

ISSN 2414-3146

Received 30 March 2018 Accepted 31 March 2018

Edited by W. T. A. Harrison, University of Aberdeen, Scotland

Keywords: crystal structure; benzodiazepine; hydrogen bond.

CCDC reference: 1833967

Structural data: full structural data are available from iucrdata.iucr.org

(3*R*,4*Z*)-1,3-Diethyl-4-(2-oxopropylidene)-2,3,4,5tetrahydro-1*H*-1,5-benzodiazepin-2-one

Laila El Foujji,^a* Jihad Sebhaoui,^a Youness El Bakri,^a L'houssaine El Ghayati,^a El Mokhtar Essassi^a and Joel T. Mague^b

^aLaboratoire de Chimie Organique Hétérocyclique, Centre de Recherche des Sciences des Médicaments, URAC 21, Pôle de Compétence Pharmacochimie, Av Ibn Battouta, BP 1014, Faculté des Sciences, Université Mohammed V, Rabat, Morocco, and ^bDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA. *Correspondence e-mail: elfoujji.laila18@gmail.com

In the title compound, $C_{16}H_{20}N_2O_2$, the seven-membered ring adopts a bowlshaped conformation while the orientation of the 2-oxopropylidene substituent is determined by an intramolecular $N-H\cdots O$ hydrogen bond, which generates an S(6) ring. In the crystal, inversion dimers linked by pairs of very weak C- $H\cdots O$ interactions occur, which generate $R_2^2(8)$ loops.

Structure description

1,4- and 1,5-Benzodiazepines are commonly used as anxiolytic and anticonvulsive drugs: these effects are primarily mediated *via* the benzodiazepine receptors located in the central nervous system (Tallman *et al.*, 1980). In a continuation on our studies (Sebhaoui *et al.*, 2017; Samba *et al.*, 2018) of benzodiazepine derivatives, we report here the alkylation of (4Z)-4-(2-oxopropylidene)-2,3,4,5-tetrahydro-1,5-benzodiazepin-2-one with ethyl iodide under solid–liquid phase-transfer catalytic conditions leading to the title compound.

The seven-membered ring adopts a bowl-shaped conformation with puckering parameters Q(2) = 0.8767 (13) Å, Q(3) = 0.2633 (13) Å, $\varphi(2) = 203.90 (8)^{\circ}$ and $\varphi(3) = 309.7 (3)^{\circ}$. The total puckering is 0.9154 (13) Å. The orientation of the 2-oxopropylidene substituent is largely determined by the intramolecular N1-H1...O2 hydrogen bond (Table 1 and Fig. 1). Apart from a possible weak C12-H12A...O2 hydrogen bond (H...O is 0.09 Å less than the sum of the van der Walls' radii), the packing is determined by van der Waals contacts (Fig. 2).

Synthesis and crystallization

To a solution of (4Z)-4-(2-oxopropylidene)-2,3,4,5-tetrahydro-1,5-benzodiazepin-2-one (1 mmol) and potassium carbonate K_2CO_3 (1.5 mmol) in 30 ml of *N*,*N*-dimethylformamide, were added ethyl iodide (0.02 mol) and tetra-*n*-butylammonium bromide as a phase-transfer catalyst. The reaction mixture was stirred at room temperature for 10 h. The residue obtained, after evaporation of the solvent, was chromatographed on a silica gel column using a hexane/ethyl acetate 4:1 mixture as eluent. The solid obtained was recrystallized from ethanol solution to afford colourless plates of the title compound.

Figure 2 Packing viewed along the *c*-axis direction.

Table 1	
Hydrogen-bond geometry (Å, °).	

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1 - H1 \cdots O2$	0.887 (19)	1.897 (19)	2.6326 (13)	139.2 (16)
C12 - H12A \cdots O2^{i}	0.98 (2)	2.63 (2)	3.5334 (17)	153.4 (17)

Symmetry code: (i) -x + 1, -y + 2, -z + 2.

Table 2Experimental details.

Crystal data	
Chemical formula	$C_{16}H_{20}N_2O_2$
M _r	272.34
Crystal system, space group	Triclinic, $P\overline{1}$
Temperature (K)	150
a, b, c (Å)	8.8546 (2), 8.9841 (2), 9.5523 (2)
α, β, γ (°)	98.481 (1), 96.412 (1), 106.772 (1)
$V(Å^3)$	710.00 (3)
Ζ	2
Radiation type	Cu Ka
$\mu (\text{mm}^{-1})$	0.68
Crystal size (mm)	$0.31 \times 0.15 \times 0.07$
Data collection	
Diffractometer	Bruker D8 VENTURE PHOTON 100 CMOS
Absorption correction	Multi-scan (SADABS; Krause et al., 2015)
T_{\min}, T_{\max}	0.88, 0.96
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	5416, 2616, 2387
R _{int}	0.023
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.618
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.037, 0.091, 1.05
No. of reflections	2616
No. of parameters	262
H-atom treatment	All H-atom parameters refined
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({ m e} { m \AA}^{-3})$	0.21, -0.22

Computer programs: *APEX3* and *SAINT* (Bruker, 2016), *SHELXT* (Sheldrick, 2015*a*), *SHELXL2018* (Sheldrick, 2015*b*), *DIAMOND* (Brandenburg & Putz, 2012) and *SHELXTL* (Sheldrick, 2008).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

Funding information

The support of NSF–MRI Grant No. 1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged.

