

IUCrData

ISSN 2414-3146

Received 27 December 2017 Accepted 11 January 2018

Edited by M. Zeller, Purdue University, USA

Additional corresponding author, e-mail: kariukib@cardiff.ac.uk.

Keywords: crystal structure; pyrazolyltriazoles; synthesis.

CCDC reference: 1816208

Structural data: full structural data are available from iucrdata.iucr.org

(*E*)-1-(4-Bromophenyl)-3-[3-(5-methyl-1-phenyl-1*H*-1,2,3-triazol-4-yl)-1-phenyl-1*H*-pyrazol-4-yl]prop-2-en-1-one

Gamal A. El-Hiti,^a* Bakr F. Abdel-Wahab,^{b,c} Mohammad Hayal Alotaibi,^d Amany S. Hegazy^e and Benson M. Kariuki^e‡

^aCornea Research Chair, Department of Optometry, College of Applied Medical Sciences, King Saud University, PO Box 10219, Riyadh 11433, Saudi Arabia, ^bDepartment of Chemistry, College of Science and Humanities, Shaqra University, Duwadimi, Saudi Arabia, ^cApplied Organic Chemistry Department, National Research Centre, Dokki, Giza, Egypt, ^dNational Center for Petrochemicals Technology, King Abdulaziz City for Science and Technology, PO Box 6086, Riyadh 11442, Saudi Arabia, and ^eSchool of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, Wales. *Correspondence e-mail: gelhiti@ksu.edu.sa

In the title compound, $C_{27}H_{20}BrN_5O$, the dihedral angle between the heterocyclic rings is 10.2 (2)°. The phenyl ring bound to the triazole ring is disordered over two orientations in a 0.808 (4):0.192 (4) ratio. In the crystal, C-H···O interactions form chains along [010]. π - π interactions are observed between the phenyl-pyrazolyl unit and the phenylene group of a neighbouring molecule.

Structure description

Pyrazolyltriazoles show some biological applications as antimicrobial (Abdel-Wahab *et al.*, 2017), anti-invasive and antimycobacterial agents (Kumar *et al.*, 2003). In addition, some pyrazolyltriazoles are useful as herbicides (Lang & Walworth, 1979).

The asymmetric unit comprises one molecule (Fig. 1). In the crystal, C-H···O hydrogen bonds link the molecules, forming chains along [010] (Table 1, Fig. 2). π - π interactions involving the phenyl-pyrazolyl group and the phenylene group of a neighbouring molecule are also observed [centroid-to-centroid distance = 3.887 (3) Å; symmetry operator for the phenylene group: $\frac{3}{2} - x$, $\frac{1}{2} + y$, $\frac{1}{2} - z$].

Figure 1

An ORTEP representation of the asymmetric unit showing 50% probability displacement ellipsoids.

Synthesis and crystallization

The title compound was synthesized based on a literature procedure by the reaction of a mixture of 3-(5-methyl-1-phenyl-1*H*-1,2,3-triazol-4-yl)-1-phenyl-1*H*-pyrazole-4-carb-aldehyde and 1-(4-bromophenyl)ethanone in aqueous ethanol in the presence of sodium hydroxide at room temperature for 5 h (Abdel-Wahab *et al.*, 2017). The solid obtained was collected by filtration, washed with cold water and recrys-tallized from dimethylformamide solution to obtain colourless crystals (86%), m.p 168–169°C (lit 168–169°C; Abdel-Wahab *et al.*, 2017).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. The C16–C21 phenyl ring is disordered with two components oriented approximately perpendicular to each other. The occupancies refined to 0.808 (4) and 0.192 (4). The components were restrained to

Figure 2 A segment of the crystal structure showing C-H···O and π - π interactions.

Table 1	
Hydrogen-bond geometr	ry (Å, °).

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C12-H12\cdots O1^{i}$	0.93	2.28	3.201 (4)	172

Symmetry code: (i) $-x + \frac{3}{2}$, $y + \frac{1}{2}$, $-z + \frac{1}{2}$.

