ISSN 2414-3146

Received 18 January 2018 Accepted 28 January 2018

Edited by K. Fejfarova, Institute of Biotechnology CAS, Czech Republic

Keywords: crystal structure; hexahydroquinoline ring; dimers; hydroquinones; multicomponent reactions.

CCDC reference: 1820337

Structural data: full structural data are available from iucrdata.iucr.org

2-Amino-4-(4-methoxyphenyl)-1-(4-methylphenyl)-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carbonitrile

Asmaa H. A. Tamam,^a Manpreet Kaur,^b Mehmet Akkurt,^c Shaaban K. Mohamed,^{d,e} Jerry P. Jasinski^b and Faiq H. S. Hussain^f*

^aDepartment of Chemistry, Faculty of Science, Sohag University, Sohag, Egypt, ^bDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, ^cDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, ^dChemistry and Environmental Division, Manchester Metropolitan University, Manchester M1 5GD, England, ^eChemistry Department, Faculty of Science, Minia University, 61519 El-Minia, Egypt, and ^fResearch Center, University of Ishik, Erbil, Iraq. *Correspondence e-mail: shaabankamel@yahoo.com

In the title compound, $C_{24}H_{23}N_3O_2$, the cyclohexene and 1,4-dihydropyridine rings of the 1,4,5,6,7,8-hexahydroquinoline ring system each adopt a twistedboat conformation. The dihedral angle between the benzene rings is 13.89 (10)°. In the crystal, molecules are linked through pairs of amino-nitrile N-H···N hydrogen bonds, forming inversion dimers. Weak C-H···O and C-H··· π interactions connect the dimers, forming a three-dimensional network.

Structure description

Studies have shown that 1,4,5,6,7,8-hexahydroquinolines have significant cytotoxic activity against different human cancer cell lines (Mohamed *et al.*, 2012; Al-Said *et al.*, 2011; Alqasoumi *et al.*, 2009). In recent years, hexahydroquinoline derivatives attracted more interest because of their biological and pharmacological activities, *e.g.* antimicrobial (Muli *et al.*, 2014; Shah *et al.*, 2012), antioxidant (Yang *et al.*, 2011), antimalarial (Kalaria *et al.*, 2014) and antiosteoporotic (Sashidhara *et al.*, 2013). In addition, hexahydroquinolines have been used as calcium channel blockers for the treatment of cardiovascular diseases including hypertension (Joshi & Pawar, 2013; Gunduz *et al.*, 2009; Aydin *et al.*, 2006; Simsek *et al.*, 2006).

As shown in Fig. 1, the cyclohexene (C4–C9) and 1,4-dihydropyridine (N1/C1–C4/C9) rings of the 1,4,5,6,7,8- hexahydroquinoline ring system (N1/C1–C9) each adopt a twisted-boat conformation [puckering parameters $Q_{\rm T} = 0.467$ (2) Å, $\theta = 122.5$ (2)°, $\varphi = 354.0$ (3)° and $Q_{\rm T} = 0.2541$ (19) Å, $\theta = 106.6$ (4)°, $\varphi = 1.1$ (5)°, respectively]. The

Figure 1

The title molecule, showing the atom-numbering scheme, with displacement ellipsoids drawn at the 50% probability level.

methylbenzene and methoxybenzene rings form a dihedral angle of 13.89 (10)°. This angle is similar to the value of 11.52 (7)° found in the closely related structure of 2-amino-4-(4-chlorophenyl)-1-(4-methylphenyl)-5-oxo-1,4,5,6,7,8-hexa-hydroquinoline-3-carbonitrile (Mohamed *et al.*, 2015).

In the crystal, molecules are linked by pairs of N-H···N hydrogen bonds with an $R_2^2(12)$ ring motif (Table 1), forming centrosymmetric dimers (Fig. 2). These dimers are assembled into a three-dimensional network *via* C-H···O and C-H··· π interactions.