References

- Brandenburg, K. & Putz, H. (2012). *DIAMOND*, Crystal Impact GbR, Bonn, Germany.
- Bruker (2016). *APEX3*, *SAINT* and *SADABS*. Bruker AXS Inc., Madison, Wisconsin, USA.
- Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.
- Samba, M., Minnih, M. S., El Bakri, Y., Essassi, E. M. & &Mague, J. T. (2018). *IUCrData*, **3**, x180326.

Sebhaoui, J., El Bakri, Y., Rayni, I., El Bourakadi, K., Essassi, E. M. & Mague, J. T. (2017). *IUCrData*, 2, x170493.
Sheldrick, G. M. (2008). *Acta Cryst.* A64, 112–122.

Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.

- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Tallman, J. F., Paul, S. M., Skolnick, P. & Gallager, D. W. (1980). Science, 207, 274–281.

full crystallographic data

IUCrData (2018). **3**, x180515 [https://doi.org/10.1107/S2414314618005151]

```
(3R,4Z)-1,3-Diethyl-4-(2-oxopropylidene)-2,3,4,5-tetrahydro-1H-1,5-
```

benzodiazepin-2-one

Laila El Foujji, Jihad Sebhaoui, Youness El Bakri, L'houssaine El Ghayati, El Mokhtar Essassi and Joel T. Mague

(3R,4Z)-1,3-Diethyl-4-(2-oxopropylidene)-2,3,4,5-tetrahydro-1H-1,5-benzodiazepin-2-one

Crystal data

C₁₆H₂₀N₂O₂ $M_r = 272.34$ Triclinic, $P\overline{1}$ a = 8.8546 (2) Å b = 8.9841 (2) Å c = 9.5523 (2) Å a = 98.481 (1)° $\beta = 96.412$ (1)° $\gamma = 106.772$ (1)° V = 710.00 (3) Å³

Data collection

Bruker D8 VENTURE PHOTON 100 CMOS diffractometer
Radiation source: INCOATEC IμS micro-focus source
Mirror monochromator
Detector resolution: 10.4167 pixels mm⁻¹ ω scans
Absorption correction: multi-scan (SADABS; Krause et al., 2015)

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.037$ $wR(F^2) = 0.091$ S = 1.052616 reflections 262 parameters 0 restraints Primary atom site location: structure-invariant direct methods Z = 2 F(000) = 292 $D_x = 1.274 \text{ Mg m}^{-3}$ Cu K\alpha radiation, $\lambda = 1.54178 \text{ Å}$ Cell parameters from 4659 reflections $\theta = 5.2-72.4^{\circ}$ $\mu = 0.68 \text{ mm}^{-1}$ T = 150 KPlate, colourless $0.31 \times 0.15 \times 0.07 \text{ mm}$

 $T_{\min} = 0.88, T_{\max} = 0.96$ 5416 measured reflections
2616 independent reflections
2387 reflections with $I > 2\sigma(I)$ $R_{int} = 0.023$ $\theta_{max} = 72.4^{\circ}, \theta_{min} = 5.2^{\circ}$ $h = -10 \rightarrow 10$ $k = -11 \rightarrow 10$ $l = -11 \rightarrow 11$

