

ISSN 2414-3146

Received 22 January 2018 Accepted 9 February 2018

Edited by M. Weil, Vienna University of Technology, Austria

Keywords: crystal structure; high-pressure sintering; Co_2AI_5 structure type; ternary system AI-Ni-Fe; intermetallics.

CCDC reference: 1823108

Structural data: full structural data are available from iucrdata.iucr.org

data reports

$Al_{10}Ni_3Fe_{0.83}$, an Fe-depleted phase in the Al-Ni-Fe system

Sai Wang, Cong Liu and Changzeng Fan*

State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, People's Republic of China. *Correspondence e-mail: chzfan@ysu.edu.cn

Crystals of the phase $Al_{10}Ni_3Fe_{0.83}$ (decaaluminium trinickel iron) were obtained by high-pressure sintering (HPS) of a stoichiometric mixture with nominal composition $Al_{71}Ni_{24}Fe_5$. $Al_{10}Ni_3Fe_{0.83}$ adopts the Co₂Al₅ structure type in the space group type $P6_3/mmc$ with the unique Fe site on site 2*c* partially occupied (occupancy 0.83).

Structure description

The second natural quasicrystal named decagonite has the composition $Al_{70.2}Ni_{24.5}Fe_{5.3}$ (Bindi *et al.*, 2015), which is very similar to the synthetic phase $Al_{71}Ni_{24}Fe_5$ (Lemmerz *et al.*, 1994). While simulating the growth mechanism of decagonite under high-pressure and high-temperature conditions (HPHT) by the high-pressure sintering (HPS) process, we obtained another phase in the ternary system Al–Ni–Fe (Raghavan, 2010) with composition $Al_{10}Ni_3Fe_{0.83}$. The occurrence of a phase with composition $Al_{10}Ni_3Fe$ has been reported by Khaidar *et al.* (1982) but it was never observed by other teams afterwards, although the existence of a decagonal phase with composition close to this phase was in argument (Zhang *et al.*, 2008). On the other hand, its Fe-rich counterpart $Al_{10}Fe_3Ni$ was frequently observed, and its crystal structure has also been determined (Chumak *et al.*, 2007).

The new phase Al₁₀Ni₃Fe_{0.83} adopts the Al₅Co₂ structure type (Bradley & Cheng, 1938; Newkirk *et al.*, 1961) in space group type $P6_3/mmc$ with the two Co sites replaced by Ni and Fe, respectively. This structure type can be derived from a distorted closed-packed arrangement of metal atoms (Wells, 1975). The lattice parameters of Al₁₀Ni₃Fe_{0.83} (Table 1) are similar to those of Al₁₀Fe₃Ni (Chumak *et al.*, 2007). The asymmetric unit of Al₁₀Ni₃Fe_{0.83} comprises of five sites, three fully occupied by Al atoms at Wyckoff sites 2*a* (Al3), 6*h* (Al5) and 12*k* (Al4), one fully occupied by Ni atoms (6*h*; Ni1) and one partially occupied (occupancy 0.83) by Fe atoms (2*c*; Fe1). Both the Al3 atom at the 2*a* position

Figure 1

The crystal structure of $Al_{10}Ni_3Fe_{0.83}$ with two Al3 atoms on the 2*a* site and two Ni1 atoms on the 6h site displayed with their coordination environments as polyhedra.

and the Ni1 atom at the 6h position are surrounded by twelve atoms in the form of a distorted icosahedron (Fig. 1). Al3 is bound to six Ni3 and six Al4 atoms (Fig. 2a); Ni1 is bound to two Al3, six Al4, two Al5 and two Ni1 atoms (Fig. 2b). The Fe2 atom is surrounded by nine Al atoms (six Al4 and three Al5), forming an irregular polyhedron as shown in Fig. 3.

Synthesis and crystallization

Pure aluminium powder (indicated purity 99.8%), nickel powder (indicated purity 99.95%) and iron powder (indicated purity 99.9%) were mixed according to the atomic ratio 71: 24: 5. The detailed description of the employed HPS process can be found elsewhere (Liu & Fan, 2018). In the current work, the prepared cylindrical block mixture was pressurized up to 5 GPa and heated to 1473 K for 30 min, cooled to 1073 K, held at that temperature for 1 h, and then was rapidly cooled down to room temperature. A fragment was selected and mounted on a glass fiber for single-crystal X-ray diffraction measurements.

