

ISSN 2414-3146

Received 14 January 2018 Accepted 16 April 2018

Edited by A. J. Lough, University of Toronto, Canada

Additional correspondance author: e-mail:blci@163.com. Lan Bai, Ling Zhong and Jianyou Shi contributed equally to this paper.

Keywords: crystal structure; mannich reaction; tankyrase inhibitor; nanomolar activity.

CCDC reference: 1551778

Structural data: full structural data are available from iucrdata.iucr.org

2-(3-Chlorophenyl)-3,4-dihydrobenzo[f][1,4]oxazepin-5(2*H*)-one

Ling Zhong,^a Jianyou Shi,^a Lei Zhong,^a Xin Wei,^a Hongjia Xhang,^a Liang Cheng^{b*} and Lan Bai^a[‡]

^aSichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Hospital of the University of Electronic Science and Technology of China, Personalized Drug Therapy Key Laboratory of Sichuan Province, Chengdu, Sichuan Province 610072, People's Republic of China, and ^bDalian Lubricating Oil Research & Development Institute, PetroChina, Dalian 116032, People's Republic of China. *Correspondence e-mail: chengliang_rhy@petrochina.com.cn

In the title compound, $C_{15}H_{12}CINO_2$, the dihedral angle between the two benzene rings is 73.45 (11)°. The central seven-membered ring is in a psuedo-boat conformation. In the crystal, pairs of molecules are linked by $N-H\cdots O$ hydrogen bonds, forming inversion dimers.

Structure description

The development of benzo[f][1,4]oxazepinone derivatives for medical applications is a research topic of increasing interest because of their easy preparation, good stability and high nanomolar activity (Li *et al.*, 2016). It is believed that the derivatives can be modified structurally by using different aldehydes and ketones (Krapcho & Turk, 1966). We report here the synthesis and the structure of the title compoun whose molecular structure is shown in Fig. 1. The dihedral angle between the two benzene rings (C2–C7 and C10–C15) is 73.45 (11)°. The central seven-membered ring is in a psuedo-boat conformation with C9 forming the prow and C2/C7 forming the stern. In the crystal, pairs of molecules are linked by N–H···O hydrogen bonds, forming inversion dimers (Table 1, Fig. 2).

Synthesis and crystallization

A 25 ml round-bottom flask was charged with 3-chlorobenzaldehyde (0.5 mmol), phenylamine (0.75 mmol), I₂ (0.15 mmol) and 1-(2-hydroxyphenyl)ethan-1-one (0.6 mmol) and methanol (10 mL) and stirred at 318 K. After the reaction was complete (as determined by TLC), the solvent was evaporated and 10 mL of saturated Na₂S₂O₃ was added. The solution was extracted with CH₂Cl₂ (three \times 10 mL). The organic layers

Table 1Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$N1 - H1 \cdots O2^i$	1.15 (2)	1.78 (2)	2.849 (2)	153.9 (16)

Symmetry code: (i) -x + 1, -y + 2, -z.

Figure 1

Molecular structure of the title compound with displacement ellipsoids drawn at 50% probability level.

were washed with saturated NaCl solution and then with icewater. The solution was dried over Na_2SO_4 and concentrated under vacuum to a crude solid. The crude solid (6 mmol) and NaN₃ (500 mg) were added to a round-bottom flask with 9 mL of CH₃COOH and stirred at 273 K. 3 mL of concentrated H₂SO₄ was then added and stirred at 318 K. After the reaction was complete (as determined by TLC), the solvent was neutralized with NaHCO₃. The solution was extracted with ethyl acetate. This was chromatographed on flash silica gel, eluting with 75% cyclohexane and 25% ethyl acetate and

Figure 2 An inversion dimer of the title compound. Hydrogen bonds are shown as dashed lines

able	2	
Experi	mental	details.

Crystal data	
Chemical formula	$C_{15}H_{12}CINO_2$
M _r	273.71
Crystal system, space group	Triclinic, P1
Temperature (K)	293
a, b, c (Å)	7.2162 (15), 8.0068 (14), 11.650 (3)
α, β, γ (°)	80.123 (17), 84.570 (18), 88.084 (15)
$V(Å^3)$	660.0 (2)
Z	2
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	0.29
Crystal size (mm)	$0.4 \times 0.35 \times 0.3$
Data collection	
Diffractometer	Agilent Xcalibur, Eos
Absorption correction	Multi-scan (<i>CrysAlis PRO</i> ; Agilent, 2014)
Tmin, Tmax	0.896, 1.000
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	4864, 2678, 2002
R _{int}	0.016
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.625
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.046, 0.118, 1.03
No. of reflections	2678
No. of parameters	176
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({\rm e} ~{\rm \AA}^{-3})$	0.29, -0.32

Computer programs: CrysAlis PRO (Agilent, 2014), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015) and OLEX2 (Dolomanov et al., 2009).

concentrated to a solid, giving 1.0 g of product (69% yield), m.p. 352.2–354.3 K. Crystals for X-ray crystallography were grown by slow evaporation of a solution of the title compound in methanol and water.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

Funding information

Funding for this research was provided by: Construction of key specialty of national clinical pharmacy (award No. 30305030698); New type of antitumor drug molecular design and research based Triptolide as lead compound targeted TFIIH protein subunit XPB (award No. 2016QN08).