 Table 2

 Experimental details.

I · · · · · · · ·	
Crystal data	
Chemical formula	$C_{27}H_{20}BrN_5O$
M _r	510.39
Crystal system, space group	Monoclinic, $P2_1/n$
Temperature (K)	293
a, b, c (Å)	15.0387 (12), 6.8105 (3), 24.385 (2)
β (°)	106.473 (8)
$V(Å^3)$	2395.0 (3)
Ζ	4
Radiation type	Μο Κα
$\mu (\text{mm}^{-1})$	1.75
Crystal size (mm)	$0.32 \times 0.18 \times 0.08$
Data collection	
Diffractometer	Rigaku Oxford Diffraction Super- Nova, Dual, Cu at zero, Atlas
Absorption correction	Gaussian (<i>CrysAlis PRO</i> ; Rigaku Oxford Diffraction, 2015)
T_{\min}, T_{\max}	0.540, 0.874
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	22293, 5994, 2916
R _{int}	0.033
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.702
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.057, 0.188, 1.03
No. of reflections	5994
No. of parameters	363
No. of restraints	271
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({\rm e} \ {\rm \AA}^{-3})$	0.56, -0.72

Computer programs: CrysAlis PRO (Rigaku Oxford Diffraction, 2015), SHELXS (Sheldrick, 2008), SHELXL2018 (Sheldrick, 2015), ORTEP-3 for Windows and WinGX (Farrugia, 2012) and CHEMDRAW Ultra (Cambridge Soft, 2001).

have similar geometries (SAME command in *SHELXL*) and chemically equivalent bonds around the *ipso*-carbon atoms C16 and C16A were restrained to be similar (SADI commands of *SHELXL*, e.s.d. = 0.01 Å²). ADPs of disordered atoms were restrained to be close to isotropic and U^{ij} components of ADPs for disordered atoms closer to each other than 2.0 Å were restrained to be similar (ISOR and SIMU restraints of *SHELXL*; e.s.d. = 0.01 Å² for SIMU N3, C16 and C16A, 0.1 Å² for all others).

Funding information

This project was supported by King Saud University, Deanship of Scientific Research, Research Chairs.

References

Abdel-Wahab, B. F., Khidre, R. E., Mohamed, H. A. & El-Hiti, G. A. (2017). Arab. J. Sci. Eng. 42, 2441–2448.

Cambridge Soft (2001). CHEMDRAW Ultra. Cambridge Soft Corporation, Cambridge, Massachusetts, USA.

Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.

- Kumar, A., Husain, M., Prasad, A. K., Singh, I., Vats, A., Sharma, N. K., Sharma, S. K., Gupta, R. K., Olsen, C. E., Bracke, M. E., Gross, R. A. & Parmar, V. S. (2003). *Indian J. Chem.* **42B**, 1950– 1957.
- Lang, S. A. Jr & Walworth, B. L. (1979). US Patent 4169838.
- Rigaku Oxford Diffraction (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.

full crystallographic data

IUCrData (2018). **3**, x180069 [https://doi.org/10.1107/S241431461800069X]

(*E*)-1-(4-Bromophenyl)-3-[3-(5-methyl-1-phenyl-1*H*-1,2,3-triazol-4-yl)-1-phenyl-1*H*-pyrazol-4-yl]prop-2-en-1-one

Gamal A. El-Hiti, Bakr F. Abdel-Wahab, Mohammad Hayal Alotaibi, Amany S. Hegazy and Benson M. Kariuki

(E) - 1 - (4 - Bromophenyl) - 3 - [3 - (5 - methyl - 1 - phenyl - 1H - 1, 2, 3 - triazol - 4 - yl) - 1 - phenyl - 1H - pyrazol - 4 - yl] prop - 2 - en - 1 - one

Crystal data

 $C_{27}H_{20}BrN_5O$ $M_r = 510.39$ Monoclinic, $P2_1/n$ a = 15.0387 (12) Å b = 6.8105 (3) Å c = 24.385 (2) Å $\beta = 106.473$ (8)° V = 2395.0 (3) Å³ Z = 4