Figure 2

(a) The coordination sphere of the Al3 atom at the 2a site; (b) the coordination sphere of the Ni1 atom at the 6h site. Displacement ellipsoids are drawn at the 99.8% probability level. [Symmetry codes: (i) -y + 1, x - y, z; (ii) $x, y, -z + \frac{1}{2};$ (iii) $-x, -y, z + \frac{1}{2};$ (iv) $y, -x + y, z - \frac{1}{2};$ (v) x - y, x, -z + 1; (vi) y, -x + y, -z + 1; (vii) $x - y, x, z - \frac{1}{2}$; (viii) -x + y, -x, z; (ix) -y, x - y, z; (xvi) -x, -y, -z; (xvii) $y, -x + y, -\bar{z};$ (xviii) x - y, $x, -z; (xix) - x + y, -x, -z + \frac{1}{2}; (xx) - x, -y, z - \frac{1}{2}; (xxi) - y, x - y, -z + \frac{1}{2}.$

$Al_{10}Ni_{3}Fe_{0.83}$
492.52
Hexagonal, P63/mmc
293
7.6981 (2), 7.6231 (2)
391.23 (2)
2
Cu Ka
30.59
$0.09\times0.09\times0.06$
Bruker D8 Venture Photon 100 CMOS
Multi-scan (SADABS; Bruker, 2015)
0.104, 0.170
5095, 178, 177
0.035
0.624
0.029, 0.090, 1.09
178
21
0.53, -0.42

Computer programs: APEX3 and SAINT (Bruker, 2015), SHELXT (Sheldrick, 2015a), SHELXL2014 (Sheldrick, 2015b), DIAMOND (Brandenburg & Putz, 2017) and publCIF (Westrip, 2010).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1. Although iron and nickel atoms have very similar scattering factors and thus cannot be distinguished unambiguously in an X-ray diffraction study, the best model was obtained for the Ni atoms occupying the 6h site and the Fe atoms the 2c site. Free refinement of the occupation factors revealed the Ni site to be fully occupied and the Fe site to have a partial occupancy of 0.834 (11). The refined composition of Al₁₀Ni₃Fe_{0.83} is in agreement with the results of energy dispersive X-ray spectroscopy (EDS) analysis (see Supporting information).

Figure 3

(a) The coordination polyhedron of the Fe1 atom at the 2c site; (b) the coordination sphere of the Fe1 atom showing all atoms as displacement ellipsoids at 99.8% probability level. [Symmetry codes: (i) -y + 1, x - y, z; (vi) y, -x + y, -z + 1; (x) $-y + 1, x - y, -z + \frac{3}{2}$; (xi) -x + y + 1, -x + 1, $-z + \frac{3}{2}$; (xii) x, y, $-z + \frac{3}{2}$; (xiii) -x + y + 1, -x + 1, z; (xiv) x - y + 1, x, -z + 1; (xv) -x + 1, -y + 1, -z + 1.]

Acknowledgements

We greatly acknowledge financial support from the Hebei Province Youth Top-notch Talent Program (2013–2018).

References

- Bindi, L., Yao, N., Lin, C., Hollister, L. S., Andronicos, C. L., Distler, V. V., Eddy, M., Kostin, A., Kryachko, V., MacPherson, G. J., Steinhardt, W. M., Yudovskaya, M. & Steinhardt, P. J. (2015). Am. Mineral. 100, 2340–2343.
- Bradley, A. J. & Cheng, C. S. (1938). Z. Kristallogr. 99, 480-487.
- Brandenburg, K. & Putz, H. (2017). *DIAMOND*. Crystal Impact GbR, Bonn, Germany.
- Bruker (2015). *APEX3*, *SAINT* and *SADABS*. Bruker AXS Inc. Madison, Wisconsin, USA, 2008.

- Chumak, I., Richter, K. W. & Ipser, H. (2007). Intermetallics, 15, 1416–1424.
- Khaidar, M., Allibert, C. H. & Driole, J. (1982). Z. Metallkd. 73, 433–438.
- Lemmerz, U., Grushko, B., Freiburg, C. & Jansen, M. (1994). Philos. Mag. Lett. 69, 141–146.
- Liu, C. & Fan, C. (2018). IUCrData, 3, x180093.
- Newkirk, J. B., Black, P. J. & Damjanovic, A. (1961). Acta Cryst. 14, 532–533.
- Raghavan, V. (2010). J. Phase Equilib. Diffus. 31, 455-458.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Wells, A. F. (1975). *Structural Inorganic Chemistry*, 4th ed., p. 1047. Oxford: Clarendon Press.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
- Zhang, L., Du, Y., Xu, H., Tang, C., Chen, H. & Zhang, W. (2008). J. Alloys Compd. 454, 129–135.

full crystallographic data

IUCrData (2018). **3**, x180237 [https://doi.org/10.1107/S2414314618002377]

