ISSN 2414-3146

Received 30 January 2018
Accepted 23 February 2018

Edited by W. T. A. Harrison, University of Aberdeen, Scotland

Keywords: crystal structure; 2,2'-dithiobis(pyridine N-oxide); hydrogen peroxide; hydrogen bonding; co-crystal.

CCDC reference: 1825502

Structural data: full structural data are available from iucrdata.iucr.org

2,2'-Disulfanediylbis(pyridine N-oxide)-hydrogen peroxide (1/1)

Will Lynch* and Clifford W. Padgett

Georgia Southern University, 11935 Abercorn Street, Savannah, GA 31419, USA. *Correspondence e-mail: wlynch@georgiasouthern.edu

In the title co-crystal, $\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}_{2} \cdot \mathrm{H}_{2} \mathrm{O}_{2}$, both molecules are generated by crystallographic twofold symmetry; the dihedral angle between the pyridine rings is $101.16(9)^{\circ}$. In the crystal, the components are linked by $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds to generate [010] chains of alternating $2,2^{\prime}$-dithiobis(pyridine N -oxide) and hydrogen peroxide molecules. The structure was refined as a twocomponent inversion twin.

Chemical scheme

Structure description

The antifungal and antibacterial properties of the bispyrithione family have made the compound $2,2^{\prime}$-dithiobis(pyridine N-oxide) of interest for many years (O'Donnell et al., 2009; Paulus, 1993; Zhang et al., 2001). A number of reports on the improved synthesis of the dithiobis compound have also been reported (e.g. Li et al., 2012).

The title compound, $\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}_{2} \cdot \mathrm{H}_{2} \mathrm{O}_{2}$, is a co-crystal (Fig. 1) formed via a hydrogenbonding network interlinking the dithiobis(pyridine N-oxide) molecules with a $C_{2}^{2}(12)$ assembly. The hydrogen bond is formed between the peroxide OH moiety and the pyridine N-oxide O atom with $\mathrm{O} \cdots \mathrm{O}=2.672$ (3) \AA (Table 1). The hydrogen bonding network generates [010] chains (Fig. 2) of alternating dithiobis(pyridine N-oxide) and hydrogen peroxide molecules. The $\mathrm{O} 2-\mathrm{O} 2^{\mathrm{ii}}$ and $\mathrm{S} 1-\mathrm{S} 1^{\mathrm{i}}$ bond distances are 1.454 (4) and 2.067 (2) \AA, respectively [symmetry codes: (i) $1-\mathrm{x},-\mathrm{y}, z$; (ii) $1-\mathrm{x}, 1-\mathrm{y}, z$]. Both the hydrogen peroxide and the disulfide molecules are generated by crystallographic twofold symmetry. The torsion angle between the pyridine N-oxide rings is slightly greater than perpendicular at $101.16(9)^{\circ}$. The torsion angle $\mathrm{C} 1-\mathrm{S} 1-\mathrm{S} 1^{\mathrm{i}}-\mathrm{C1}^{\mathrm{i}}$ that bridges the pyridine rings is slighly less at $100.43(13)^{\circ}$.

The hydrogen peroxide $\mathrm{H} 2 A-\mathrm{O} 2-\mathrm{O} 2^{\mathrm{ii}}-\mathrm{H} 2 A^{\mathrm{ii}}$ torsion angle is equal to $133.86(7)^{\circ}$. Similar compounds have been observed to have this torsion angle much closer to 90°. For example the hydrogen peroxide torsion angle in the (Z) - N-benzylidene-1-phenyl-

Figure 1
A view of the molecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level. [Symmetry codes: (i) $-x+1,-y+1, z$; (ii) $1-x, 1-y, z$.]
methanamine oxide solvate is reported to be 88° (Churakov et al., 2017) while a piperizine N -oxide derivative (Ravikumar et al., 2005) is found to be 90°. Similar torsion angles of 101° and lower have been observed in phosphine oxide hydrogen peroxide adducts (see for example Ahn et al., 2015). This large angle can be attributed to the lowest energy confirmation imposed by the solid-state supramolecular structure where the $\mathrm{O} 1 \cdots \mathrm{O} 2-\mathrm{O} 2^{\mathrm{ii}} \cdots \mathrm{O} 1^{\mathrm{ii}}$ pseudo torsion angle (via the hydrogen bonds) is $140.06(6)^{\circ}$.