Data collection

Rigaku Oxford Diffraction SuperNova, Dual, Cu at zero, Atlas diffractometer ω scans Absorption correction: gaussian (CrysAlis PRO; Rigaku Oxford Diffraction, 2015) $T_{\min} = 0.540, T_{\max} = 0.874$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.057$ $wR(F^2) = 0.188$ S = 1.035994 reflections 363 parameters 271 restraints F(000) = 1040 $D_x = 1.415 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 4138 reflections $\theta = 3.3-22.8^{\circ}$ $\mu = 1.75 \text{ mm}^{-1}$ T = 293 KBlock, colourless $0.32 \times 0.18 \times 0.08 \text{ mm}$

22293 measured reflections 5994 independent reflections 2916 reflections with $I > 2\sigma(I)$ $R_{int} = 0.033$ $\theta_{max} = 29.9^{\circ}, \theta_{min} = 3.1^{\circ}$ $h = -19 \rightarrow 20$ $k = -9 \rightarrow 9$ $l = -33 \rightarrow 31$

Primary atom site location: structure-invariant direct methods Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.077P)^2 + 1.0166P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.56$ e Å⁻³ $\Delta\rho_{min} = -0.72$ e Å⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. All hydrogen atoms were placed in calculated positions and refined using a riding model. Aromatic C—H distances were set to 0.93 Å and their U_{iso} set to 1.2 times the U_{eq} for the atoms to which they are bonded. Methyl C—H distances were set to 0.96 Å and their U(iso) set to 1.5 times the U_{eq} for the C atoms to which they are bonded. Methyl H atoms were allowed to rotate, but not to tip.

 $U_{\rm iso}*/U_{\rm eq}$ Occ. (<1) х v ZC1 1.0981 (3) 1.0213 (5) 0.29653 (17) 0.0785 (10) C2 0.0975 (13) 1.1082(3)0.8522(7)0.2687(2)H2 1.160233 0.833696 0.255904 0.117* C3 1.0414 (3) 0.7107 (6) 0.25995 (18) 0.0824 (11) H3 1.048966 0.595122 0.241468 0.099* C4 0.9628(2)0.7353(4)0.27788 (13) 0.0589 (8) C5 0.9540(2)0.9098(5)0.30512 (14) 0.0666 (8) H5 0.930524 0.080* 0.901407 0.317247 C6 1.0209(3)1.0526 (5) 0.31461 (15) 0.0738(9)H6 1.014007 1.168818 0.333022 0.089* C7 0.8946(2)0.27006 (13) 0.5723(5)0.0631 (8) C8 0.8192(2)0.5821(5)0.29743 (13) 0.0635 (8) H8 0.302706 0.076* 0.794382 0.703269 C9 0.7861(2)0.4182 (5) 0.31482 (12) 0.0604 (8) Н9 0.299858 0.308945 0.072* 0.812808 C10 0.7120(2)0.4097(4)0.34206 (12) 0.0573 (7) C11 0.6926 (2) 0.2637 (4) 0.37887 (13) 0.0578(7) C12 0.5441(5)0.33655 (13) 0.0612 (8) 0.6418(2)H12 0.633770 0.659109 0.315142 0.073* C13 0.7493(2)0.0945(4)0.40400(13)0.0606 (8) C14 0.7407(2)-0.0346(5)0.44564(13)0.0596(8)C15 0.6705(3)0.47706 (19) 0.0974(13)-0.0557(7)H15A 0.620946 -0.1380200.455656 0.146* H15B 0.646317 0.071308 0.482227 0.146* H15C 0.698566 -0.1139720.513735 0.146* C16 0.8531(4)-0.2993(6)0.49653 (19) 0.0611 (15) 0.808(4)C17 0.7985 (3) -0.4578(6)0.49705 (18) 0.0747 (13) 0.808(4)H17 0.738202 -0.4641350.473091 0.090* 0.808(4)C18 0.8355(5)-0.6100(7)0.5344(2)0.0883 (16) 0.808(4)H18 0.799400 -0.7195330.536034 0.106* 0.808(4)C19 -0.5999(11)0.808(4)0.9245 (6) 0.5689(2)0.088(2)H19 0.105* 0.808(4)0.949225 -0.7037960.593216 C20 0.0929 (16) 0.808(4)0.9776(4)-0.4372(9)0.5679(2)H20 1.037732 -0.430199 0.591985 0.112* 0.808(4)C21 0.9421 (3) -0.2827(7)0.53099 (19) 0.0770(13) 0.808(4)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

