

ISSN 2414-3146

Received 1 March 2018 Accepted 6 March 2018

Edited by J. Simpson, University of Otago, New Zealand

Keywords: crystal structure; platinum(II) complex; hydrogen bonding.

CCDC reference: 1827840

Structural data: full structural data are available from iucrdata.iucr.org

trans-(Aniline-κN)dichlorido(dimethyl sulfoxideκS)platinum(II)

Weirong Wang and Caixia Yuan*

Institute of Molecular Science, Shanxi University, Taiyuan, Shanxi, 030006, People's Republic of China. *Correspondence e-mail: cxyuan@sxu.edu.cn

In the title compound, $[PtCl_2(C_6H_7N)(C_2H_6OS)]$, the Pt^{II} ion has an approximately square-planar coordination environment. It binds to the N atom of the aniline ligand and is *trans* to the S atom of the dimethyl sulfoxide. The two Cl^- anions are also in *trans* positions. In the crystal, molecules are linked by N– $H\cdots O$, $C-H\cdots Cl$ and $C-H\cdots O$ hydrogen bonds.

Structure description

trans-Platinum(II) complexes attract great attention because such compounds display good cytotoxic activity and have been shown to be able to overcome cisplatin resistance (Sgarbossa *et al.*, 2013; Kalinowska-Lis *et al.*, 2008). It is therefore of interest to synthesize *trans* platinum(II) complexes with different structures.

In the title compound (Fig. 1), the platinum atom is in a slightly distorted square-planar coordination environment, which is defined by the N atom of the aniline ligand, the S atom of dimethyl sulfoxide and the two Cl⁻ anions that adopt a *trans* arrangement. A slight distortion from planarity is indicated with a dihedral angle of 4.39 (11)° between the Cl2–Pt1–S1 and Cl1–Pt1–N1 planes. The Pt1–N1, 2.081 (3) Å, Pt1–S1, 2.2206 (10) Å, and the two Pt–Cl bond distances Pt1–Cl1 2.2894 (11) Å, and 2.2933 (11) Å are normal and comparable to values reported for related Pt^{II} complexes in the literature (Francisco *et al.*, 2011; Rahman *et al.* 2015; Huo *et al.* 2011).

In the crystal, N1–H1B···O1 hydrogen bonds, Table 1, form inversion dimers and enclose $R_2^2(10)$ rings, Fig. 2. The molecules are further linked by N–H···Cl, C–H···Cl and C–H···O hydrogen bonds, generating a three-dimensional framework (Fig. 3).

Figure 1

A view of the title compound with 30% probability displacement ellipsoids.

Synthesis and crystallization

The complex *cis*-Pt(DMSO)₂Cl₂ (DMSO = dimethyl sulfoxide) was prepared by a reported method (Kukushkin *et al.*, 1968). A solution of aniline (0.1 mmol, 0.009 g) in methanol (10 ml) was added with stirring to a suspension of *cis*-Pt(DMSO)₂Cl₂ (0.1 mmol, 0.042 g) in methanol (10 ml). The solution was refluxed at 338 K with stirring for 2.5 h under a nitrogen atmosphere, cooled slowly and filtered. The filtrate was kept at room temperature and suitable crystals of the title compound were obtained over a period of two weeks.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

Acknowledgements

The authors acknowledge Shao-dong Li for help with the single-crystal X-ray diffraction data collection.

Figure 2

The $N-H\cdots O$ hydrogen-bonding interactions between the amine Hatom donors and dimethyl sulfoxide O-atom acceptors in the title compound.

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - H \cdot \cdot \cdot A$
$N1-H1A\cdots Cl2^{i}$	0.89	2.78	3.463 (3)	134
$N1-H1A\cdots Cl2^{ii}$	0.89	2.84	3.425 (3)	125
$N1-H1B\cdotsO1^{i}$	0.89	2.05	2.913 (4)	165
C8-H8A···O1 ⁱⁱⁱ	0.96	2.51	3.424 (6)	158
$C8-H8C\cdots Cl1^{iv}$	0.96	2.77	3.677 (6)	158

Symmetry codes: (i) $-x + 1, y, -z + \frac{1}{2}$; (ii) $x, -y + 1, z + \frac{1}{2}$; (iii) $-x + 1, y, -z - \frac{1}{2}$; (iv) $-x + \frac{1}{2}, -y + \frac{1}{2}, -z$.