Secondary atom site location: difference Fourier map Hydrogen site location: difference Fourier map All H-atom parameters refined $w = 1/[\sigma^2(F_o^2) + (0.0377P)^2 + 0.2722P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.21$ e Å⁻³ $\Delta\rho_{min} = -0.22$ e Å⁻³ Extinction correction: *SHELXL2018* (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4} Extinction coefficient: 0.0107 (11)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \text{sigma}(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.20343 (11)	0.41685 (11)	0.35492 (10)	0.0288 (2)	
O2	0.41944 (11)	0.99801 (11)	0.76940 (9)	0.0286 (2)	
N1	0.26316 (12)	0.87183 (13)	0.50781 (11)	0.0207 (2)	
H1	0.282 (2)	0.940 (2)	0.590 (2)	0.040 (5)*	
N2	0.06087 (12)	0.58264 (12)	0.31111 (11)	0.0216 (2)	
C1	0.05091 (14)	0.73584 (15)	0.29983 (13)	0.0206 (3)	
C2	-0.06584 (15)	0.74986 (17)	0.19536 (14)	0.0272 (3)	
H2	-0.131 (2)	0.655 (2)	0.1266 (18)	0.036 (4)*	
C3	-0.09068 (16)	0.89355 (17)	0.18786 (15)	0.0301 (3)	
H3	-0.175 (2)	0.902 (2)	0.1165 (19)	0.042 (5)*	
C4	0.00296 (16)	1.02877 (16)	0.28445 (15)	0.0272 (3)	
H4	-0.0131 (19)	1.1329 (19)	0.2803 (17)	0.031 (4)*	
C5	0.12020 (15)	1.01790 (15)	0.38658 (14)	0.0231 (3)	
H5	0.1877 (19)	1.1120 (19)	0.4583 (17)	0.031 (4)*	
C6	0.14635 (14)	0.87331 (15)	0.39597 (12)	0.0196 (3)	
C7	0.36913 (13)	0.78969 (14)	0.49951 (13)	0.0192 (3)	
C8	0.35391 (14)	0.68791 (15)	0.35474 (13)	0.0203 (3)	
H8	0.3357 (17)	0.7520 (17)	0.2802 (16)	0.022 (3)*	
C9	0.20103 (14)	0.54911 (15)	0.33985 (13)	0.0211 (3)	
C10	0.48033 (14)	0.79991 (15)	0.61585 (13)	0.0213 (3)	
H10	0.5525 (18)	0.7358 (17)	0.6064 (16)	0.023 (4)*	
C11	0.50091 (14)	0.90620 (15)	0.74916 (13)	0.0225 (3)	
C12	0.62834 (17)	0.9093 (2)	0.86900 (15)	0.0311 (3)	
H12A	0.585 (3)	0.902 (2)	0.958 (2)	0.059 (6)*	
H12B	0.713 (3)	1.014 (3)	0.883 (2)	0.071 (7)*	
H12C	0.680(2)	0.828 (2)	0.8474 (19)	0.042 (5)*	
C13	-0.08886 (15)	0.44886 (16)	0.28977 (15)	0.0261 (3)	
H13A	-0.175 (2)	0.4960 (19)	0.3099 (17)	0.031 (4)*	
H13B	-0.0722 (18)	0.3840 (19)	0.3624 (17)	0.028 (4)*	
C14	-0.12777 (18)	0.34639 (18)	0.14073 (16)	0.0338 (3)	
H14A	-0.221 (2)	0.253 (2)	0.136 (2)	0.050 (5)*	
H14B	-0.155 (2)	0.406 (2)	0.067 (2)	0.051 (5)*	
H14C	-0.034 (2)	0.3101 (19)	0.1212 (17)	0.034 (4)*	
C15	0.49743 (15)	0.63217 (16)	0.32949 (13)	0.0245 (3)	
H15A	0.5090 (17)	0.5527 (18)	0.3921 (16)	0.024 (4)*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

data reports

H15B	0.598 (2)	0.7274 (19)	0.3576 (17)	0.030 (4)*
C16	0.48269 (18)	0.5586 (2)	0.17249 (15)	0.0331 (3)
H16A	0.380 (2)	0.468 (2)	0.1413 (19)	0.044 (5)*
H16B	0.574 (2)	0.512 (2)	0.157 (2)	0.046 (5)*
H16C	0.479 (2)	0.638 (2)	0.111 (2)	0.050 (5)*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0290 (5)	0.0216 (5)	0.0362 (5)	0.0095 (4)	0.0027 (4)	0.0058 (4)
O2	0.0321 (5)	0.0323 (5)	0.0228 (4)	0.0156 (4)	0.0017 (4)	0.0006 (4)
N1	0.0210 (5)	0.0230 (5)	0.0181 (5)	0.0095 (4)	0.0002 (4)	0.0011 (4)
N2	0.0179 (5)	0.0203 (5)	0.0246 (5)	0.0040 (4)	0.0015 (4)	0.0037 (4)
C1	0.0188 (5)	0.0227 (6)	0.0217 (6)	0.0081 (5)	0.0039 (4)	0.0049 (5)
C2	0.0234 (6)	0.0307 (7)	0.0260 (6)	0.0093 (5)	-0.0015 (5)	0.0028 (6)
C3	0.0271 (6)	0.0376 (8)	0.0289 (7)	0.0159 (6)	-0.0005 (5)	0.0085 (6)
C4	0.0279 (6)	0.0289 (7)	0.0309 (7)	0.0152 (5)	0.0073 (5)	0.0099 (6)
C5	0.0218 (6)	0.0240 (6)	0.0251 (6)	0.0089 (5)	0.0058 (5)	0.0044 (5)
C6	0.0179 (5)	0.0238 (6)	0.0189 (6)	0.0081 (5)	0.0044 (4)	0.0048 (5)
C7	0.0178 (5)	0.0187 (6)	0.0210 (6)	0.0047 (4)	0.0046 (4)	0.0044 (5)
C8	0.0190 (6)	0.0224 (6)	0.0192 (6)	0.0067 (5)	0.0025 (4)	0.0031 (5)
C9	0.0212 (6)	0.0224 (6)	0.0192 (6)	0.0075 (5)	0.0017 (4)	0.0019 (5)
C10	0.0194 (6)	0.0238 (6)	0.0211 (6)	0.0077 (5)	0.0027 (5)	0.0040 (5)
C11	0.0215 (6)	0.0259 (6)	0.0202 (6)	0.0065 (5)	0.0039 (5)	0.0063 (5)
C12	0.0305 (7)	0.0427 (8)	0.0207 (6)	0.0151 (6)	-0.0002 (5)	0.0032 (6)
C13	0.0197 (6)	0.0242 (6)	0.0314 (7)	0.0020 (5)	0.0039 (5)	0.0057 (6)
C14	0.0318 (7)	0.0271 (7)	0.0341 (8)	0.0014 (6)	-0.0035 (6)	0.0022 (6)
C15	0.0221 (6)	0.0300 (7)	0.0225 (6)	0.0114 (5)	0.0031 (5)	0.0017 (6)
C16	0.0311 (7)	0.0428 (9)	0.0259 (7)	0.0154 (7)	0.0066 (6)	-0.0016 (6)