H21	0.977627	-0.171783	0.529759	0.092*	0.808 (4)
C16A	0.842 (2)	-0.323 (2)	0.4904 (7)	0.061 (4)	0.192 (4)
C17A	0.8740 (12)	-0.489 (2)	0.4700 (7)	0.075 (5)	0.192 (4)
H17A	0.876268	-0.489626	0.432317	0.090*	0.192 (4)
C18A	0.9034 (15)	-0.657 (2)	0.5034 (8)	0.085 (6)	0.192 (4)
H18A	0.926993	-0.764690	0.488634	0.102*	0.192 (4)
C19A	0.897 (3)	-0.660 (4)	0.5577 (11)	0.103 (9)	0.192 (4)
H19A	0.907791	-0.775943	0.578652	0.123*	0.192 (4)
C20A	0.8737 (18)	-0.492 (3)	0.5819 (8)	0.100 (6)	0.192 (4)
H20A	0.878799	-0.486441	0.620762	0.120*	0.192 (4)
C21A	0.8425 (15)	-0.329 (3)	0.5468 (6)	0.081 (6)	0.192 (4)
H21A	0.821092	-0.219898	0.562233	0.098*	0.192 (4)
C22	0.5037 (2)	0.5660 (5)	0.37391 (14)	0.0695 (9)	
C23	0.4761 (4)	0.7453 (7)	0.3505 (2)	0.1097 (17)	
H23	0.511457	0.811621	0.330734	0.132*	
C24	0.3955 (4)	0.8283 (9)	0.3563 (2)	0.130 (2)	
H24	0.376608	0.950212	0.340013	0.156*	
C25	0.3440 (4)	0.7356 (8)	0.3852 (2)	0.1119 (16)	
H25	0.290541	0.794225	0.389495	0.134*	
C26	0.3705 (4)	0.5559 (9)	0.4081 (3)	0.132 (2)	
H26	0.334345	0.490100	0.427467	0.158*	
C27	0.4514 (3)	0.4700 (7)	0.4029 (2)	0.1058 (15)	
H27	0.469785	0.347546	0.418977	0.127*	
N1	0.8288 (2)	0.0556 (5)	0.39076 (14)	0.0853 (9)	
N2	0.8712 (2)	-0.0915 (5)	0.42212 (14)	0.0855 (9)	
N3	0.81813 (19)	-0.1461 (4)	0.45570 (10)	0.0615 (6)	
N4	0.6169 (2)	0.3054 (4)	0.39428 (11)	0.0646 (7)	
N5	0.58666 (18)	0.4796 (4)	0.36765 (11)	0.0635 (7)	
Br1	1.19258 (4)	1.21670 (8)	0.31164 (3)	0.1228 (3)	
01	0.9048 (2)	0.4247 (4)	0.24355 (11)	0.0885 (8)	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.067 (2)	0.066 (2)	0.104 (3)	0.0020 (18)	0.027 (2)	0.008 (2)
C2	0.075 (3)	0.092 (3)	0.143 (4)	0.004 (2)	0.060 (3)	-0.006 (3)
C3	0.077 (3)	0.071 (2)	0.113 (3)	0.006 (2)	0.050(2)	-0.011 (2)
C4	0.0616 (19)	0.0563 (17)	0.0609 (17)	0.0135 (15)	0.0207 (15)	0.0069 (14)
C5	0.066 (2)	0.0636 (19)	0.076 (2)	0.0103 (17)	0.0289 (17)	-0.0002 (16)
C6	0.074 (2)	0.0608 (19)	0.088 (2)	0.0070 (18)	0.0252 (19)	-0.0018 (17)
C7	0.070 (2)	0.0583 (18)	0.0641 (18)	0.0089 (16)	0.0238 (16)	0.0047 (15)
C8	0.063 (2)	0.0587 (18)	0.0707 (19)	0.0065 (15)	0.0227 (16)	0.0019 (15)
C9	0.0593 (19)	0.0625 (18)	0.0576 (17)	0.0068 (15)	0.0137 (14)	0.0005 (14)
C10	0.0582 (19)	0.0578 (17)	0.0550 (16)	0.0043 (14)	0.0148 (14)	-0.0016 (14)
C11	0.0558 (18)	0.0559 (17)	0.0608 (17)	0.0019 (14)	0.0150 (14)	-0.0026 (14)
C12	0.0602 (19)	0.0616 (18)	0.0631 (17)	0.0023 (15)	0.0195 (15)	0.0028 (15)
C13	0.064 (2)	0.0557 (17)	0.0652 (18)	0.0050 (15)	0.0231 (15)	0.0010 (15)
C14	0.0551 (18)	0.0623 (18)	0.0619 (17)	0.0037 (15)	0.0173 (14)	0.0008 (15)