Al₁₀Ni₃Fe_{0.83}, an Fe-depleted phase in the Al–Ni–Fe system

Sai Wang, Cong Liu and Changzeng Fan

Decaaluminium trinickel iron

Crystal data	
Al ₁₀ Ni ₃ Fe _{0.83} $M_r = 492.52$ Hexagonal, $P6_3/mmc$ a = 7.6981 (2) Å c = 7.6231 (2) Å V = 391.23 (2) Å ³ Z = 2 F(000) = 471	$D_x = 4.181 \text{ Mg m}^{-3}$ Cu $K\alpha$ radiation, $\lambda = 1.54178 \text{ Å}$ Cell parameters from 3731 reflections $\theta = 5.8-74.2^{\circ}$ $\mu = 30.59 \text{ mm}^{-1}$ T = 293 K Grain, metallic $0.09 \times 0.09 \times 0.06 \text{ mm}$
Data collection	
Bruker APEXII Photon 100 CMOS diffractometer Phi and ω scans Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2015) $T_{\min} = 0.104, T_{\max} = 0.170$ 5095 measured reflections <i>Refinement</i>	178 independent reflections 177 reflections with $I > 2\sigma(I)$ $R_{int} = 0.035$ $\theta_{max} = 74.2^{\circ}, \ \theta_{min} = 6.6^{\circ}$ $h = -9 \rightarrow 9$ $k = -9 \rightarrow 9$ $l = -9 \rightarrow 9$
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.029$ $wR(F^2) = 0.090$ S = 1.09 178 reflections 21 parameters 0 restraints	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.046P)^{2} + 2.8861P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.53 \text{ e} \text{ Å}^{-3}$ $\Delta\rho_{min} = -0.41 \text{ e} \text{ Å}^{-3}$ Extinction correction: SHELXL2014 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc^{2}\lambda^{3}/\sin(2\theta)]^{-1/4} Extinction coefficient: 0.0025 (7)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Ni1	0.25269 (18)	0.12635 (9)	0.250000	0.0105 (5)	

Fe2	0.666667	0.333333	0.750000	0.0158 (10)	0.834 (11)
A13	0.000000	0.000000	0.000000	0.0125 (9)	
Al4	0.3919 (3)	0.19597 (13)	0.5598 (2)	0.0155 (6)	
A15	0.53478 (17)	0.46522 (17)	0.250000	0.0160 (7)	

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U^{33}	U^{12}	U^{13}	U^{23}
Ni1	0.0074 (7)	0.0102 (7)	0.0129 (8)	0.0037 (4)	0.000	0.000
Fe2	0.0147 (12)	0.0147 (12)	0.0181 (15)	0.0073 (6)	0.000	0.000
Al3	0.0114 (11)	0.0114 (11)	0.0148 (18)	0.0057 (6)	0.000	0.000
Al4	0.0155 (9)	0.0140 (7)	0.0177 (9)	0.0077 (4)	-0.0016 (6)	-0.0008 (3)
A15	0.0129 (9)	0.0129 (9)	0.0205 (13)	0.0052 (9)	0.000	0.000

Geometric parameters (Å, °)

Ni1—Al5	2.4199 (10)	Al3—Al4 ^{xix}	2.6525 (17)
Ni1—Al5 ⁱ	2.4199 (10)	Al3—Al4 ^{vii}	2.6525 (17)
Ni1—Al4	2.5374 (18)	Al3—Al4 ^{xx}	2.6525 (17)
Ni1—Al4 ⁱⁱ	2.5374 (18)	Al3—Al4 ⁱⁱ	2.6525 (17)
Ni1—Al3	2.5436 (8)	Al3—Al4 ^{iv}	2.6525 (17)
Ni1—Al3 ⁱⁱⁱ	2.5436 (8)	Al3—Al4 ^{xxi}	2.6525 (17)
Ni1—Al4 ^{iv}	2.7141 (15)	Al4—Al3 ⁱⁱⁱ	2.6525 (17)
Ni1—Al4 ^v	2.7141 (15)	Al4—Ni1 ^{vi}	2.7141 (15)
Ni1—Al4 ^{vi}	2.7141 (15)	Al4—Ni1 ^v	2.7141 (15)
Ni1—Al4 ^{vii}	2.7141 (15)	Al4—Al4 ^{vi}	2.767 (2)
Ni1—Ni1 ^{viii}	2.918 (2)	Al4—Al4 ^v	2.7674 (19)
Ni1—Ni1 ^{ix}	2.918 (2)	Al4—Al5 ^{xv}	2.7842 (17)
Fe2—Al4 ^x	2.3360 (17)	Al4—Al5 ^{vi}	2.7842 (17)
Fe2—Al4 ⁱ	2.3360 (17)	Al4—Al4 ^{xii}	2.900 (4)
Fe2—Al4	2.3360 (17)	Al4—Al5 ⁱ	2.9669 (16)
Fe2—Al4 ^{xi}	2.3360 (17)	Al4—Al5	2.9669 (16)
Fe2—Al4 ^{xii}	2.3360 (17)	Al5—Ni1 ^{xiii}	2.4199 (10)
Fe2—Al4 ^{xiii}	2.3360 (17)	Al5—Fe2 ^{xv}	2.686 (2)
Fe2—Al5 ^{vi}	2.686 (2)	Al5—Al4 ^{xv}	2.7842 (17)
Fe2—Al5 ^{xiv}	2.686 (2)	Al5—Al4 ^{vii}	2.7842 (17)
Fe2—Al5 ^{xv}	2.686 (2)	Al5—Al4 ^{xxii}	2.7842 (17)
Al3—Ni1 ^{xvi}	2.5436 (8)	Al5—Al4 ^v	2.7842 (17)
Al3—Ni1 ^{xvii}	2.5436 (8)	Al5—Al4 ^{xiii}	2.9669 (16)
Al3—Ni1 ^{ix}	2.5436 (8)	Al5—Al4 ⁱⁱ	2.9669 (16)
Al3—Ni1 ^{xviii}	2.5436 (8)	Al5—Al4 ^{xxiii}	2.9669 (16)
Al3—Ni1 ^{viii}	2.5436 (8)		
Al5—Ni1—Al5 ⁱ	78.00 (12)	Al4 ^{vii} —Al3—Al4 ⁱⁱ	62.89 (2)
Al5—Ni1—Al4	73.48 (4)	Al4 ^{xx} —Al3—Al4 ⁱⁱ	180.00 (9)
Al5 ⁱ —Ni1—Al4	73.48 (4)	Ni1 ^{xvi} —Al3—Al4 ^{iv}	117.06 (3)
Al5-Ni1-Al4 ⁱⁱ	73.48 (4)	Ni1—Al3—Al4 ^{iv}	62.94 (3)
Al5 ⁱ —Ni1—Al4 ⁱⁱ	73.48 (4)	Ni1 ^{xvii} —A13—A14 ^{iv}	58.42 (4)