Synthesis and crystallization

The title compound was synthesized by modification of the literature procedure (Bernstein \& Losee, 1956): 2.0 g of 2-pyridinethiol- N -oxide was dissolved in 15 ml of water. To this was slowly added 1.9 ml of 30% hydrogen peroxide. The reaction mixture was stirred for 1 h and a white solid was collected by filtration. The white solid was determined to be 2,2'-dithiobis(pyridine N-oxide) as confirmed by ${ }^{1} \mathrm{H}$ NMR and

Figure 2
Crystal packing diagram of title compound viewed along [001]. Hydrogen bonds are colored red.

Table 1
Hydrogen-bond geometry (${ }^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 2-\mathrm{H} 2 A \cdots \mathrm{O} 1$	$0.95(3)$	$1.73(3)$	$2.672(3)$	$174(3)$

Table 2
Experimental details.

Crystal data	
Chemical formula	$\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}_{2} \cdot \mathrm{H}_{2} \mathrm{O}_{2}$
$M_{\text {r }}$	286.32
Crystal system, space group	Orthorhombic, $P 2_{1} 2_{1} 2$
Temperature (K)	173
$a, b, c(\AA)$	11.232 (2), 12.283 (3), 4.401 (1)
$V\left(\AA^{3}\right)$	607.2 (2)
Z	2
Radiation type	Mo $K \alpha$
$\mu\left(\mathrm{mm}^{-1}\right)$	0.45
Crystal size (mm)	$0.60 \times 0.10 \times 0.10$
Data collection	
Diffractometer	Rigaku XtaLAB mini CCD
Absorption correction	Multi-scan (REQAB; Rigaku, 1998)
$T_{\text {min }}, T_{\text {max }}$	0.890, 1.000
No. of measured, independent and observed $[I>2 \sigma(I)]$ reflections	6396, 1386, 1316
$R_{\text {int }}$	0.045
$(\sin \theta / \lambda)_{\text {max }}\left(\AA^{-1}\right)$	0.648
Refinement	
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$	0.024, 0.059, 1.05
No. of reflections	1386
No. of parameters	87
H -atom treatment	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$	$0.13,-0.18$
Absolute structure	Refined as an inversion twin
Absolute structure parameter	0.36 (10)

Computer programs: CrystalClear (Rigaku, 2009), SHELXT (Sheldrick, 2015a), SHELXL (Sheldrick, 2015b) and OLEX2 (Dolomanov et al., 2009).
melting point. The filtrate was allowed to stand for 4 days, at which time colorless prisms of the title compound were collected in a yield of 12%.

Refinement

Crystal data, data collection, and structure refinement details are summarized in Table 2. The structure was refined with inversion twinning as the Flack parameter indicated racemic twinning.

Funding information

The authors acknowledge financial support from Armstrong State University.

References

Ahn, S. H., Cluff, K. J., Bhuvanesh, N. \& Blümel, J. (2015). Angew. Chem. Int. Ed. 54, 13341-13345.
Bernstein, J. \& Losee, K. A. (1956). US2742476[P]: 1956-04-17.

Churakov, A. V., Prikhodchenko, P. V., Medvedev, A. G. \& Mikhaylov, A. A. (2017). Acta Cryst. E73, 1666-1669.
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. \& Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.
Li, S., Li, R. L., Zhang, Z., Zhu, K. \& Wang, G. (2012). Adv. Mater. Res. 554-556, 868-873.
O'Donnell, G., Poeschl, R., Zimhony, O., Gunaratnam, M., Moreira, J. B. C., Neidle, S., Evangelopoulos, D., Bhakta, S., Malkinson, J. P., Boshoff, H. I., Lenaerts, A. \& Gibbons, S. (2009). J. Nat. Prod. 72, 360-365.