Synthesis and crystallization

To a solution of 1,3-cyclohexanedione (3.36 g, 0.03 mol) and p-toluidine (3.21 g, 0.03 mol) in ethanol (40 ml), a catalytic amount of triethylamine was added and the mixture was heated under reflux for 3 h. 4-Methoxybenzylidenemalononitrile (5.53 g, 0.03 mol) was added to the reaction mixture while refluxing for another 3 h. The reaction mixture was then cooled to room temperature. The precipitate that formed was filtered, dried and recrystallized from ethanol solution as orange crystals, yield 67%; m.p. 525 K.

Figure 2

The molecular packing, viewed along the c axis, showing the intermolecular hydrogen bonds as dashed lines.

Cg3 and Cg4 are the centroids of the C10–C15 and C16–C21 benzene rings, respectively.

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
$N2-H2A\cdots N3^{i}$	0.86	2.31	3.016 (3)	140
$C11-H11\cdots O1^{ii}$	0.95	2.70	3.408 (2)	132
$C21 - H21 \cdots O1^{ii}$	0.95	2.68	3.433 (3)	136
$C22-H22C \cdot \cdot \cdot N3^{iii}$	0.98	2.81	3.407 (4)	120
$C23-H23B\cdots O2^{iv}$	0.98	2.76	3.484 (3)	131
$C21 - H21 \cdots Cg3^{v}$	0.95	2.99	3.571 (2)	120
$C22-H22B\cdots Cg4^{vi}$	0.98	2.92	3.695 (3)	137
Symmetry codes: (i) $-x + 2, y + \frac{1}{2}, -7 + \frac{3}{2};$ (i)	-x + 2, -x + 1	y + 1, -z + 1; $y - \frac{1}{2}, -z + \frac{1}{2};$	(ii) $x, -y + (y) = x, -y + (y) = x + (y) + (y) = x + (y) + (y) + (y) = (y) + (y) +$	$\frac{3}{2}, z - \frac{1}{2};$ (iii) $\frac{1}{2}, z - \frac{3}{2};$ (vi)
$x + 1, -y + \frac{1}{2}, z - \frac{1}{2}$,	· · · 2, ~ · 2,	(.) 4, 91	2,~ 2, (1)

Tal	ble	2	
Exi	oeri	mental	details.

Crystal data	
Chemical formula	$C_{24}H_{23}N_3O_2$
M _r	385.45
Crystal system, space group	Monoclinic, $P2_1/c$
Temperature (K)	173
<i>a</i> , <i>b</i> , <i>c</i> (Å)	9.1066 (4), 19.6406 (9), 11.2901 (5)
β (°)	94.343 (4)
$V(Å^3)$	2013.54 (16)
Ζ	4
Radiation type	Cu Kα
$\mu (\text{mm}^{-1})$	0.66
Crystal size (mm)	$0.38 \times 0.28 \times 0.22$
Data collection	
Diffractometer	Rigaku Oxford Diffraction Xcalibur Eos Gemini
Absorption correction	Multi-scan (<i>CrysAlis PRO</i> ; Rigaku Oxford Diffraction, 2015)
T_{\min}, T_{\max}	0.813, 1.000
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	7397, 3793, 2933
R _{int}	0.023
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.614
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.051, 0.149, 1.05
No. of reflections	3793
No. of parameters	265
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({\rm e} {\rm \AA}^{-3})$	0.33, -0.25

Computer programs: CrysAlis PRO (Rigaku Oxford Diffraction, 2015), SHELXT2014 (Sheldrick, 2015a), SHELXL (Sheldrick, 2015b) and OLEX2 (Dolomanov et al., 2009).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. 28 reflections were omitted as clear outlier data.

Funding information

JPJ would like to acknowledge the NSF–MRI program (grant No. CHE-1039027) for funds to purchase the X-ray diffract-ometer.