Al4—Ni1—Al4 ⁱⁱ	137.08 (9)	Ni1 ^{ix} —Al3—Al4 ^{iv}	121.58 (4)
Al5—Ni1—Al3	120.98 (3)	Ni1 ^{xviii} —Al3—Al4 ^{iv}	117.06 (3)
Al5 ⁱ —Ni1—Al3	120.98 (3)	Ni1 ^{viii} —Al3—Al4 ^{iv}	62.94 (3)
Al4—Ni1—Al3	159.99 (6)	Al4 ^{xix} —Al3—Al4 ^{iv}	62.89 (2)
Al4 ⁱⁱ —Ni1—Al3	62.94 (4)	Al4 ^{vii} —Al3—Al4 ^{iv}	117.11 (2)
Al5—Ni1—Al3 ⁱⁱⁱ	120.98 (3)	Al4 ^{xx} —Al3—Al4 ^{iv}	117.11 (2)
Al5 ⁱ —Ni1—Al3 ⁱⁱⁱ	120.98 (3)	Al4 ⁱⁱ —Al3—Al4 ^{iv}	62.89 (2)
Al4—Ni1—Al3 ⁱⁱⁱ	62.94 (4)	Ni1 ^{xvi} —Al3—Al4 ^{xxi}	62.94 (3)
Al4 ⁱⁱ —Ni1—Al3 ⁱⁱⁱ	159.99 (6)	Ni1—Al3—Al4 ^{xxi}	117.06 (3)
Al3—Ni1—Al3 ⁱⁱⁱ	97.05 (4)	Ni1 ^{xvii} —Al3—Al4 ^{xxi}	121.58 (4)
Al5—Ni1—Al4 ^{iv}	129.27 (6)	Ni1 ^{ix} —Al3—Al4 ^{xxi}	58.42 (4)
Al5 ⁱ —Ni1—Al4 ^{iv}	65.39 (5)	Ni1 ^{xviii} —Al3—Al4 ^{xxi}	62.94 (3)
Al4—Ni1—Al4 ^{iv}	123.24 (4)	Ni1 ^{viii} —Al3—Al4 ^{xxi}	117.06 (3)
Al4 ⁱⁱ —Ni1—Al4 ^{iv}	63.50 (3)	Al4 ^{xix} —Al3—Al4 ^{xxi}	117.11 (2)
Al3—Ni1—Al4 ^{iv}	60.49 (4)	Al4 ^{vii} —Al3—Al4 ^{xxi}	62.89 (2)
Al3 ⁱⁱⁱ —Ni1—Al4 ^{iv}	107.94 (4)	$A14^{xx}$ $A13$ $A14^{xxi}$	62.89 (2)
A15—Ni1—A14 ^v	65.39 (5)	A14 ⁱⁱ —A13—A14 ^{xxi}	117.11 (2)
$A15^{i}$ Ni1 $A14^{v}$	129 27 (6)	$A14^{iv}$ $A13$ $A14^{xxi}$	180.00(4)
$A14$ —Ni1— $A14^{v}$	63 50 (3)	Fe^2 —Al4—Nil	149 83 (8)
$A 14^{ii}$ Ni1 $A 14^{v}$	123 24 (4)	$Fe2 = A14 = A13^{iii}$	151.52(8)
$A13 - Ni1 - A14^{v}$	125.24(4) 107 94 (4)	$Ni1 - A14 - A13^{iii}$	58 65 (5)
$A 13^{iii} Ni 1 A 14^{v}$	60 49 (4)	$Fe2 = A14 = Ni1^{vi}$	100 36 (6)
$\Delta 1/4 iv Ni 1 = \Delta 1/4 v$	163 98 (7)	$Ni1__\Delta 14__Ni1^{vi}$	104.98 (6)
$\mathbf{A15} \mathbf{N51} \mathbf{A14}^{\mathrm{vi}}$	105.96(7) 120.27(6)	$A13^{iii} A14 Ni1^{vi}$	104.98 (0) 56 57 (4)
$A15^{i} Ni1 A14^{vi}$	129.27(0)	$F_{e2} = \Lambda 1/4 = N 1/4$	100.36(6)
AIJ - NiI - AI4	63.59(3)	$\frac{1}{2} - \frac{1}{4} - \frac{1}{1}$	100.30 (0)
$\Delta 1/i^{ii} Ni1 \Delta 1/i^{vi}$	123 24 (4)		104.98 (0) 56 57 (4)