References

Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.

Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.

Krapcho, J. & Turk, C. F. (1966). J. Med. Chem. 9, 191-195.

Li, F., Mu, M., Yang, N., Zhong, L., Hu, R., Li, J., Bai, L., Shi, J. & Zhang, M. (2016). *Chin. J. Org. Chem.* **36**, 1419–1425.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.

full crystallographic data

IUCrData (2018). **3**, x180587 [https://doi.org/10.1107/S2414314618005874]

2-(3-Chlorophenyl)-3,4-dihydrobenzo[f][1,4]oxazepin-5(2H)-one

Ling Zhong, Jianyou Shi, Lei Zhong, Xin Wei, Hongjia Xhang, Liang Cheng and Lan Bai

Z = 2

F(000) = 284

 $\theta = 3.5 - 27.6^{\circ}$

 $\mu = 0.29 \text{ mm}^{-1}$

T = 293 K

, colorless

 $R_{\rm int} = 0.016$

 $h = -9 \rightarrow 8$

 $k = -7 \rightarrow 9$ $l = -14 \rightarrow 14$

 $D_{\rm x} = 1.377 {\rm Mg} {\rm m}^{-3}$

 $0.4 \times 0.35 \times 0.3$ mm

4864 measured reflections

 $\theta_{\text{max}} = 26.4^{\circ}, \ \theta_{\text{min}} = 3.2^{\circ}$

2678 independent reflections

2002 reflections with $I > 2\sigma(I)$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 1590 reflections

2-(3-Chlorophenyl)-3,4-dihydrobenzo[f][1,4]oxazepin-5(2H)-one

Crystal data

C₁₅H₁₂CINO₂ $M_r = 273.71$ Triclinic, $P\overline{1}$ a = 7.2162 (15) Å b = 8.0068 (14) Å c = 11.650 (3) Å $\alpha = 80.123 (17)^{\circ}$ $\beta = 84.570 (18)^{\circ}$ $\gamma = 88.084 (15)^{\circ}$ $V = 660.0 (2) \text{ Å}^{3}$