References

- Alqasoumi, S. I., Al-Taweel, A. M., Alafeefy, A. M., Hamed, M. M., Noaman, E. & Ghorab, M. M. (2009). *Bioorg. Med. Chem. Lett.* 19, 6939–6942.
- Al-Said, M. S., Ghorab, M. M., Al-Dosari, M. S. & Hamed, M. M. (2011). Eur. J. Med. Chem. 46, 201–207.
- Aydin, F., Safak, C., Simşek, R., Erol, K., Ulgen, M. & Linden, A. (2006). *Pharmazie*, **61**, 655–659.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). *J. Appl. Cryst.* **42**, 339–341.
- Gunduz, M. G., Celebi, S., Kaygisiz, B., Simsek, R., Erol, K. & Safak, C. (2009). Lat. Am. J. Pharm. 28, 922–926.
- Joshi, V. M. & Pawar, R. P. (2013). Eur. Chem. Bull. 2, 679-682.
- Kalaria, P. N., Satasia, S. P. & Raval, D. K. (2014). *Eur. J. Med. Chem.* **78**, 207–216.
- Mohamed, S. K., Akkurt, M., Jasinski, J. P., Allah, O. A. A. & Albayati, M. R. (2015). Acta Cryst. E71, 0949–0950.

- Mohamed, N. A., Anwar, M. M., El-serwy, W. S. & Elsherbiny, M. (2012). *Pharma Chemica*, 4, 2055–2067.
- Muli, P. N., Chobe, S. S., Kamble, R. D., Hese, S. V., Mogle, P. P. & Dawane, B. S. (2014). World Journal of Pharmaceutical Research, 3, 728–735.
- Rigaku Oxford Diffraction (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
- Sashidhara, K. V., Modukuri, R. K., Choudhary, D., Bhaskara Rao, K., Kumar, M., Khedgikar, V. & Trivedi, R. (2013). Eur. J. Med. Chem. 70, 802–810.
- Shah, N. K., Shah, N. M., Patel, M. P. & Patel, R. G. (2012). J. Serb. Chem. Soc. 77, 279–286.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Simsek, R., Gunduz, M., Sırmagul, B., Safak, C., Erol, K. & Linden, A. (2006). Arzneim.-Forsch. Drug. Res. 56, 529–534.
- Yang, X. H., Zhang, P. H., Zhou, Y. H., Liu, C. G., Lin, X. Y. & Cui, J. F. (2011). Arkivoc, 10, 327–337.

full crystallographic data

IUCrData (2018). **3**, x180167 [https://doi.org/10.1107/S2414314618001670]

2-Amino-4-(4-methoxyphenyl)-1-(4-methylphenyl)-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carbonitrile

Asmaa H. A. Tamam, Manpreet Kaur, Mehmet Akkurt, Shaaban K. Mohamed, Jerry P. Jasinski and Faiq H. S. Hussain

2-Amino-4-(4-methoxyphenyl)-1-(4-methylphenyl)-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carbonitrile

Crystal data

C₂₄H₂₃N₃O₂ $M_r = 385.45$ Monoclinic, $P2_1/c$ a = 9.1066 (4) Å b = 19.6406 (9) Å c = 11.2901 (5) Å $\beta = 94.343$ (4)° V = 2013.54 (16) Å³ Z = 4

Data collection

Rigaku Oxford Diffraction [model name?] diffractometer
Radiation source: fine-focus sealed X-ray tube, Enhance (Cu) X-ray Source
Graphite monochromator
Detector resolution: 16.0416 pixels mm⁻¹
ω scans
Absorption correction: multi-scan (CrysAlis PRO; Rigaku Oxford Diffraction, 2015)

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.051$ $wR(F^2) = 0.149$ S = 1.053793 reflections 265 parameters 0 restraints F(000) = 816 $D_x = 1.272 \text{ Mg m}^{-3}$ Cu K\alpha radiation, \lambda = 1.54184 \mathbf{A} Cell parameters from 2845 reflections $\theta = 4.0-71.1^{\circ}$ $\mu = 0.66 \text{ mm}^{-1}$ T = 173 KIrregular, orange $0.38 \times 0.28 \times 0.22 \text{ mm}$