$A14 - N11 - A14$ $A13 - N11 - A14^{vi}$	123.24(4) 107.04(4)	$\frac{AI3}{AI4} = \frac{AI4}{AI4} = $	50.57 (4) 65.03 (6)
A13 = 111 = A14 $A13 = 111 = A14 vi$	107.94(4)	$\mathbf{F}_{2} = \mathbf{A} 1 4 - \mathbf{A} 1 4 \mathbf{y} \mathbf{i}$	125.07(4)
AI3 - INII - AI4	64.50(7)	$\mathbf{F} = \mathbf{C} - \mathbf{A} \mathbf{I} 4 - \mathbf{A} \mathbf{I} 4 \mathbf{v} \mathbf{i}$	123.07(4)
A14 - N11 - A14	(112, 07, (7))	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	59.556(11)
AI4 - INII - AI4	112.97(7)	AI3 - AI4 - AI4 $Ni 1 vi = A 14 - A 14 vi$	55 14 (4)
A15i Ni1 A14vii	120.27(6)	$\frac{1}{1} \frac{1}{1} \frac{1}$	33.14(4)
AI3 - NI1 - AI4''	129.27(0)	$\mathbf{N}\mathbf{I}\mathbf{I}^{-}-\mathbf{A}\mathbf{I}4^{-}-\mathbf{A}\mathbf{I}4^{+}$	107.91(3)
$A14 - N11 - A14^{11}$	123.24(4)	$\mathbf{Fe}_{2} = \mathbf{A}_{14} = \mathbf{A}_{14}^{T}$	125.07(4)
$A14^{}N11^{}A14^{+}$	03.30(3)	$\mathbf{N11} \longrightarrow \mathbf{A14} \longrightarrow \mathbf{A14}^{\prime}$	01.30(0)
$A13 - N11 - A14^{11}$	60.49 (4) 107.04 (4)	$AI3^{m} - AI4 - AI4^{v}$	58.556 (11)
$A13^{III} - N11 - A14^{III}$	107.94 (4)	$N11^{\circ} - A14 - A14^{\circ}$	107.91 (5)
$Al4^{v}$ $Nl1$ $Al4^{vl}$	112.9/(/)	$N11^{\circ}$ $A14$ $A14^{\circ}$	55.14 (4)
$AI4^{v}$ NII $AI4^{vn}$	64.59(7)	$AI4^{v_1}$ $AI4$ $AI4^{v_1}$	109.71 (7)
	163.98 (7)	Fe2—Al4—Al5 ^{xv}	62.56 (5)
Al5—N11—N11 ^{vm}	171.00 (6)	N11—Al4—Al5 ^{xv}	123.29 (4)
$Al5^{1}$ $N1l$ $N1l^{Vin}$	111.00 (6)	Al3 ^m —Al4—Al5 ^{xv}	105.21 (5)
Al4—Ni1—Ni1 ^{vm}	108.47 (4)	$Ni1^{v_1}$ Al4 $Al5^{xv}$	106.58 (6)
Al4 ⁿ —Ni1—Ni1 ^{vm}	108.47 (4)	N11 ^v —Al4—Al5 ^{xv}	52.20 (4)
Al3—Ni1—Ni1 ^{viii}	55.001 (16)	Al4 ^{vi} —Al4—Al5 ^{xv}	159.64 (7)
Al3 ^m —Ni1—Ni1 ^{viii}	55.001 (16)	Al4v—Al4—Al5 ^{xv}	64.61 (6)
Al4 ^{iv} —Ni1—Ni1 ^{viii}	57.48 (3)	Fe2—Al4—Al5 ^{vi}	62.56 (5)
Al4v—Ni1—Ni1 ^{viii}	107.23 (4)	Ni1—Al4—Al5 ^{vi}	123.29 (4)