Geometric parameters (Å, °)

01	1.2237 (15)	C8—C9	1.5291 (17)
O2—C11	1.2513 (15)	C8—H8	1.007 (15)
N1—C7	1.3529 (15)	C10—C11	1.4338 (17)
N1—C6	1.4059 (15)	C10—H10	0.978 (15)
N1—H1	0.887 (19)	C11—C12	1.5061 (17)
N2—C9	1.3676 (15)	C12—H12A	0.98 (2)
N2—C1	1.4232 (15)	C12—H12B	1.00 (3)
N2—C13	1.4804 (15)	C12—H12C	0.980 (19)
C1—C2	1.4008 (17)	C13—C14	1.5212 (19)
C1—C6	1.4045 (17)	C13—H13A	0.993 (16)
C2—C3	1.3811 (19)	C13—H13B	0.994 (16)
С2—Н2	0.978 (18)	C14—H14A	0.99 (2)
C3—C4	1.390 (2)	C14—H14B	1.00 (2)
С3—Н3	0.979 (18)	C14—H14C	0.999 (17)
C4—C5	1.3781 (18)	C15—C16	1.5222 (18)
C4—H4	0.991 (16)	C15—H15A	1.016 (15)

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C5—C6	1.3973 (17)	C15—H15B	1.017 (17)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С5—Н5	0.993 (17)	C16—H16A	1.01 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C7—C10	1.3734 (17)	C16—H16B	1.025 (19)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C7—C8	1.5103 (16)	C16—H16C	0.99 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C8—C15	1.5245 (16)		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C7—N1—C6	126.56 (10)	C7—C10—C11	122.91 (11)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C7—N1—H1	113.3 (12)	С7—С10—Н10	118.9 (9)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C6—N1—H1	119.5 (11)	C11—C10—H10	118.2 (9)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C9—N2—C1	124.31 (10)	O2—C11—C10	122.89 (11)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C9—N2—C13	116.88 (10)	O2—C11—C12	118.70 (11)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C1—N2—C13	118.80 (10)	C10-C11-C12	118.40 (11)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C2—C1—C6	118.27 (12)	C11—C12—H12A	110.3 (13)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C2—C1—N2	119.06 (11)	C11—C12—H12B	107.1 (13)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C6—C1—N2	122.52 (10)	H12A—C12—H12B	107.8 (18)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C3—C2—C1	121.58 (12)	C11—C12—H12C	113.4 (11)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С3—С2—Н2	119.7 (10)	H12A—C12—H12C	110.9 (16)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C1—C2—H2	118.8 (10)	H12B—C12—H12C	107.0 (17)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C2—C3—C4	119.82 (12)	N2-C13-C14	113.09 (11)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С2—С3—Н3	121.0 (10)	N2—C13—H13A	106.4 (9)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С4—С3—Н3	119.2 (10)	C14—C13—H13A	111.7 (9)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C5—C4—C3	119.49 (12)	N2—C13—H13B	105.9 (9)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С5—С4—Н4	119.7 (9)	C14—C13—H13B	109.3 (9)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C3—C4—H4	120.8 (9)	H13A—C13—H13B	110.3 (13)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C4—C5—C6	121.39 (12)	C13—C14—H14A	109.5 (11)