Data collection

Agilent Xcalibur, Eos diffractometer Radiation source: Enhance (Mo) X-ray Source Graphite monochromator Detector resolution: 16.0874 pixels mm⁻¹ ω scans Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2014) $T_{\min} = 0.896, T_{\max} = 1.000$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant
Least-squares matrix: full	direct methods
$R[F^2 > 2\sigma(F^2)] = 0.046$	Hydrogen site location: mixed
$wR(F^2) = 0.118$	H atoms treated by a mixture of independent
<i>S</i> = 1.03	and constrained refinement
2678 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0452P)^2 + 0.2184P]$
176 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{ m max} < 0.001$
	$\Delta ho_{ m max} = 0.29 \ { m e} \ { m \AA}^{-3}$
	$\Delta \rho_{\rm min} = -0.32$ e Å ⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	X	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Cl1	1.11743 (9)	0.53184 (10)	0.26327 (7)	0.0761 (3)	
01	0.52072 (19)	0.63356 (16)	0.32657 (12)	0.0408 (4)	
02	0.3115 (2)	1.0113 (2)	0.10901 (13)	0.0595 (5)	
N1	0.5962 (3)	0.8897 (2)	0.13595 (14)	0.0419 (4)	
H1	0.668 (3)	0.905 (2)	0.0428 (18)	0.045 (6)*	
C1	0.4288 (3)	0.9404 (3)	0.17520 (17)	0.0425 (5)	
C2	0.3808 (3)	0.9133 (3)	0.30392 (17)	0.0390 (5)	
C3	0.2785 (3)	1.0356 (3)	0.3555 (2)	0.0492 (5)	
H3	0.2416	1.1353	0.3091	0.059*	
C4	0.2312 (3)	1.0108 (3)	0.4745 (2)	0.0507 (6)	
H4	0.1646	1.0942	0.5083	0.061*	
C5	0.2823 (3)	0.8631 (3)	0.54278 (19)	0.0509 (6)	
H5	0.2488	0.8460	0.6229	0.061*	
C6	0.3830 (3)	0.7394 (3)	0.49404 (18)	0.0450 (5)	
H6	0.4171	0.6392	0.5410	0.054*	
C7	0.4330 (3)	0.7651 (2)	0.37516 (17)	0.0354 (4)	
C8	0.7130 (3)	0.6560 (2)	0.28206 (16)	0.0362 (4)	
H8	0.7901	0.6389	0.3481	0.043*	
C9	0.7429 (3)	0.8348 (2)	0.21354 (17)	0.0406 (5)	
H9A	0.7467	0.9132	0.2681	0.049*	
H9B	0.8622	0.8383	0.1673	0.049*	
C10	0.7614 (3)	0.5194 (2)	0.20902 (16)	0.0342 (4)	
C11	0.9417 (3)	0.4563 (3)	0.19450 (18)	0.0426 (5)	
C12	0.9891 (3)	0.3338 (3)	0.1260 (2)	0.0522 (6)	
H12	1.1112	0.2935	0.1179	0.063*	
C13	0.8542 (4)	0.2723 (3)	0.0700 (2)	0.0554 (6)	
H13	0.8845	0.1900	0.0236	0.066*	
C14	0.6739 (4)	0.3327 (3)	0.0825 (2)	0.0551 (6)	
H14	0.5826	0.2910	0.0443	0.066*	
C15	0.6279 (3)	0.4545 (3)	0.15140 (19)	0.0445 (5)	
H15	0.5054	0.4939	0.1593	0.053*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.0405 (4)	0.0984 (6)	0.0982 (6)	0.0052 (3)	-0.0205 (3)	-0.0348 (4)
O1	0.0441 (8)	0.0336 (7)	0.0422 (8)	0.0024 (6)	0.0056 (6)	-0.0054 (6)
02	0.0676 (11)	0.0680 (11)	0.0408 (9)	0.0247 (9)	-0.0110 (8)	-0.0048 (8)
N1	0.0568 (11)	0.0367 (9)	0.0304 (9)	0.0036 (8)	-0.0024 (8)	-0.0020(7)
C1	0.0573 (14)	0.0360 (11)	0.0341 (10)	0.0076 (10)	-0.0080 (10)	-0.0054 (9)
C2	0.0426 (11)	0.0397 (11)	0.0352 (10)	0.0050 (9)	-0.0057 (9)	-0.0074 (8)
C3	0.0537 (14)	0.0438 (12)	0.0508 (13)	0.0123 (10)	-0.0111 (11)	-0.0091 (10)
C4	0.0486 (13)	0.0533 (14)	0.0530 (13)	0.0093 (11)	-0.0001 (11)	-0.0210 (11)
C5	0.0540 (14)	0.0579 (14)	0.0405 (12)	-0.0033 (11)	0.0080 (11)	-0.0133 (11)
C6	0.0493 (13)	0.0441 (12)	0.0389 (11)	0.0008 (10)	0.0018 (10)	-0.0032 (9)

C7	0.0359 (10)	0.0341 (10)	0.0361 (10)	0.0024 (8)	-0.0018 (8)	-0.0073 (8)
C8	0.0395 (11)	0.0366 (11)	0.0325 (10)	0.0033 (8)	-0.0059 (8)	-0.0053 (8)
C9	0.0456 (12)	0.0367 (11)	0.0392 (11)	-0.0014 (9)	-0.0009 (9)	-0.0074 (9)
C10	0.0373 (10)	0.0315 (10)	0.0314 (9)	0.0024 (8)	-0.0015 (8)	0.0001 (8)
C11	0.0398 (11)	0.0429 (12)	0.0432 (11)	0.0030 (9)	-0.0029 (9)	-0.0034 (9)
C12	0.0510 (14)	0.0461 (13)	0.0550 (14)	0.0153 (11)	0.0076 (11)	-0.0053 (11)
C13	0.0765 (18)	0.0374 (12)	0.0513 (13)	0.0048 (12)	0.0069 (13)	-0.0130 (10)
C14	0.0655 (16)	0.0495 (14)	0.0549 (14)	-0.0079 (12)	-0.0089 (12)	-0.0188 (11)
C15	0.0414 (12)	0.0434 (12)	0.0506 (12)	0.0031 (9)	-0.0073 (10)	-0.0118 (10)

Geometric parameters (Å, °)