Al4 ^{vi} —Ni1—Ni1 ^{viii}	57.48 (3)	Al3 ⁱⁱⁱ —Al4—Al5 ^{vi}	105.21 (5)
Al4 ^{vii} —Ni1—Ni1 ^{viii}	107.23 (4)	Ni1 ^{vi} —Al4—Al5 ^{vi}	52.20 (4)
Al5—Ni1—Ni1 ^{ix}	111.00 (6)	Ni1 ^v —Al4—Al5 ^{vi}	106.58 (6)
Al5 ⁱ —Ni1—Ni1 ^{ix}	171.00 (6)	Al4 ^{vi} —Al4—Al5 ^{vi}	64.61 (6)
Al4—Ni1—Ni1 ^{ix}	108.47 (4)	Al4 ^v —Al4—Al5 ^{vi}	159.64 (7)
Al4 ⁱⁱ —Ni1—Ni1 ^{ix}	108.47 (4)	Al5 ^{xv} —Al4—Al5 ^{vi}	113.32 (8)
Al3—Ni1—Ni1 ^{ix}	55.001 (16)	Fe2—Al4—Al4 ^{xii}	51.63 (4)
Al3 ⁱⁱⁱ —Ni1—Ni1 ^{ix}	55.001 (16)	Ni1—Al4—Al4 ^{xii}	158.54 (5)
Al4 ^{iv} —Ni1—Ni1 ^{ix}	107.23 (4)	Al3 ⁱⁱⁱ —Al4—Al4 ^{xii}	99.89 (4)
Al4 ^v —Ni1—Ni1 ^{ix}	57.48 (3)	Ni1 ^{vi} —Al4—Al4 ^{xii}	57.71 (3)
Al4 ^{vi} —Ni1—Ni1 ^{ix}	107.23 (4)	Ni1 v —Al4—Al4 xii	57.71 (3)
Al4 ^{vii} —Ni1—Ni1 ^{ix}	57.48 (3)	$A14^{vi}$ $A14$ $A14^{xii}$	109.23 (7)
Ni1 ^{viii} —Ni1—Ni1 ^{ix}	60.0	$A14^{v}$ $A14$ $A14^{xii}$	109.23 (7)
$A14^{x}$ —Fe2—A14 ⁱ	76,74 (9)	$A15^{xv}$ $A14$ $A14^{xii}$	58.61 (4)
A14 ^x —Fe2—A14	133 84 (3)	$A15^{vi}$ $A14$ $A14^{xii}$	58 61 (4)
$A14^{i}$ Fe2 $A14$	85 53 (6)	Fe2—A14—A15 ⁱ	$104\ 03\ (5)$
$A14^{x}$ —Fe2—A14 ^{xi}	85 53 (6)	Ni1—A14—A15 ⁱ	51 44 (4)
$A 1 \Delta^{i}$ Fe2 $A 1 \Delta^{xi}$	13384(3)	$A13^{iii}$ $A14$ $A15^{i}$	100.34(5)
$A14 - Fe^2 - A14^{xi}$	133.84 (3)	$Ni1^{vi}$ $A14$ $A15^{i}$	100.94(5)
$\Delta 14^{x} - E_{e}^{2} - \Delta 14^{xii}$	85 53 (6)	$Ni1v \Delta 14 \Delta 15^{i}$	155 58 (7)
A14 - FC2 - A14	133.84(3)	$A14^{vi} A14 A15^{i}$	133.38(7)
$A14 \text{Fe} 2 A14^{\text{xii}}$	76 74 (9)	$A14^{\text{v}} A14 A15^{\text{i}}$	108 01 (9)
$A14 - C2 - A14$ $A14xi = Ee^2 - A14xii$	85 53 (6)	$A15^{XV} A14 A15^{i}$	100.01(9) 141.01(7)
$A_{14} = 102 = A_{14}$	133.84(3)	$A15^{vi} A14 A15^{i}$	141.91(7)
A14 - Fc2 - A14	155.64 (5) 85.52 (6)	A13 - A14 - A15 $A14xii = A14 - A15i$	33.33(3)
A14 - Fe2 - A14	85.55 (0) 85.53 (6)	$A14 - A14 - A15$ $E_{0}2 - A14 - A15$	142.74(3) 104.02(5)
$A14 - C2 - A14$ $A14xi = E_{0}2 - A14xiii$	76.74(0)	$\frac{1}{2} - \frac{1}{4} - \frac{1}{4} = \frac{1}{4}$	104.03(3)
$A14^{\text{H}}$ $Fe2$ $A14^{\text{H}}$	70.74(9)	$\begin{array}{ccc} \text{INII} & \text{AI4} & \text{AI5} \\ \text{A12iii} & \text{A14} & \text{A15} \end{array}$	31.44(4)
$A14^{x} = Fe2 = A15^{xi}$	155.64(5)	$AI3^{} AI4 - AI3$	100.34(3)
$A14^{i}$ E_{2} $A15^{i}$	00.920(15)	NII ^T —AI4—AI5	155.58 (7)
$A14 - Fe2 - A15^{**}$	66.920 (15)	$N11^{\circ} - A14 - A15$	111.02 (5)
$A14 - Fe2 - A15^{**}$	66.920 (15)	$AI4^{v}$ $AI4$ $AI5$	108.01 (9)
$AI4^{xi}$ Fe2— $AI5^{vi}$	141.63 (4)	AI4 ^v —AI4—AI5	57.97(7)
$AI4^{AII}$ —Fe2—AI5 ^{VI}	66.920 (15)		85.95 (3)
$A14^{xm}$ Fe2 $A15^{yn}$	141.63 (4)	AIS ^{VI} —AI4—AI5	141.91 (7)
$Al4^{x}$ —Fe2—Al5 ^{xiv}	66.920 (15)	$AI4^{xn}$ $AI4$ $AI5$	142.74 (3)
Al4 ¹ —Fe2—Al5 ^{xiv}	66.920 (15)	Al5 ¹ —Al4—Al5	61.77 (8)
Al4—Fe2—Al5 ^{xiv}	141.63 (4)	$N_1 l^{xm} - Al5 - N_1 l$	162.00 (12)
$Al4^{xi}$ —Fe2—Al5 ^{xiv}	66.920 (15)	Ni1 ^{xm} —Al5—Fe2 ^{xv}	99.00 (6)
$Al4^{xn}$ —Fe2—Al5 ^{xiv}	141.63 (4)	Ni1—A15—Fe2 ^{xv}	99.00 (6)
$Al4^{xin}$ —Fe2—Al5 ^{xiv}	66.920 (15)	Ni1 ^{xm} —Al5—Al4 ^{xv}	62.41 (4)
$Al5^{vi}$ —Fe2—Al5 ^{xiv}	120.0	Ni1—Al5—Al4 ^{xv}	131.46 (7)
$Al4^{x}$ —Fe2—Al5 ^{xv}	141.63 (4)	Fe2 ^{xv} —Al5—Al4 ^{xv}	50.52 (5)
Al4 ⁱ —Fe2—Al5 ^{xv}	141.63 (4)	Ni1 ^{xiii} —Al5—Al4 ^{vii}	131.46 (7)
Al4—Fe2—Al5 ^{xv}	66.920 (15)	Ni1—Al5—Al4 ^{vii}	62.41 (4)
$Al4^{xi}$ —Fe2—Al5 ^{xv}	66.920 (15)	Fe2 ^{xv} —Al5—Al4 ^{vii}	50.52 (5)
Al4 ^{xii} —Fe2—Al5 ^{xv}	66.920 (15)	Al4 ^{xv} —Al5—Al4 ^{vii}	101.04 (10)
$Al4^{xiii}$ —Fe2—Al5 ^{xv}	66.920 (15)	Ni1 ^{xiii} —Al5—Al4 ^{xxii}	62.41 (4)
Al5 ^{vi} —Fe2—Al5 ^{xv}	120.0	Ni1—Al5—Al4 ^{xxii}	131.46 (7)