C6—C5—H5117.2 (9)H14A—C14—H14B107.8 (16)C5—C6—C1119.44 (11)C13—C14—H14C109.2 (10)C5—C6—N1117.53 (11)H14A—C14—H14C108.8 (14)C1—C6—N1122.94 (11)H14B—C14—H14C111.0 (15)N1—C7—C10121.37 (11)C16—C15—C8110.84 (10)N1—C7—C8114.87 (10)C16—C15—H15A109.6 (8)C10—C7—C8123.76 (11)C8—C15—H15A111.1 (8)C7—C8—C15115.57 (10)C16—C15—H15B109.4 (9)C7—C8—C9105.80 (9)C8—C15—H15B108.3 (9)C15—C8—C9111.94 (10)H15A—C15—H15B107.5 (12)C7—C8—H8107.0 (8)C15—C16—H16A110.4 (10)C15—C8—H8107.4 (8)H16A—C16—H16B110.0 (11)O1—C9—N2121.94 (11)C15—C16—H16C110.0 (11)O1—C9—C8122.29 (11)H16A—C16—H16C106.9 (15)N2—C9—C815.77 (10)H16B—C16—H16C101.7 (15)C9—N2—C1—C2141.65 (12)C10—C7—C8—C9 -72.16 (13)C9—N2—C1—C2-37.92 (16)N1—C7—C8—C9 -72.16 (13)C9—N2—C1—C6 -42.92 (17)C10—C7—C8—C9 -72.16 (13)	C4—C5—H5	121.4 (9)	C13—C14—H14B	110.6 (11)
C5—C6—C1119.44 (11)C13—C14—H14C109.2 (10)C5—C6—N1117.53 (11)H14A—C14—H14C108.8 (14)C1—C6—N1122.94 (11)H14B—C14—H14C111.0 (15)N1—C7—C10121.37 (11)C16—C15—C8110.84 (10)N1—C7—C8114.87 (10)C16—C15—H15A109.6 (8)C10—C7—C8123.76 (11)C8—C15—H15A111.1 (8)C7—C8—C15115.57 (10)C16—C15—H15B109.4 (9)C7—C8—C9105.80 (9)C8—C15—H15B108.3 (9)C15—C8—C9111.94 (10)H15A—C15—H15B107.5 (12)C7—C8—H8107.0 (8)C15—C16—H16A110.4 (10)C15—C8—H8107.4 (8)H16A—C16—H16B111.0 (10)C9—N2121.94 (11)C15—C16—H16C110.0 (11)O1-C9—C8122.29 (11)H16A—C16—H16C106.9 (15)N2—C9—C8115.77 (10)H16B—C16—H16C111.7 (15)C9—N2—C1—C2141.65 (12)C10—C7—C8—C9 -72.16 (13)C9—N2—C1—C2-37.92 (16)N1—C7—C8—C9 -72.16 (13)C9—N2—C1—C6 -42.92 (17)C10—C7—C8—C9 -72.16 (13)	С6—С5—Н5	117.2 (9)	H14A—C14—H14B	107.8 (16)
C5—C6—N1117.53 (11)H14A—C14—H14C108.8 (14)C1—C6—N1122.94 (11)H14B—C14—H14C111.0 (15)N1—C7—C10121.37 (11)C16—C15—C8110.84 (10)N1—C7—C8114.87 (10)C16—C15—H15A109.6 (8)C10—C7—C8123.76 (11)C8—C15—H15A111.1 (8)C7—C8—C15115.57 (10)C16—C15—H15B109.4 (9)C7—C8—C9105.80 (9)C8—C15—H15B108.3 (9)C15—C8—C9111.94 (10)H15A—C15—H15B107.5 (12)C7—C8—H8107.0 (8)C15—C16—H16A110.4 (10)C15—C8—H8108.7 (8)C15—C16—H16B111.0 (10)C9—C8—H8107.4 (8)H16A—C16—H16B106.7 (14)O1—C9—C8122.29 (11)H16A—C16—H16C110.0 (11)O1—C9—C8122.29 (11)H16B—C16—H16C111.7 (15)C9—N2—C1—C2141.65 (12)C10—C7—C8—C15-16.89 (18)C13—N2—C1—C2-37.92 (16)N1—C7—C8—C9-72.16 (13)C9—N2—C1—C6-42.92 (17)C10—C7—C8—C9107.58 (13)	C5—C6—C1	119.44 (11)	C13—C14—H14C	109.2 (10)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C5—C6—N1	117.53 (11)	H14A—C14—H14C	108.8 (14)
N1—C7—C10121.37 (11)C16—C15—C8110.84 (10)N1—C7—C8114.87 (10)C16—C15—H15A109.6 (8)C10—C7—C8123.76 (11)C8—C15—H15A111.1 (8)C7—C8—C15115.57 (10)C16—C15—H15B109.4 (9)C7—C8—C9105.80 (9)C8—C15—H15B108.3 (9)C15—C8—C9111.94 (10)H15A—C15—H15B107.5 (12)C7—C8—H8107.0 (8)C15—C16—H16A110.4 (10)C15—C8—H8108.7 (8)C15—C16—H16B111.0 (10)C9—C8—H8107.4 (8)H16A—C16—H16B106.7 (14)O1—C9—C8122.29 (11)H16A—C16—H16C106.9 (15)N2—C9—C8115.77 (10)H16B—C16—H16C111.7 (15)C9—N2—C1—C2141.65 (12)C10—C7—C8—C9-72.16 (13)C9—N2—C1—C2-37.92 (16)N1—C7—C8—C9-72.16 (13)C9—N2—C1—C6-42.92 (17)C10—C7—C8—C9107.5 8 (13)	C1-C6-N1	122.94 (11)	H14B—C14—H14C	111.0 (15)