Paulus, W. (1993). In Microbicides for the Protection of Materials: A Handbook. London: Chapman and Hall.
Ravikumar, K., Sridhar, B., Manjunatha, S. G. \& Thomas, S. (2005). Acta Cryst. E61, o2515-o2517.
Rigaku (1998). REQAB. Rigaku Corporation, Tokyo, Japan.
Rigaku (2009). CrystalClear. Rigaku Corporation, Tokyo, Japan.
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
Zhang, Y. P., Fan, L. Y. \& Tang, N. (2001). Inorg. Chem. 17, 427-429.

full crystallographic data

2,2'-Disulfanediylbis(pyridine N-oxide)-hydrogen peroxide (1/1)

Will Lynch and Clifford W. Padgett

2,2'-(Disulfanediyl)bis(pyridine N-oxide)-hydrogen peroxide (1/1)

Crystal data

$\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}_{2} \cdot \mathrm{H}_{2} \mathrm{O}_{2}$
$M_{r}=286.32$
Orthorhombic, $P 2_{1} 2_{1} 2$
$a=11.232$ (2) Å
$b=12.283$ (3) \AA
$c=4.401(1) \AA$
$V=607.2(2) \AA^{3}$
$Z=2$
$F(000)=296$

Data collection

Rigaku XtaLAB mini CCD
diffractometer
Radiation source: Sealed Tube
Graphite Monochromator monochromator
Detector resolution: 13.6612 pixels mm^{-1}
profile data from ω-scans
Absorption correction: multi-scan
(REQAB; Rigaku, 1998)
$T_{\min }=0.890, T_{\text {max }}=1.000$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.024$
$w R\left(F^{2}\right)=0.059$
$S=1.05$
1386 reflections
87 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refined as a two-component inversion twin. Carbon-bound H -atoms were placed in calculated positions (C $-\mathrm{H}=0.95 \AA$) and were included in the refinement in the riding model approximation, with $U_{\text {iso }}(\mathrm{H})$ set to $1.2 U_{\text {equiv }}(\mathrm{C})$.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\mathrm{iso}} * / U_{\mathrm{eq}}$
S1	$0.53255(4)$	$0.07871(4)$	$0.37729(11)$	$0.02740(14)$
O1	$0.56020(13)$	$0.28267(12)$	$0.5366(4)$	$0.0341(4)$
N1	$0.46320(15)$	$0.24721(13)$	$0.6798(4)$	$0.0262(4)$
C1	$0.43106(16)$	$0.14203(15)$	$0.6311(5)$	$0.0238(4)$
C2	$0.32900(17)$	$0.10057(17)$	$0.7678(5)$	$0.0285(4)$
H2	0.305069	0.029391	0.729631	0.034^{*}
C3	$0.2635(2)$	$0.16604(18)$	$0.9608(5)$	$0.0331(5)$
H3	0.195453	0.139037	1.054822	0.040^{*}
C4	$0.2999(2)$	$0.27245(19)$	$1.0134(5)$	$0.0352(5)$
H4	0.256619	0.316832	1.144195	0.042^{*}
C5	$0.40004(19)$	$0.31208(17)$	$0.8720(6)$	$0.0341(5)$
H5	0.424655	0.383244	0.907584	0.041^{*}
O2	$0.56329(15)$	$0.48760(13)$	$0.3328(5)$	$0.0470(5)$
H2A	$0.559(3)$	$0.417(2)$	$0.416(6)$	$0.067(9)^{*}$

Atomic displacement parameters (\AA^{2})