 $T_{\min} = 0.813, T_{\max} = 1.000$ 7397 measured reflections 3793 independent reflections 2933 reflections with $I > 2\sigma(I)$ $R_{int} = 0.023$ $\theta_{max} = 71.3^{\circ}, \theta_{min} = 4.5^{\circ}$ $h = -6 \rightarrow 11$ $k = -19 \rightarrow 23$ $l = -13 \rightarrow 13$

Primary atom site location: dual Hydrogen site location: mixed H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0752P)^2 + 0.4388P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.33$ e Å⁻³ $\Delta\rho_{min} = -0.25$ e Å⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.46137 (17)	0.69821 (8)	0.77151 (12)	0.0500 (4)	
O2	0.9254 (2)	0.90959 (8)	0.55490 (16)	0.0602 (4)	
N1	0.52568 (18)	0.59661 (9)	0.39959 (14)	0.0402 (4)	
N2	0.7293 (2)	0.52949 (10)	0.36461 (16)	0.0505 (5)	
H2A	0.7936	0.5051	0.4054	0.061*	
H2B	0.6629	0.5032	0.3309	0.061*	
N3	0.9846 (2)	0.54847 (10)	0.61603 (17)	0.0531 (5)	
C1	0.6661 (2)	0.57350 (9)	0.43835 (16)	0.0365 (4)	
C2	0.7304 (2)	0.59502 (9)	0.54430 (16)	0.0344 (4)	
C3	0.6644 (2)	0.65027 (9)	0.61721 (15)	0.0338 (4)	
H3	0.6793	0.6369	0.7028	0.041*	
C4	0.5003 (2)	0.65333 (9)	0.58438 (16)	0.0358 (4)	
C5	0.4081 (2)	0.68142 (10)	0.67280 (18)	0.0410 (4)	
C6	0.2453 (2)	0.68749 (14)	0.6401 (2)	0.0557 (6)	
H6A	0.2061	0.7268	0.6825	0.067*	
H6B	0.1953	0.6460	0.6664	0.067*	
C7	0.2102 (2)	0.69671 (13)	0.5074 (2)	0.0557 (6)	
H7A	0.2479	0.7414	0.4826	0.067*	
H7B	0.1022	0.6962	0.4893	0.067*	
C8	0.2800 (2)	0.64023 (12)	0.43862 (19)	0.0482 (5)	
H8A	0.2273	0.5970	0.4506	0.058*	
H8B	0.2697	0.6511	0.3528	0.058*	
C9	0.4407 (2)	0.63125 (10)	0.47773 (17)	0.0381 (4)	
C10	0.7382 (2)	0.71933 (9)	0.60276 (15)	0.0334 (4)	
C11	0.7090 (2)	0.75732 (10)	0.49983 (16)	0.0421 (5)	
H11	0.6434	0.7399	0.4377	0.051*	
C12	0.7741 (3)	0.82000 (10)	0.48682 (18)	0.0472 (5)	
H12	0.7530	0.8454	0.4160	0.057*	
C13	0.8699 (2)	0.84605 (10)	0.57628 (19)	0.0439 (5)	
C14	0.9020 (2)	0.80888 (11)	0.67871 (19)	0.0465 (5)	
H14	0.9684	0.8262	0.7404	0.056*	
C15	0.8356 (2)	0.74549 (10)	0.69038 (17)	0.0415 (4)	
H15	0.8580	0.7197	0.7606	0.050*	
C16	0.4724 (2)	0.58466 (10)	0.27725 (16)	0.0377 (4)	
C17	0.4055 (2)	0.52317 (10)	0.24530 (18)	0.0440 (5)	
H17	0.3950	0.4888	0.3033	0.053*	
C18	0.3542 (3)	0.51228 (11)	0.1284 (2)	0.0493 (5)	
H18	0.3111	0.4696	0.1063	0.059*	
C19	0.3643 (2)	0.56241 (12)	0.04289 (18)	0.0465 (5)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