Cl1—C11	1.739 (2)	С6—С7	1.380 (3)
O1—C7	1.386 (2)	С8—Н8	0.9800
O1—C8	1.441 (2)	C8—C9	1.527 (3)
O2—C1	1.255 (3)	C8—C10	1.510 (3)
N1—H1	1.14 (2)	С9—Н9А	0.9700
N1—C1	1.326 (3)	С9—Н9В	0.9700
N1—C9	1.464 (3)	C10-C11	1.386 (3)
C1—C2	1.487 (3)	C10—C15	1.387 (3)
C2—C3	1.391 (3)	C11—C12	1.383 (3)
C2—C7	1.389 (3)	C12—H12	0.9300
С3—Н3	0.9300	C12—C13	1.370 (3)
C3—C4	1.378 (3)	С13—Н13	0.9300
C4—H4	0.9300	C13—C14	1.376 (3)
C4—C5	1.368 (3)	C14—H14	0.9300
С5—Н5	0.9300	C14—C15	1.380 (3)
C5—C6	1.378 (3)	С15—Н15	0.9300
С6—Н6	0.9300		
C7—O1—C8	117.07 (14)	С9—С8—Н8	108.8
C1—N1—H1	130.6 (11)	С10—С8—Н8	108.8
C1—N1—C9	122.40 (17)	C10—C8—C9	113.14 (15)
C9—N1—H1	105.8 (11)	N1—C9—C8	112.49 (16)
O2—C1—N1	123.09 (19)	N1—C9—H9A	109.1
O2—C1—C2	119.0 (2)	N1—C9—H9B	109.1
N1—C1—C2	117.87 (19)	С8—С9—Н9А	109.1
C3—C2—C1	120.30 (19)	С8—С9—Н9В	109.1
C7—C2—C1	121.27 (18)	H9A—C9—H9B	107.8
C7—C2—C3	118.42 (19)	C11—C10—C8	121.44 (18)
С2—С3—Н3	119.6	C11—C10—C15	117.21 (18)
C4—C3—C2	120.8 (2)	C15—C10—C8	121.34 (18)
С4—С3—Н3	119.6	C10—C11—C11	120.02 (16)
C3—C4—H4	120.1	C12—C11—C11	117.79 (18)
C5—C4—C3	119.8 (2)	C12—C11—C10	122.2 (2)
С5—С4—Н4	120.1	C11—C12—H12	120.4
С4—С5—Н5	119.7	C13—C12—C11	119.3 (2)
C4—C5—C6	120.7 (2)	C13—C12—H12	120.4

С6—С5—Н5	119.7	С12—С13—Н13	120.0
С5—С6—Н6	120.2	C12—C13—C14	119.9 (2)
C5—C6—C7	119.6 (2)	C14—C13—H13	120.0
С7—С6—Н6	120.2	C13—C14—H14	119.8
O1—C7—C2	120.41 (17)	C13—C14—C15	120.4 (2)
C6—C7—O1	118.60 (18)	C15—C14—H14	119.8
C6—C7—C2	120.71 (19)	C10—C15—H15	119.5
O1—C8—H8	108.8	C14—C15—C10	121.0 (2)
O1—C8—C9	110.50 (16)	C14—C15—H15	119.5
O1—C8—C10	106.64 (15)		
CI1 CI1 CI2 CI2	170 (1 (17)	C7 01 C9 C10	166 47 (15)
CII = CII = CI2 = CI3	-1/9.61(1/)	C/=01=C8=C10	-166.47 (15)
01 - 02 - 010 - 011	-43.5 (2)	$C/-C_2-C_3-C_4$	0.4(3)
	-152.15(17)	$C_8 = 01 = C_7 = C_2$	/4.4 (2)
01-08-010-015	29.4 (2)	C8 = O1 = C7 = C6	-111.7(2)
02	-38.0 (3)		1.2 (3)
O2—C1—C2—C7	140.7 (2)	C8—C10—C11—C12	-178.64 (19)
N1—C1—C2—C3	141.2 (2)	C8—C10—C15—C14	178.42 (19)
N1—C1—C2—C7	-40.1 (3)	C9—N1—C1—O2	168.99 (19)
C1—N1—C9—C8	76.9 (2)	C9—N1—C1—C2	-10.1 (3)
C1—C2—C3—C4	179.2 (2)	C9—C8—C10—C11	86.2 (2)
C1—C2—C7—O1	-4.4 (3)	C9—C8—C10—C15	-92.3 (2)
C1—C2—C7—C6	-178.2 (2)	C10—C8—C9—N1	76.0 (2)
C2—C3—C4—C5	-1.1 (4)	C10-C11-C12-C13	0.2 (3)
C3—C2—C7—O1	174.33 (18)	C11—C10—C15—C14	-0.1 (3)
C3—C2—C7—C6	0.6 (3)	C11—C12—C13—C14	-0.1 (3)
C3—C4—C5—C6	0.8 (4)	C12—C13—C14—C15	-0.2 (4)
C4—C5—C6—C7	0.1 (3)	C13—C14—C15—C10	0.2 (3)
C5—C6—C7—O1	-174.72 (19)	C15—C10—C11—Cl1	179.69 (15)
C5—C6—C7—C2	-0.8 (3)	C15—C10—C11—C12	-0.1 (3)
C7—O1—C8—C9	-43.1 (2)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H····A	D····A	<i>D</i> —H··· <i>A</i>
N1—H1···O2 ⁱ	1.15 (2)	1.78 (2)	2.849 (2)	153.9 (16)

Symmetry code: (i) -x+1, -y+2, -z.