C15	0.085 (3)	0.113 (3)	0.108 (3)	0.025 (2)	0.051 (2)	0.037 (3)
C16	0.065 (3)	0.062 (2)	0.054 (2)	0.007 (2)	0.012 (2)	-0.002 (2)
C17	0.083 (3)	0.066 (3)	0.069 (3)	-0.002 (2)	0.012 (2)	0.000(2)
C18	0.121 (5)	0.065 (3)	0.081 (3)	0.004 (3)	0.031 (3)	0.010 (3)
C19	0.108 (6)	0.083 (4)	0.067 (3)	0.031 (4)	0.017 (3)	0.015 (3)
C20	0.084 (4)	0.106 (4)	0.076 (3)	0.025 (3)	0.002 (3)	0.003 (3)
C21	0.074 (3)	0.073 (3)	0.076 (3)	0.005 (2)	0.008 (2)	-0.001 (2)
C16A	0.062 (6)	0.060 (6)	0.056 (6)	0.007 (6)	0.011 (6)	0.001 (6)
C17A	0.067 (10)	0.068 (9)	0.080 (10)	-0.005 (8)	0.005 (8)	0.012 (8)
C18A	0.084 (12)	0.064 (10)	0.090 (11)	0.000 (9)	-0.001 (10)	-0.007 (9)
C19A	0.094 (16)	0.094 (15)	0.111 (15)	-0.015 (14)	0.014 (13)	0.019 (13)
C20A	0.107 (14)	0.111 (13)	0.078 (11)	0.024 (12)	0.021 (10)	0.036 (11)
C21A	0.093 (15)	0.079 (12)	0.071 (12)	0.015 (11)	0.022 (10)	0.007 (10)
C22	0.062 (2)	0.078 (2)	0.072 (2)	0.0145 (17)	0.0239 (17)	0.0045 (17)
C23	0.114 (4)	0.115 (3)	0.123 (3)	0.056 (3)	0.072 (3)	0.053 (3)
C24	0.127 (4)	0.143 (4)	0.146 (4)	0.075 (4)	0.080 (4)	0.061 (4)
C25	0.088 (3)	0.132 (4)	0.128 (4)	0.043 (3)	0.051 (3)	0.023 (3)
C26	0.106 (4)	0.126 (4)	0.196 (5)	0.034 (3)	0.095 (4)	0.039 (4)
C27	0.086 (3)	0.096 (3)	0.156 (4)	0.022 (2)	0.068 (3)	0.032 (3)
N1	0.089 (2)	0.081 (2)	0.103 (2)	0.0325 (18)	0.0543 (19)	0.0303 (18)
N2	0.085 (2)	0.086 (2)	0.100 (2)	0.0271 (18)	0.0492 (19)	0.0246 (18)
N3	0.0634 (17)	0.0619 (15)	0.0612 (14)	0.0084 (13)	0.0209 (13)	0.0052 (12)
N4	0.0609 (17)	0.0639 (16)	0.0716 (16)	0.0078 (13)	0.0230 (13)	0.0067 (13)
N5	0.0569 (16)	0.0639 (16)	0.0711 (15)	0.0086 (13)	0.0203 (13)	0.0048 (13)
Br1	0.0810 (4)	0.0904 (4)	0.1980 (7)	-0.0128 (2)	0.0410 (4)	0.0055 (3)
01	0.111 (2)	0.0666 (15)	0.1043 (18)	-0.0025 (14)	0.0572 (16)	-0.0202 (14)