C20	0.4346 (2)	0.62267 (11)	0.07619 (19)	0.0471 (5)
H20	0.4450	0.6571	0.0183	0.057*
C21	0.4898 (2)	0.63388 (10)	0.19185 (19)	0.0442 (5)
H21	0.5395	0.6752	0.2126	0.053*
C22	1.0145 (3)	0.93964 (14)	0.6489 (3)	0.0714 (8)
H22A	1.0443	0.9853	0.6254	0.107*
H22B	1.1024	0.9116	0.6668	0.107*
H22C	0.9587	0.9428	0.7196	0.107*
C23	0.2984 (3)	0.55176 (15)	-0.0820(2)	0.0655 (7)
H23A	0.2000	0.5722	-0.0907	0.098*
H23B	0.2910	0.5029	-0.0988	0.098*
H23C	0.3612	0.5733	-0.1380	0.098*
C24	0.8710 (2)	0.56923 (9)	0.58305 (17)	0.0382 (4)

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0454 (8)	0.0660 (9)	0.0386 (7)	-0.0022 (7)	0.0023 (6)	-0.0111 (7)
O2	0.0724 (11)	0.0429 (8)	0.0654 (10)	-0.0117 (8)	0.0065 (8)	0.0014 (7)
N1	0.0349 (8)	0.0502 (9)	0.0343 (8)	0.0089 (7)	-0.0056 (6)	-0.0083 (7)
N2	0.0458 (10)	0.0572 (10)	0.0466 (10)	0.0162 (8)	-0.0088 (8)	-0.0144 (8)
N3	0.0421 (10)	0.0568 (11)	0.0581 (11)	0.0144 (9)	-0.0115 (8)	-0.0075 (9)
C1	0.0336 (10)	0.0381 (9)	0.0371 (9)	0.0060 (7)	-0.0013 (7)	-0.0007 (7)
C2	0.0316 (9)	0.0349 (9)	0.0357 (9)	0.0037 (7)	-0.0035 (7)	0.0014 (7)
C3	0.0336 (9)	0.0382 (9)	0.0286 (8)	0.0025 (7)	-0.0034 (7)	0.0000 (7)
C4	0.0303 (9)	0.0405 (9)	0.0360 (9)	0.0011 (7)	-0.0010 (7)	-0.0013 (7)
C5	0.0366 (10)	0.0455 (10)	0.0408 (10)	-0.0016 (8)	0.0022 (8)	-0.0026 (8)
C6	0.0351 (11)	0.0765 (15)	0.0558 (13)	0.0034 (10)	0.0059 (9)	-0.0201 (12)
C7	0.0354 (11)	0.0706 (15)	0.0597 (13)	0.0117 (10)	-0.0049 (10)	-0.0143 (11)
C8	0.0324 (10)	0.0657 (13)	0.0451 (11)	0.0077 (9)	-0.0068 (8)	-0.0106 (10)
C9	0.0320 (10)	0.0439 (10)	0.0378 (9)	0.0035 (8)	-0.0020 (7)	-0.0022 (8)
C10	0.0315 (9)	0.0371 (9)	0.0314 (8)	0.0043 (7)	0.0009 (7)	-0.0027 (7)
C11	0.0536 (12)	0.0398 (10)	0.0316 (9)	0.0038 (9)	-0.0060 (8)	-0.0026 (7)
C12	0.0633 (14)	0.0403 (10)	0.0375 (10)	0.0057 (9)	0.0010 (9)	0.0030 (8)
C13	0.0467 (11)	0.0379 (10)	0.0479 (11)	0.0001 (8)	0.0089 (9)	-0.0024 (8)
C14	0.0403 (11)	0.0545 (12)	0.0437 (11)	-0.0078 (9)	-0.0036 (9)	-0.0047 (9)
C15	0.0387 (10)	0.0493 (11)	0.0355 (9)	-0.0012 (8)	-0.0035 (8)	0.0043 (8)
C16	0.0336 (9)	0.0431 (10)	0.0357 (9)	0.0021 (8)	-0.0026 (7)	-0.0025 (7)
C17	0.0452 (11)	0.0409 (10)	0.0450 (11)	-0.0061 (8)	-0.0026 (9)	0.0063 (8)
C18	0.0514 (13)	0.0439 (11)	0.0513 (12)	-0.0087 (9)	-0.0038 (10)	-0.0053 (9)
C19	0.0422 (11)	0.0561 (12)	0.0406 (10)	0.0000 (9)	-0.0004 (9)	-0.0019 (9)
C20	0.0460 (12)	0.0511 (11)	0.0437 (11)	-0.0058 (9)	-0.0001 (9)	0.0095 (9)
C21	0.0439 (11)	0.0380 (10)	0.0494 (11)	-0.0071 (8)	-0.0043 (9)	0.0018 (8)
C22	0.0638 (17)	0.0592 (15)	0.090 (2)	-0.0223 (13)	-0.0006 (14)	-0.0020 (14)
C23	0.0625 (16)	0.0885 (18)	0.0436 (12)	-0.0079 (14)	-0.0076 (11)	-0.0030 (12)
C24	0.0376 (11)	0.0369 (9)	0.0390 (9)	0.0016 (8)	-0.0041 (8)	-0.0028 (7)