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	$0.0285(2)$	$0.0256(2)$	$0.0281(2)$	$0.00163(19)$	$0.0033(2)$	$0.0034(2)$
O1	$0.0291(8)$	$0.0270(8)$	$0.0460(9)$	$-0.0033(6)$	$0.0009(7)$	$0.0068(7)$
N1	$0.0260(8)$	$0.0239(8)$	$0.0286(8)$	$0.0002(7)$	$-0.0048(7)$	$0.0020(7)$
C1	$0.0246(9)$	$0.0228(9)$	$0.0241(9)$	$0.0013(7)$	$-0.0048(8)$	$0.0020(8)$
C2	$0.0276(10)$	$0.0289(10)$	$0.0290(10)$	$-0.0025(8)$	$-0.0022(8)$	$-0.0004(9)$
C3	$0.0279(10)$	$0.0403(13)$	$0.0310(12)$	$0.0019(9)$	$0.0013(9)$	$0.0000(9)$
C4	$0.0366(12)$	$0.0379(13)$	$0.0312(11)$	$0.0110(10)$	$-0.0020(9)$	$-0.0083(10)$
C5	$0.0401(11)$	$0.0253(10)$	$0.0369(11)$	$0.0033(8)$	$-0.0075(11)$	$-0.0054(10)$
O2	$0.0433(9)$	$0.0287(9)$	$0.0688(11)$	$0.0072(7)$	$0.0155(9)$	$0.0110(9)$

Geometric parameters (\AA, ${ }^{\circ}$)

$\mathrm{S} 1-\mathrm{C} 1$	$1.775(2)$	$\mathrm{C} 3-\mathrm{C} 4$	$1.389(4)$
$\mathrm{S} 1-\mathrm{S} 1^{\mathrm{i}}$	$2.067(2)$	$\mathrm{C} 3-\mathrm{H} 3$	0.9300
$\mathrm{O} 1-\mathrm{N} 1$	$1.332(2)$	$\mathrm{C} 4-\mathrm{C} 5$	$1.374(3)$
$\mathrm{N} 1-\mathrm{C} 1$	$1.358(3)$	$\mathrm{C} 4-\mathrm{H} 4$	0.9300
$\mathrm{~N} 1-\mathrm{C} 5$	$1.362(3)$	$\mathrm{C} 5-\mathrm{H} 5$	0.9300
$\mathrm{C} 1-\mathrm{C} 2$	$1.391(3)$	$\mathrm{O} 2-\mathrm{O} 2 \mathrm{ii}$	$1.454(4)$
$\mathrm{C} 2-\mathrm{C} 3$	$1.382(3)$	$\mathrm{O} 2-\mathrm{H} 2 \mathrm{~A}$	$0.95(3)$
$\mathrm{C} 2-\mathrm{H} 2$	0.9300		$119.5(2)$
		$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	120.2
$\mathrm{C} 1-\mathrm{S} 1-\mathrm{S} 1^{\mathrm{i}}$	$100.52(9)$	$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3$	120.2
$\mathrm{O} 1-\mathrm{N} 1-\mathrm{C} 1$	$117.00(16)$	$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3$	$119.9(2)$
$\mathrm{O} 1-\mathrm{N} 1-\mathrm{C} 5$	$121.92(17)$	$\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 3$	120.0
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 5$	$121.07(19)$	$\mathrm{C} 5-\mathrm{C} 4-\mathrm{H} 4$	120.0

$\mathrm{C} 2-\mathrm{C} 1-\mathrm{S} 1$	$129.85(16)$	$\mathrm{N} 1-\mathrm{C} 5-\mathrm{C} 4$	$120.0(2)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 1$	$119.5(2)$	$\mathrm{N} 1-\mathrm{C} 5-\mathrm{H} 5$	120.0
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2$	120.3	$\mathrm{C} 4-\mathrm{C} 5-\mathrm{H} 5$	120.0
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2$	120.3	$\mathrm{O} 2 \mathrm{C}-\mathrm{O} 2-\mathrm{H} 2 \mathrm{~A}$	$98.1(18)$

Symmetry codes: (i) $-x+1,-y, z$; (ii) $-x+1,-y+1, z$.
Hydrogen-bond geometry (A, ${ }^{\circ}$)

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 2-\mathrm{H} 2 A \cdots \mathrm{O} 1$	$0.95(3)$	$1.73(3)$	$2.672(3)$	$174(3)$