N1—C7—C8114.87 (10)C16—C15—H15A109.6 (8)C10—C7—C8123.76 (11)C8—C15—H15A111.1 (8)C7—C8—C15115.57 (10)C16—C15—H15B109.4 (9)C7—C8—C9105.80 (9)C8—C15—H15B108.3 (9)C15—C8—C9111.94 (10)H15A—C15—H15B107.5 (12)C7—C8—H8107.0 (8)C15—C16—H16A110.4 (10)C15—C8—H8108.7 (8)C15—C16—H16B111.0 (10)C9—C8—H8107.4 (8)H16A—C16—H16B106.7 (14)O1—C9—N2121.94 (11)C15—C16—H16C106.9 (15)N2—C9—C8115.77 (10)H16B—C16—H16C106.9 (15)N2—C9—C8115.77 (10)H16B—C16—H16C111.7 (15)	N1—C7—C10	121.37 (11)	C16—C15—C8	110.84 (10)
C10—C7—C8123.76 (11)C8—C15—H15A111.1 (8)C7—C8—C15115.57 (10)C16—C15—H15B109.4 (9)C7—C8—C9105.80 (9)C8—C15—H15B108.3 (9)C15—C8—C9111.94 (10)H15A—C15—H15B107.5 (12)C7—C8—H8107.0 (8)C15—C16—H16A110.4 (10)C15—C8—H8108.7 (8)C15—C16—H16B111.0 (10)C9—C8—H8107.4 (8)H16A—C16—H16B106.7 (14)O1—C9—N2121.94 (11)C15—C16—H16C110.0 (11)O1—C9—C8122.29 (11)H16A—C16—H16C106.9 (15)N2—C9—C8115.77 (10)H16B—C16—H16C111.7 (15)C9—N2—C1—C2141.65 (12)C10—C7—C8—C9-72.16 (13)C9—N2—C1—C2-37.92 (16)N1—C7—C8—C9-72.16 (13)C9—N2—C1—C6-42.92 (17)C10—C7—C8—C9107.58 (13)	N1—C7—C8	114.87 (10)	C16—C15—H15A	109.6 (8)
C7—C8—C15115.57 (10)C16—C15—H15B109.4 (9)C7—C8—C9105.80 (9)C8—C15—H15B108.3 (9)C15—C8—C9111.94 (10)H15A—C15—H15B107.5 (12)C7—C8—H8107.0 (8)C15—C16—H16A110.4 (10)C15—C8—H8108.7 (8)C15—C16—H16B111.0 (10)C9—C8—H8107.4 (8)H16A—C16—H16B106.7 (14)O1—C9—N2121.94 (11)C15—C16—H16C110.0 (11)O1—C9—C8122.29 (11)H16A—C16—H16C106.9 (15)N2—C9—C8115.77 (10)H16B—C16—H16C111.7 (15)C9—N2—C1—C2141.65 (12)C10—C7—C8—C15-16.89 (18)C13—N2—C1—C2-37.92 (16)N1—C7—C8—C9-72.16 (13)C9—N2—C1—C6-42.92 (17)C10—C7—C8—C9107.58 (13)	C10—C7—C8	123.76 (11)	C8—C15—H15A	111.1 (8)
C7—C8—C9105.80 (9)C8—C15—H15B108.3 (9)C15—C8—C9111.94 (10)H15A—C15—H15B107.5 (12)C7—C8—H8107.0 (8)C15—C16—H16A110.4 (10)C15—C8—H8108.7 (8)C15—C16—H16B111.0 (10)C9—C8—H8107.4 (8)H16A—C16—H16B106.7 (14)O1—C9—N2121.94 (11)C15—C16—H16C110.0 (11)O1—C9—C8122.29 (11)H16A—C16—H16C106.9 (15)N2—C9—C8115.77 (10)H16B—C16—H16C111.7 (15)C9—N2—C1—C2141.65 (12)C10—C7—C8—C15-16.89 (18)C13—N2—C1—C2-37.92 (16)N1—C7—C8—C9-72.16 (13)C9—N2—C1—C6-42.92 (17)C10—C7—C8—C9107.58 (13)	C7—C8—C15	115.57 (10)	C16—C15—H15B	109.4 (9)
C15—C8—C9111.94 (10)H15A—C15—H15B107.5 (12)C7—C8—H8107.0 (8)C15—C16—H16A110.4 (10)C15—C8—H8108.7 (8)C15—C16—H16B111.0 (10)C9—C8—H8107.4 (8)H16A—C16—H16B106.7 (14)O1—C9—N2121.94 (11)C15—C16—H16C110.0 (11)O1—C9—C8122.29 (11)H16A—C16—H16C106.9 (15)N2—C9—C8115.77 (10)H16B—C16—H16C111.7 (15)C9—N2—C1—C2141.65 (12)C10—C7—C8—C15-16.89 (18)C13—N2—C1—C2-37.92 (16)N1—C7—C8—C9-72.16 (13)C9—N2—C1—C6-42.92 (17)C10—C7—C8—C9107.58 (13)	С7—С8—С9	105.80 (9)	C8—C15—H15B	108.3 (9)