Geometric parameters (Å, °)

C1—C2	1.367 (6)	C17—H17	0.9300
C1—C6	1.370 (5)	C18—C19	1.366 (9)
C1—Br1	1.905 (4)	C18—H18	0.9300
С2—С3	1.364 (6)	C19—C20	1.370 (9)
С2—Н2	0.9300	C19—H19	0.9300
C3—C4	1.382 (5)	C20—C21	1.389 (6)
С3—Н3	0.9300	C20—H20	0.9300
C4—C5	1.386 (4)	C21—H21	0.9300
C4—C7	1.487 (5)	C16A—C17A	1.373 (8)
С5—С6	1.371 (5)	C16A—C21A	1.374 (8)
С5—Н5	0.9300	C16A—N3	1.459 (9)
С6—Н6	0.9300	C17A—C18A	1.403 (16)
C7—O1	1.228 (4)	C17A—H17A	0.9300
С7—С8	1.470 (4)	C18A—C19A	1.354 (19)
С8—С9	1.339 (4)	C18A—H18A	0.9300
С8—Н8	0.9300	C19A—C20A	1.38 (2)
C9—C10	1.451 (4)	C19A—H19A	0.9300
С9—Н9	0.9300	C20A—C21A	1.398 (16)
C10-C12	1.375 (4)	C20A—H20A	0.9300