$A15^{xiv}$ —Fe2—A15 ^{xv}	120.0	Fe2 ^{xv} —A15—A14 ^{xxii}	50.52 (5)
Ni1 ^{xvi} —Al3—Ni1	180.0	A14 ^{xv} —A15—A14 ^{xxii}	62.77 (7)
Ni1 ^{xvi} —Al3—Ni1 ^{xvii}	70.00 (3)	Al4 ^{vii} —Al5—Al4 ^{xxii}	69.46 (8)
Ni1—Al3—Ni1 ^{xvii}	110.00 (3)	Ni1 ^{xiii} —A15—A14 ^v	131.46 (7)
Ni1 ^{xvi} —Al3—Ni1 ^{ix}	110.00 (3)	Ni1—Al5—Al4 v	62.41 (4)
Ni1—Al3—Ni1 ^{ix}	70.00 (3)	$Fe2^{xv}$ —A15—A14 ^v	50.52 (5)
Ni1 ^{xvii} —Al3—Ni1 ^{ix}	180.00 (3)	$A14^{xv}$ — $A15$ — $A14^{v}$	69.46 (8)
Ni1 ^{xvi} —Al3—Ni1 ^{xviii}	70.00 (3)	A14 ^{vii} —A15—A14 ^v	62.77 (7)
Ni1—Al3—Ni1 ^{xviii}	110.00 (3)	Al4 ^{xxii} —Al5—Al4 ^v	101.04 (10)
Ni1 ^{xvii} —Al3—Ni1 ^{xviii}	70.00 (3)	Ni1 ^{xiii} —A15—A14 ^{xiii}	55.08 (3)
Ni1 ^{ix} —Al3—Ni1 ^{xviii}	110.00 (3)	Ni1—Al5—Al4 ^{xiii}	118.92 (5)
Ni1 ^{xvi} —Al3—Ni1 ^{viii}	110.00 (3)	Fe2 ^{xv} —Al5—Al4 ^{xiii}	106.50 (5)
Ni1—Al3—Ni1 ^{viii}	70.00 (3)	Al4 ^{xv} —Al5—Al4 ^{xiii}	57.42 (5)
Ni1 ^{xvii} —Al3—Ni1 ^{viii}	110.00 (3)	Al4 ^{vii} —Al5—Al4 ^{xiii}	154.12 (8)
Ni1 ^{ix} —Al3—Ni1 ^{viii}	70.00 (3)	Al4 ^{xxii} —Al5—Al4 ^{xiii}	106.89 (6)
Ni1 ^{xviii} —Al3—Ni1 ^{viii}	180.00 (5)	Al4v—Al5—Al4 ^{xiii}	94.05 (3)
Ni1 ^{xvi} —Al3—Al4 ^{xix}	62.94 (3)	Ni1 ^{xiii} —A15—A14 ⁱⁱ	118.92 (5)
Ni1—Al3—Al4 ^{xix}	117.06 (3)	Ni1—Al5—Al4 ⁱⁱ	55.08 (3)
Ni1 ^{xvii} —Al3—Al4 ^{xix}	62.94 (3)	Fe2 ^{xv} —Al5—Al4 ⁱⁱ	106.50 (5)
Ni1 ^{ix} —Al3—Al4 ^{xix}	117.06 (3)	Al4 ^{xv} —Al5—Al4 ⁱⁱ	154.12 (8)
Ni1 ^{xviii} —Al3—Al4 ^{xix}	121.58 (4)	Al4 ^{vii} —Al5—Al4 ⁱⁱ	57.42 (5)
Ni1 ^{viii} —Al3—Al4 ^{xix}	58.42 (4)	Al4 ^{xxii} —Al5—Al4 ⁱⁱ	94.05 (3)
Ni1 ^{xvi} —Al3—Al4 ^{vii}	117.06 (3)	Al4v—Al5—Al4 ⁱⁱ	106.89 (6)
Ni1—Al3—Al4 ^{vii}	62.94 (3)	Al4 ^{xiii} —Al5—Al4 ⁱⁱ	146.99 (10)