C7—C8—H8107.0 (8)C15—C16—H16A110.4 (10)C15—C8—H8108.7 (8)C15—C16—H16B111.0 (10)C9—C8—H8107.4 (8)H16A—C16—H16B106.7 (14)O1—C9—N2121.94 (11)C15—C16—H16C110.0 (11)O1—C9—C8122.29 (11)H16A—C16—H16C106.9 (15)N2—C9—C8115.77 (10)H16B—C16—H16C111.7 (15)C9—N2—C1—C2141.65 (12)C10—C7—C8—C15-16.89 (18)C13—N2—C1—C2-37.92 (16)N1—C7—C8—C9-72.16 (13)C9—N2—C1—C6-42.92 (17)C10—C7—C8—C9107.58 (13)	C15—C8—C9	111.94 (10)	H15A—C15—H15B	107.5 (12)
C15—C8—H8 $108.7 (8)$ C15—C16—H16B $111.0 (10)$ C9—C8—H8 $107.4 (8)$ H16A—C16—H16B $106.7 (14)$ O1—C9—N2 $121.94 (11)$ C15—C16—H16C $110.0 (11)$ O1—C9—C8 $122.29 (11)$ H16A—C16—H16C $106.9 (15)$ N2—C9—C8 $115.77 (10)$ H16B—C16—H16C $111.7 (15)$ C9—N2—C1—C2 $141.65 (12)$ C10—C7—C8—C15 $-16.89 (18)$ C13—N2—C1—C2 $-37.92 (16)$ N1—C7—C8—C9 $-72.16 (13)$ C9—N2—C1—C6 $-42.92 (17)$ C10—C7—C8—C9 $107.58 (13)$	С7—С8—Н8	107.0 (8)	C15—C16—H16A	110.4 (10)
C9—C8—H8 $107.4 (8)$ H16A—C16—H16B $106.7 (14)$ O1—C9—N2 $121.94 (11)$ C15—C16—H16C $110.0 (11)$ O1—C9—C8 $122.29 (11)$ H16A—C16—H16C $106.9 (15)$ N2—C9—C8 $115.77 (10)$ H16B—C16—H16C $111.7 (15)$ C9—N2—C1—C2 $141.65 (12)$ C10—C7—C8—C15 $-16.89 (18)$ C13—N2—C1—C2 $-37.92 (16)$ N1—C7—C8—C9 $-72.16 (13)$ C9—N2—C1—C6 $-42.92 (17)$ C10—C7—C8—C9 $107.58 (13)$	С15—С8—Н8	108.7 (8)	C15—C16—H16B	111.0 (10)
O1C9N2 $121.94 (11)$ $C15C16H16C$ $110.0 (11)$ $O1C9C8$ $122.29 (11)$ $H16AC16H16C$ $106.9 (15)$ $N2C9C8$ $115.77 (10)$ $H16BC16H16C$ $111.7 (15)$ $C9N2C1C2$ $141.65 (12)$ $C10C7C8C15$ $-16.89 (18)$ $C13N2C1C2$ $-37.92 (16)$ $N1C7C8C9$ $-72.16 (13)$ $C9N2C1C6$ $-42.92 (17)$ $C10C7C8C9$ $107.58 (13)$	С9—С8—Н8	107.4 (8)	H16A—C16—H16B	106.7 (14)
O1C9C8 $122.29 (11)$ $H16AC16H16C$ $106.9 (15)$ $N2C9C8$ $115.77 (10)$ $H16BC16H16C$ $111.7 (15)$ $C9N2C1C2$ $141.65 (12)$ $C10C7C8C15$ $-16.89 (18)$ $C13N2C1C2$ $-37.92 (16)$ $N1C7C8C9$ $-72.16 (13)$ $C9N2C1C6$ $-42.92 (17)$ $C10C7C8C9$ $107.58 (13)$	O1—C9—N2	121.94 (11)	C15—C16—H16C	110.0 (11)
N2—C9—C8115.77 (10)H16B—C16—H16C111.7 (15)C9—N2—C1—C2141.65 (12)C10—C7—C8—C15 $-16.89 (18)$ C13—N2—C1—C2 $-37.92 (16)$ N1—C7—C8—C9 $-72.16 (13)$ C9—N2—C1—C6 $-42.92 (17)$ C10—C7—C8—C9 $107.58 (13)$	O1—C9—C8	122.29 (11)	H16A—C16—H16C	106.9 (15)
C9-N2-C1-C2141.65 (12)C10-C7-C8-C15 $-16.89 (18)$ C13-N2-C1-C2 $-37.92 (16)$ N1-C7-C8-C9 $-72.16 (13)$ C9-N2-C1-C6 $-42.92 (17)$ C10-C7-C8-C9 $107.58 (13)$	N2—C9—C8	115.77 (10)	H16B—C16—H16C	111.7 (15)
C9-N2-C1-C2141.65 (12)C10-C7-C8-C15 $-16.89 (18)$ C13-N2-C1-C2 $-37.92 (16)$ N1-C7-C8-C9 $-72.16 (13)$ C9-N2-C1-C6 $-42.92 (17)$ C10-C7-C8-C9 $107.58 (13)$				
C13-N2-C1-C2 $-37.92 (16)$ N1-C7-C8-C9 $-72.16 (13)$ C9-N2-C1-C6 $-42.92 (17)$ C10-C7-C8-C9 $107.58 (13)$	C9—N2—C1—C2	141.65 (12)	C10—C7—C8—C15	-16.89 (18)
C9 - N2 - C1 - C6 - 42.92(17) C10 - C7 - C8 - C9 107.58(13)	C13—N2—C1—C2	-37.92 (16)	N1—C7—C8—C9	-72.16 (13)
2.52(17) $2.52(17)$ $2.52(17)$ $107.50(15)$	C9—N2—C1—C6	-42.92 (17)	C10—C7—C8—C9	107.58 (13)
C13—N2—C1—C6 137.50 (12) C1—N2—C9—O1 176.65 (11)	C13—N2—C1—C6	137.50 (12)	C1—N2—C9—O1	176.65 (11)
C6—C1—C2—C3 –1.59 (19) C13—N2—C9—O1 –3.77 (17)	C6—C1—C2—C3	-1.59 (19)	C13—N2—C9—O1	-3.77 (17)