Table 2Experimental details.

Crystal data	
Chemical formula	$[PtCl_2(C_6H_7N)(C_2H_6OS)]$
M _r	437.24
Crystal system, space group	Monoclinic, C2/c
Temperature (K)	296
a, b, c (Å)	15.1308 (7), 16.6636 (8), 10.0062 (5)
β (°)	100.379 (1)
$V(A^3)$	2481.6 (2)
Z	8
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	11.88
Crystal size (mm)	$0.30 \times 0.25 \times 0.25$
Data collection	
Diffractometer	Bruker APEXII CCD
Absorption correction	Multi-scan (<i>SADABS</i> ; Bruker, 2012)
T_{\min}, T_{\max}	0.040, 0.051
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	13004, 2181, 1967
R _{int}	0.036
$(\sin \theta/\lambda)_{\rm max}$ (Å ⁻¹)	0.595
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.019, 0.043, 1.09
No. of reflections	2181
No. of parameters	129
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({ m e} \ { m \AA}^{-3})$	0.41, -0.84

Computer programs: *APEX2* and *SAINT* (Bruker, 2012), *SHELXS97* and *SHELXTL* (Sheldrick, 2008), *SHELXL2016* (Sheldrick, 2015) and *publCIF* (Westrip, 2010).

Funding information

Funding for this research was provided by: National Natural Science Foundation of China (grant No. 21471092).

References

- Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Francisco, C., Gama, S., Mendes, F., Marques, F., dos Santos, I. C., Paulo, A., Santos, I., Coimbra, J., Gabano, E. & Ravera, M. (2011). *Dalton Trans.* 40, 5781–5792.

- Huo, J., Arulsamy, N. & Hoberg, J. O. (2011). Dalton Trans. 40, 7534–7540.
- Kalinowska-Lis, U., Ochocki, J. & Matlawska-Wasowska, K. (2008). Coord. Chem. Rev. 252, 1328–1345.
- Kukushkin, Y. N., Vyaz'menskii, Y. E., Zorina, L. I. & Pazukhina, Y. L. (1968). *Zh. Neorg. Khim.* 13, 1595–1599.
- Rahman, F., Ali, A., Guo, R., Zhang, Y., Wang, H., Li, Z. & Zhang, D. (2015). Dalton Trans. 44, 2166–2175.
- Sgarbossa, P., Sbovata, S. M., Bertani, R., Mozzon, M., Benetollo, F., Marzano, C., Gandin, V. & Michelin, R. A. (2013). *Inorg. Chem.* **52**, 5729–5741.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

full crystallographic data

IUCrData (2018). **3**, x180387 [https://doi.org/10.1107/S2414314618003875]

trans-(Aniline-*kN*)dichlorido(dimethyl sulfoxide-*kS*)platinum(II)

Weirong Wang and Caixia Yuan

trans-(Aniline-ĸN)dichlorido(dimethyl sulfoxide-ĸS)platinum(II)

Crystal data	
$[PtCl_{2}(C_{6}H_{7}N)(C_{2}H_{6}OS)]$ $M_{r} = 437.24$ Monoclinic, C2/c a = 15.1308 (7) Å b = 16.6636 (8) Å c = 10.0062 (5) Å $\beta = 100.379$ (1)° V = 2481.6 (2) Å ³ Z = 8	F(000) = 1632 $D_x = 2.341 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 5286 reflections $\theta = 2.4-27.3^{\circ}$ $\mu = 11.88 \text{ mm}^{-1}$ T = 296 K Block, colorless $0.30 \times 0.25 \times 0.25 \text{ mm}$
Data collection	
Bruker APEXII CCD diffractometer φ and ω scans Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2012) $T_{min} = 0.040, T_{max} = 0.051$ 13004 measured reflections	2181 independent reflections 1967 reflections with $I > 2\sigma(I)$ $R_{int} = 0.036$ $\theta_{max} = 25.0^{\circ}, \theta_{min} = 1.8^{\circ}$ $h = -17 \rightarrow 17$ $k = -19 \rightarrow 19$ $l = -11 \rightarrow 11$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.019$ $wR(F^2) = 0.043$ S = 1.09 2181 reflections 129 parameters 0 restraints	Hydrogen site location: mixed H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.020P)^2 + 0.8P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.41$ e Å ⁻³ $\Delta\rho_{min} = -0.84$ e Å ⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Pt1	0.39217 (2)	0.34146 (2)	0.14748 (2)	0.02771 (7)