Ni1 ^{xvii} —Al3—Al4 ^{vii}	117.06 (3)	Ni1 ^{xiii} —A15—A14 ^{xxiii}	55.08 (3)
Ni1 ^{ix} —Al3—Al4 ^{vii}	62.94 (3)	Ni1—Al5—Al4 ^{xxiii}	118.92 (5)
Ni1 ^{xviii} —Al3—Al4 ^{vii}	58.42 (4)	Fe2 ^{xv} —Al5—Al4 ^{xxiii}	106.50 (5)
Ni1 ^{viii} —Al3—Al4 ^{vii}	121.58 (4)	Al4 ^{xv} —Al5—Al4 ^{xxiii}	106.89 (6)
Al4 ^{xix} —Al3—Al4 ^{vii}	180.00 (7)	Al4 ^{vii} —Al5—Al4 ^{xxiii}	94.05 (3)
Ni1 ^{xvi} —Al3—Al4 ^{xx}	58.42 (4)	Al4 ^{xxii} —Al5—Al4 ^{xxiii}	57.42 (5)
Ni1—Al3—Al4 ^{xx}	121.58 (4)	Al4v—Al5—Al4xxiii	154.12 (8)
Ni1 ^{xvii} —Al3—Al4 ^{xx}	117.06 (3)	Al4 ^{xiii} —Al5—Al4 ^{xxiii}	105.49 (6)
Ni1 ^{ix} —Al3—Al4 ^{xx}	62.94 (3)	Al4 ⁱⁱ —Al5—Al4 ^{xxiii}	64.63 (6)
Ni1 ^{xviii} —Al3—Al4 ^{xx}	117.06 (3)	Ni1 ^{xiii} —Al5—Al4	118.92 (5)
Ni1 ^{viii} —Al3—Al4 ^{xx}	62.94 (3)	Ni1—Al5—Al4	55.08 (3)
Al4 ^{xix} —Al3—Al4 ^{xx}	62.89 (2)	Fe2 ^{xv} —Al5—Al4	106.50 (5)
Al4 ^{vii} —Al3—Al4 ^{xx}	117.11 (2)	Al4 ^{xv} —Al5—Al4	94.05 (3)
Ni1 ^{xvi} —Al3—Al4 ⁱⁱ	121.58 (4)	Al4 ^{vii} —Al5—Al4	106.89 (6)
Ni1—Al3—Al4 ⁱⁱ	58.42 (4)	Al4 ^{xxii} —Al5—Al4	154.12 (8)
Ni1 ^{xvii} —Al3—Al4 ⁱⁱ	62.94 (3)	Al4 ^v —Al5—Al4	57.42 (5)
Ni1 ^{ix} —Al3—Al4 ⁱⁱ	117.06 (3)	Al4 ^{xiii} —Al5—Al4	64.63 (6)
Ni1 ^{xviii} —Al3—Al4 ⁱⁱ	62.94 (3)	Al4 ⁱⁱ —Al5—Al4	105.49 (6)
Ni1 ^{viii} —Al3—Al4 ⁱⁱ	117.06 (3)	Al4 ^{xxiii} —Al5—Al4	146.99 (10)
Al4 ^{xix} —Al3—Al4 ⁱⁱ	117.11 (2)		

Symmetry codes: (i) -y+1, x-y, z; (ii) x, y, -z+1/2; (iii) -x, -y, z+1/2; (iv) y, -x+y, z-1/2; (v) x-y, x, -z+1; (vi) y, -x+y, -z+1; (vii) x-y, x, z-1/2; (viii) -x+y, -x+y, -x+1/2; (iv) y, -x+y, -z+1; (vi) y, -x+y, -z+1; (vii) x-y, x, z-1/2; (viii) -x+y, -x+y, -x+1, -z+3/2; (iv) -x+y+1, -x+1, -z+3/2; (iv) -x+y+1, -x+1, -z+1; (iv) x-y+1, x-z+1; (iv) x-y+1, x, -z+1; (iv) -x+y, -z+1/2; (iv) -x+y, -z+1