Geometric parameters (Å, °)

O1—C5	1.227 (2)	C10—C11	1.390 (3)
O2—C13	1.375 (2)	C10—C15	1.377 (3)
O2—C22	1.416 (3)	C11—H11	0.9500
N1—C1	1.396 (2)	C11—C12	1.379 (3)
N1—C9	1.394 (2)	C12—H12	0.9500
N1—C16	1.448 (2)	C12—C13	1.382 (3)
N2—H2A	0.8618	C13—C14	1.380 (3)
N2—H2B	0.8621	C14—H14	0.9500
N2—C1	1.358 (2)	C14—C15	1.395 (3)
N3—C24	1.148 (3)	C15—H15	0.9500
C1—C2	1.359 (3)	C16—C17	1.388 (3)
C2—C3	1.514 (2)	C16—C21	1.383 (3)
C2—C24	1.414 (3)	C17—H17	0.9500
С3—Н3	1.0000	C17—C18	1.383 (3)
C3—C4	1.513 (3)	C18—H18	0.9500
C3—C10	1.528 (3)	C18—C19	1.387 (3)
C4—C5	1.461 (3)	C19—C20	1.384 (3)
C4—C9	1.354 (3)	C19—C23	1.505 (3)
C5—C6	1.505 (3)	C20—H20	0.9500
С6—Н6А	0.9900	C20—C21	1.381 (3)
С6—Н6В	0.9900	C21—H21	0.9500
C6—C7	1.518 (3)	C22—H22A	0.9800
С7—Н7А	0.9900	C22—H22B	0.9800
С7—Н7В	0.9900	C22—H22C	0.9800
C7—C8	1.521 (3)	C23—H23A	0.9800
C8—H8A	0.9900	C23—H23B	0.9800
C8—H8B	0.9900	C23—H23C	0.9800
C8—C9	1.507 (3)		
C13—O2—C22	116.38 (19)	C15—C10—C11	118.20 (18)
C1—N1—C16	118.64 (15)	C10-C11-H11	119.6
C9—N1—C1	119.96 (15)	C12-C11-C10	120.78 (18)
C9—N1—C16	121.40 (15)	C12—C11—H11	119.6
H2A—N2—H2B	109.2	C11—C12—H12	119.8
C1—N2—H2A	109.2	C11—C12—C13	120.35 (19)
C1—N2—H2B	109.7	C13—C12—H12	119.8
N2—C1—N1	115.82 (16)	O2—C13—C12	115.33 (19)
N2—C1—C2	124.27 (17)	O2—C13—C14	124.8 (2)
C2-C1-N1	119.91 (17)	C14—C13—C12	119.91 (19)
C1—C2—C3	122.61 (16)	C13—C14—H14	120.5
C1—C2—C24	118.73 (17)	C13—C14—C15	119.03 (19)
C24—C2—C3	118.42 (15)	C15—C14—H14	120.5
С2—С3—Н3	107.9	C10—C15—C14	121.71 (18)
C2—C3—C10	112.45 (15)	C10—C15—H15	119.1
C4—C3—C2	108.71 (15)	C14—C15—H15	119.1
С4—С3—Н3	107.9	C17—C16—N1	119.85 (18)

