm{H} 2 A \cdots 2^{\text {xii }}$	0.86	2.42	$3.256(4)$	163
$\mathrm{~N} 2 — \mathrm{H} 2 A \cdots 2^{\text {xiii }}$	0.86	2.22	$2.880(4)$	133
$\mathrm{~N} 2 — \mathrm{H} 2 A \cdots 1^{\text {xiv }}$	0.86	2.59	$3.058(2)$	115

Symmetry codes: (xi) $-x+y+2 / 3,-x+1 / 3, z+1 / 3$; (xii) $y+1 / 3,-x+y+2 / 3,-z+2 / 3$; (xiii) $x-2 / 3, y-1 / 3, z-1 / 3$; (xiv) $y+2 / 3,-x+y+1 / 3,-z+1 / 3$.