N2-C1-C2-C3C1-C2-C3-C4C2-C3-C4-C5C3-C4-C5-C6C4-C5-C6-C1C4-C5-C6-N1C2-C1-C6-C5	174.03 (12)	C1—N2—C9—C8	-2.22 (16)
	0.8 (2)	C13—N2—C9—C8	177.36 (10)
	0.2 (2)	C7—C8—C9—O1	-103.76 (13)
	-0.50 (19)	C15—C8—C9—O1	22.94 (16)
	-0.26 (18)	C7—C8—C9—N2	75.10 (13)
	-176.96 (11)	C15—C8—C9—N2	-158.19 (10)
	1.28 (17)	N1—C7—C10—C11	-5.14 (19)
C2-C1-C6-N1 N2-C1-C6-N1 C7-N1-C6-C5 C7-N1-C6-C1 C6-N1-C7-C10 C6-N1-C7-C8 N1-C7-C8-C15	177.79 (11) 2.32 (18) -140.34 (12) 43.09 (18) 178.73 (12) -1.52 (17) 163.37 (11)	C7-C10-C11-O2 C7-C10-C11-C12 C9-N2-C13-C14 C1-N2-C13-C14 C7-C8-C15-C16 C9-C8-C15-C16	-0.2 (2) -179.09 (12) -79.55 (14) 100.05 (13) -169.08 (11) 69.70 (14)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	$D \cdots A$	<i>D</i> —H··· <i>A</i>
N1—H1…O2	0.887 (19)	1.897 (19)	2.6326 (13)	139.2 (16)
C12— $H12A$ ···O2 ⁱ	0.98 (2)	2.63 (2)	3.5334 (17)	153.4 (17)

Symmetry code: (i) -x+1, -y+2, -z+2.