Cl1	0.36154 (9)	0.21751 (7)	0.22668 (12)	0.0532 (3)
Cl2	0.41711 (8)	0.47049 (7)	0.08370 (11)	0.0452 (3)
S1	0.42812 (7)	0.29389 (7)	-0.04301 (10)	0.0355 (3)
O1	0.52497 (18)	0.2944 (2)	-0.0457 (3)	0.0470 (8)
N1	0.3694 (2)	0.3897 (2)	0.3300 (3)	0.0318 (8)
H1A	0.400822	0.434933	0.344778	0.038*
H1B	0.391932	0.355693	0.396038	0.038*
C1	0.2775 (2)	0.4074 (2)	0.3444 (4)	0.0283 (9)
C2	0.2311 (3)	0.4691 (3)	0.2705 (4)	0.0404 (10)
H2	0.257308	0.497612	0.207829	0.048*
C3	0.1460 (3)	0.4882 (3)	0.2904 (5)	0.0501 (12)
Н3	0.114762	0.530426	0.242771	0.060*
C4	0.1068 (3)	0.4437 (3)	0.3822 (5)	0.0543 (14)
H4	0.049190	0.456414	0.395805	0.065*
C5	0.1521 (3)	0.3820 (3)	0.4519 (5)	0.0508 (13)
Н5	0.125046	0.351931	0.511744	0.061*
C6	0.2378 (3)	0.3637 (3)	0.4343 (4)	0.0421 (11)
H6	0.269067	0.321907	0.483229	0.050*
C7	0.3881 (4)	0.1953 (3)	-0.0826 (5)	0.0609 (15)
H7A	0.417547	0.158835	-0.014625	0.091*
H7B	0.400683	0.180089	-0.169763	0.091*
H7C	0.324459	0.193677	-0.084796	0.091*
C8	0.3738 (4)	0.3477 (3)	-0.1877 (5)	0.0612 (16)
H8A	0.387880	0.323519	-0.268400	0.092*
H8B	0.394203	0.402408	-0.181841	0.092*
H8C	0.310016	0.346455	-0.191259	0.092*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Pt1	0.02819 (10)	0.02928 (11)	0.02603 (10)	-0.00066 (7)	0.00590 (6)	0.00100 (7)
Cl1	0.0786 (9)	0.0331 (6)	0.0493 (7)	-0.0117 (6)	0.0152 (6)	0.0038 (5)
Cl2	0.0558 (7)	0.0359 (6)	0.0468 (6)	-0.0025 (5)	0.0168 (5)	0.0111 (5)
S 1	0.0331 (6)	0.0451 (7)	0.0280 (5)	0.0024 (5)	0.0048 (4)	-0.0054 (5)
01	0.0327 (16)	0.071 (2)	0.0384 (17)	0.0042 (16)	0.0093 (13)	-0.0105 (16)
N1	0.0323 (18)	0.036 (2)	0.0274 (17)	-0.0041 (16)	0.0058 (14)	-0.0025 (16)
C1	0.031 (2)	0.027 (2)	0.028 (2)	-0.0034 (17)	0.0082 (17)	-0.0044 (17)
C2	0.042 (3)	0.030 (2)	0.051 (3)	-0.006 (2)	0.012 (2)	0.003 (2)
C3	0.042 (3)	0.041 (3)	0.068 (3)	0.010 (2)	0.010(2)	0.001 (3)
C4	0.042 (3)	0.058 (4)	0.067 (3)	-0.001 (3)	0.020 (3)	-0.010 (3)
C5	0.043 (3)	0.070 (4)	0.043 (3)	-0.014 (3)	0.018 (2)	0.004 (3)
C6	0.046 (3)	0.043 (3)	0.038 (3)	-0.002 (2)	0.009 (2)	0.006 (2)
C7	0.074 (4)	0.052 (3)	0.058 (3)	-0.008(3)	0.016 (3)	-0.025 (3)
C8	0.059 (3)	0.093 (5)	0.030 (3)	0.020 (3)	0.005 (2)	0.008 (3)