C4—C3—C10	111.90 (15)	C21—C16—N1	120.25 (18)
С10—С3—Н3	107.9	C21—C16—C17	119.89 (18)
C5—C4—C3	117.12 (16)	C16—C17—H17	120.2
C9—C4—C3	121.81 (17)	C18—C17—C16	119.51 (19)
C9—C4—C5	121.07 (18)	C18—C17—H17	120.2
O1—C5—C4	120.93 (18)	C17—C18—H18	119.4
O1—C5—C6	121.09 (19)	C17—C18—C19	121.27 (19)
C4—C5—C6	117.97 (17)	C19—C18—H18	119.4
С5—С6—Н6А	109.1	C18—C19—C23	120.7 (2)
С5—С6—Н6В	109.1	C20-C19-C18	118.15 (19)
C5—C6—C7	112.41 (19)	C20—C19—C23	121.1 (2)
H6A—C6—H6B	107.9	С19—С20—Н20	119.3
С7—С6—Н6А	109.1	C21—C20—C19	121.40 (19)
С7—С6—Н6В	109.1	С21—С20—Н20	119.3
С6—С7—Н7А	109.5	C16—C21—H21	120.2
С6—С7—Н7В	109.5	C20—C21—C16	119.67 (18)
C6—C7—C8	110.6 (2)	C20—C21—H21	120.2
H7A—C7—H7B	108.1	O2—C22—H22A	109.5
С8—С7—Н7А	109.5	O2—C22—H22B	109.5
С8—С7—Н7В	109.5	O2—C22—H22C	109.5
С7—С8—Н8А	109.3	H22A—C22—H22B	109.5
С7—С8—Н8В	109.3	H22A—C22—H22C	109.5
H8A—C8—H8B	107.9	H22B—C22—H22C	109.5
C9—C8—C7	111.70 (17)	С19—С23—Н23А	109.5
С9—С8—Н8А	109.3	С19—С23—Н23В	109.5
С9—С8—Н8В	109.3	С19—С23—Н23С	109.5
N1—C9—C8	116.42 (16)	H23A—C23—H23B	109.5
C4—C9—N1	120.99 (17)	H23A—C23—H23C	109.5
C4—C9—C8	122.56 (18)	H23B—C23—H23C	109.5
C11—C10—C3	120.53 (16)	N3—C24—C2	179.1 (2)
C15—C10—C3	121.27 (16)		

Hydrogen-bond geometry (Å, °)

Cg3 and Cg4 are the centroids of the C10–C15 and C16–C21 benzene rings, respectively.

D—H···A	D—H	H···A	$D \cdots A$	D—H···A
N2—H2A····N3 ⁱ	0.86	2.31	3.016 (3)	140
С11—Н11…О1іі	0.95	2.70	3.408 (2)	132
C21—H21…O1 ⁱⁱ	0.95	2.68	3.433 (3)	136
C22—H22 <i>C</i> ···N3 ⁱⁱⁱ	0.98	2.81	3.407 (4)	120
C23—H23 <i>B</i> ····O2 ^{iv}	0.98	2.76	3.484 (3)	131
C21—H21··· <i>Cg</i> 3 ^v	0.95	2.99	3.571 (2)	120
C22—H22 B ···Cg4 ^{vi}	0.98	2.92	3.695 (3)	137

Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) x, -y+3/2, z-1/2; (iii) -x+2, y+1/2, -z+3/2; (iv) -x+1, y-1/2, -z+1/2; (v) x, -y+1/2, z-3/2; (vi) x+1, -y+1/2, z-1/2.