C10—C11	1.423 (4)	C21A—H21A	0.9300
C11—N4	1.327 (4)	C22—C23	1.362 (5)
C11—C13	1.461 (4)	C22—C27	1.364 (5)
C12—N5	1.346 (4)	C22—N5	1.426 (4)
C12—H12	0.9300	C23—C24	1.381 (6)
C13—N1	1.350 (4)	С23—Н23	0.9300
C13—C14	1.376 (4)	C24—C25	1.343 (7)
C14—N3	1.354 (4)	C24—H24	0.9300
C14—C15	1.477 (5)	C25—C26	1.357 (6)
C15—H15A	0.9600	С25—Н25	0.9300
C15—H15B	0.9600	C26—C27	1.388 (6)
C15—H15C	0.9600	С26—Н26	0.9300
C16—C17	1.359 (6)	С27—Н27	0.9300
C16—C21	1.368 (6)	N1—N2	1.311 (4)
C16—N3	1.436 (5)	N2—N3	1.347 (4)
C17—C18	1.388 (7)	N4—N5	1.367 (4)
C2—C1—C6	120.9 (4)	C18—C19—C20	120.2 (5)
C2—C1—Br1	120.2 (3)	C18—C19—H19	119.9
C6—C1—Br1	118.9 (3)	С20—С19—Н19	119.9
C3—C2—C1	119.5 (4)	C19—C20—C21	120.4 (5)
С3—С2—Н2	120.2	C19—C20—H20	119.8
C1—C2—H2	120.2	C21—C20—H20	119.8
C2—C3—C4	121.5 (3)	C16—C21—C20	117.6 (5)
С2—С3—Н3	119.2	C16—C21—H21	121.2
С4—С3—Н3	119.2	C20—C21—H21	121.2
C3—C4—C5	117.5 (3)	C17A—C16A—C21A	115.9 (11)
C3—C4—C7	119.3 (3)	C17A—C16A—N3	121.6 (12)
C5—C4—C7	123.1 (3)	C21A—C16A—N3	122.3 (12)
C6—C5—C4	121.6 (3)	C16A—C17A—C18A	123.1 (13)
С6—С5—Н5	119.2	C16A—C17A—H17A	118.4
C4—C5—H5	119.2	C18A—C17A—H17A	118.4
C1—C6—C5	118.9 (3)	C19A—C18A—C17A	118.7 (17)
С1—С6—Н6	120.5	C19A—C18A—H18A	120.7
С5—С6—Н6	120.5	C17A—C18A—H18A	120.7
O1—C7—C8	120.2 (3)	C18A—C19A—C20A	120.2 (19)
O1—C7—C4	119.6 (3)	C18A—C19A—H19A	119.9
C8—C7—C4	120.0 (3)	C20A—C19A—H19A	119.9
C9—C8—C7	120.7 (3)	C19A—C20A—C21A	118.6 (17)
С9—С8—Н8	119.7	C19A—C20A—H20A	120.7
С7—С8—Н8	119.7	C21A—C20A—H20A	120.7
C8—C9—C10	125.6 (3)	C16A—C21A—C20A	122.7 (14)
С8—С9—Н9	117.2	C16A—C21A—H21A	118.6
С10—С9—Н9	117.2	C20A—C21A—H21A	118.6
C12—C10—C11	103.8 (3)	C23—C22—C27	119.6 (4)
C12—C10—C9	126.6 (3)	C23—C22—N5	119.8 (3)
C11—C10—C9	129.6 (3)	C27—C22—N5	120.6 (3)
N4—C11—C10	112.0 (3)	C22—C23—C24	119.8 (4)

N4—C11—C13	119.7 (3)	С22—С23—Н23	120.1
C10—C11—C13	128.0 (3)	С24—С23—Н23	120.1
N5-C12-C10	107.8 (3)	C25—C24—C23	121.0 (5)
N5—C12—H12	126.1	C25—C24—H24	119.5
C10—C12—H12	126.1	C23—C24—H24	119.5
N1—C13—C14	109.1 (3)	C24—C25—C26	119.6 (4)
N1—C13—C11	120.3 (3)	С24—С25—Н25	120.2
C14—C13—C11	130.4 (3)	С26—С25—Н25	120.2
N3—C14—C13	103.6 (3)	C25—C26—C27	120.3 (5)
N3—C14—C15	123.8 (3)	С25—С26—Н26	119.8
C13—C14—C15	132.5 (3)	С27—С26—Н26	119.8
C14—C15—H15A	109.5	C22—C27—C26	119.7 (4)
C14—C15—H15B	109.5	С22—С27—Н27	120.2
H15A—C15—H15B	109.5	С26—С27—Н27	120.2
C14—C15—H15C	109.5	N2—N1—C13	109.1 (3)
H15A—C15—H15C	109.5	N1—N2—N3	107.0 (3)
H15B—C15—H15C	109.5	N2—N3—C14	111.3 (2)
C17—C16—C21	123.3 (4)	N2—N3—C16	117.3 (3)
C17—C16—N3	118.7 (4)	C14—N3—C16	131.4 (3)
C21—C16—N3	117.9 (4)	N2—N3—C16A	119.3 (11)
C16—C17—C18	117.9 (5)	C14—N3—C16A	128.9 (13)
С16—С17—Н17	121.0	C11—N4—N5	104.3 (2)
C18—C17—H17	121.0	C12—N5—N4	112.1 (3)
C19—C18—C17	120.5 (5)	C12—N5—C22	128.5 (3)
C19—C18—H18	119.8	N4—N5—C22	119.4 (3)
C17—C18—H18	119.8		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
C12—H12…O1 ⁱ	0.93	2.28	3.201 (4)	172

Symmetry code: (i) -x+3/2, y+1/2, -z+1/2.