Geometric parameters (Å, °)

Pt1—N1	2.081 (3)	C3—C4	1.393 (7)
Pt1—S1	2.2206 (10)	С3—Н3	0.9300
Pt1—Cl1	2.2894 (11)	C4—C5	1.358 (7)
Pt1—Cl2	2.2933 (11)	C4—H4	0.9300
S1—O1	1.470 (3)	C5—C6	1.374 (6)
S1—C7	1.770 (5)	С5—Н5	0.9300
S1—C8	1.775 (5)	С6—Н6	0.9300
N1—C1	1.453 (5)	С7—Н7А	0.9600
N1—H1A	0.8899	С7—Н7В	0.9600
N1—H1B	0.8900	С7—Н7С	0.9600
C1—C6	1.377 (6)	C8—H8A	0.9600
C1—C2	1.382 (6)	C8—H8B	0.9600
C2—C3	1.376 (6)	C8—H8C	0.9600
C2—H2	0.9300		
N1— $Pt1$ — $S1$	175.23 (9)	C2—C3—C4	119.6 (5)
N1—Pt1—Cl1	88.19 (10)	С2—С3—Н3	120.2
S1—Pt1—C11	94.09 (4)	С4—С3—Н3	120.2
N1— $Pt1$ — $Cl2$	86.79 (10)	C5—C4—C3	120.4 (4)
S1—Pt1—Cl2	91.01 (4)	C5—C4—H4	119.8
Cl1—Pt1—Cl2	174.81 (4)	C3—C4—H4	119.8
O1—S1—C7	107.7 (2)	C4—C5—C6	120.2 (5)
01-51-68	107.4 (2)	С4—С5—Н5	119.9
C7—S1—C8	101.4 (3)	С6—С5—Н5	119.9
O1 - S1 - Pt1	114.36 (12)	C5—C6—C1	120.0 (4)
C7—S1—Pt1	113.35 (18)	С5—С6—Н6	120.0
C8—S1—Pt1	111.77 (18)	С1—С6—Н6	120.0
C1—N1—Pt1	118.6 (2)	S1—C7—H7A	109.5
C1—N1—H1A	107.7	S1—C7—H7B	109.5
Pt1—N1—H1A	107.7	H7A—C7—H7B	109.5
C1—N1—H1B	107.6	S1—C7—H7C	109.5
Pt1—N1—H1B	107.7	H7A—C7—H7C	109.5
H1A—N1—H1B	107.1	H7B—C7—H7C	109.5
C6—C1—C2	120.3 (4)	S1—C8—H8A	109.5
C6-C1-N1	119.6 (4)	S1—C8—H8B	109.5
C2—C1—N1	120.1 (4)	H8A—C8—H8B	109.5
C3—C2—C1	119.5 (4)	S1—C8—H8C	109.5
С3—С2—Н2	120.2	H8A—C8—H8C	109.5
C1—C2—H2	120.2	H8B—C8—H8C	109.5
Pt1—N1—C1—C6	112.7 (4)	C2—C3—C4—C5	0.0 (8)
Pt1—N1—C1—C2	-68.9 (4)	C3—C4—C5—C6	1.2 (8)
C6—C1—C2—C3	1.8 (6)	C4—C5—C6—C1	-0.9 (7)
N1-C1-C2-C3	-176.5 (4)	C2-C1-C6-C5	-0.6 (7)
C1—C2—C3—C4	-1.5 (7)	N1—C1—C6—C5	177.7 (4)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D^{\dots}A$	D—H···A
N1—H1A····Cl2 ⁱ	0.89	2.78	3.463 (3)	134
N1—H1A···Cl2 ⁱⁱ	0.89	2.84	3.425 (3)	125
N1—H1B···O1 ⁱ	0.89	2.05	2.913 (4)	165
C8—H8A····O1 ⁱⁱⁱ	0.96	2.51	3.424 (6)	158
C8—H8 <i>C</i> ···Cl1 ^{iv}	0.96	2.77	3.677 (6)	158

Symmetry codes: (i) -x+1, y, -z+1/2; (ii) x, -y+1, z+1/2; (iii) -x+1, y, -z-1/2; (iv) -x+1/2, -y+1/2, -z.