

ISSN 2414-3146

Received 23 March 2018 Accepted 9 April 2018

Edited by J. Simpson, University of Otago, New Zealand

Keywords: cystal structure; azulene; benzylidene; crystal structure.

CCDC reference: 1835896

Structural data: full structural data are available from iucrdata.iucr.org

9-(3,5-Dimethylbenzylidene)-8-(3,5-dimethylphenyl)-1,3,5,7-tetraphenyl-2,4,7,8-tetrahydro-4,7methanoazulene acetonitrile disolvate

Sonya K. Adas, Andrew J. Peloquin, Scott T. Iacono and Gary J. Balaich*

Department of Chemistry & Chemistry Research Center, United States Air Force Academy, Colorado Springs, CO 80840, USA. *Correspondence e-mail: gary.balaich@usafa.edu

The title Diels–Alder product, $C_{52}H_{44}$ ·2CH₃CN, was obtained in trace quantity as the '*endo*' isomer during the synthesis of 1,3-diphenyl-6-(3,5-dimethylphenyl)fulvene. One of the two co-crystallized acetonitrile molecules is linked to the main molecule by a weak C–H···N hydrogen bond.

Structure description

The title compound is formed by Diels–Alder reaction of the fulvene component of one molecule of 1,3-diphenyl-6-(3,5-dimethylphenyl)fulvene and the exocyclic double bond of a second fulvene molecule, resulting in an '*endo*' product. The molecular structure is shown in Fig. 1. The bond lengths are typical of those observed in related fulvenes (Peloquin *et al.*, 2012). A weak C34–H34···N1 hydrogen bond (Table 1) links the main molecule to one of the two acetonitrile solvent molecules.

Synthesis and crystallization

To a vigorously stirred suspension of 1,3-diphenylcyclopentadiene (1.36 g, 6.21 mmol) in absolute EtOH (50 ml) under N₂ was added 3,5-dimethylbenzaldehyde (1.00 g, 7.45 mmol) and pyrrolidine (0.82 ml, 9.94 mmol), and the reaction mixture was maintained at room temperature for 8 h. The reaction mixture was cooled to -5° C for 12 h, the resulting precipitate isolated by vacuum filtration, and dried *in vacuo* to yield a red solid (0.215 g, 10%). The solvent was removed from the filtrate *in vacuo*. The resulting residue was dissolved in Et₂O (20 ml), washed with saturated NaHSO₃, dried over MgSO₄, and cooled to -5° C for 48 hrs. An additional crop of red solid material was isolated by vacuum filtration (0.339 g, total combined yield 0.554 g, 26%). Crystals

Figure 1

The asymmetric unit of the title compound. Displacement ellipsoids are shown at the 50% probability level.

suitable for single-crystal X-ray diffraction were obtained by slow evaporation of an acetonitrile solution.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

Funding information

Funding for this research was provided by: Defense Threat Reduction Agency (DTRA) - Joint Science and Technology Transfer Office for Chemical and Biological Defense (MIPR No. HDTRA13964) ; Air Force Office of Scientific Research (AFOSR).

References

Bruker, (2017). APEX2, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). *J. Appl. Cryst.* **42**, 339–341.

Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C34-H34\cdots N1^{i}$	0.95	2.63	3.417 (3)	140
Symmetry code: (i) $x, y - $	1, z.			
Table 2				
Experimental details.				
Crystal data				
Chemical formula		C ₅₂ 1	$H_{44} \cdot 2C_2 H_3 N$	
M _r		750.	.98	
Crystal system, space g Temperature (K)	roup	100	linic, PI	
a, b, c (Å)		100	026 (3), 13.6115	(4).
,, . ()		1	6.5769 (6)	(-),
α, β, γ (°)		105.	502 (2), 105.796	(2), 94.038 (2)
$V(\dot{A}^3)$		2150	0.30 (12)	
Z Rediction type		2 Ma	Val	
$\mu (\text{mm}^{-1})$		0.07	κα	
Crystal size (mm)		0.19	\times 0.18 \times 0.18	
Data collection				
Diffractometer		Bru	ker APEXII CC	D .
Absorption correction		Mul	(SADAE	35; Bruker,
Tmin. Tmax		0.80	4. 0.914	
No. of measured, indep observed $[I > 2\sigma(I)]$	endent an reflections	d 320	78, 8992, 5894	
R _{int}		0.05	9	
$(\sin \theta / \lambda)_{\max} (\dot{A}^{-1})$		0.63	4	
Refinement				
$R[F^2 > 2\sigma(F^2)], wR(F^2)$), <i>S</i>	0.05	3, 0.140, 1.02	
No. of reflections		8992	2	
No. of parameters		529 H a	tom narameters	constrained
$\Delta \rho_{\text{max}}, \Delta \rho_{\text{min}} (e \text{ Å}^{-3})$		0.26	, -0.24	constrained

Computer programs: *APEX2* and *SAINT* (Bruker, 2017), *SHELXT* (Sheldrick, 2015*a*), *SHELXL2016* (Sheldrick, 2015*b*), *ORTEP-3* for Windows (Farrugia, 2012) and *Mercury* (Macrae *et al.*, 2008) and *OLEX2* (Dolomanov *et al.*, 2009).

Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.

Peloquin, A. J., Stone, R. S., Avila, S. E., Rudico, E. R., Horn, C. B., Gardner, K. A., Ball, D. W., Johnson, J. E. B., Iacono, S. T. & Balaich, G. J. (2012). *J. Org. Chem.* 77, 6371–6376.
Sheldrick, G. M. (2015*a*). *Acta Cryst.* A71, 3–8.

Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.

full crystallographic data

IUCrData (2018). **3**, x180553 [https://doi.org/10.1107/S2414314618005539]

9-(3,5-Dimethylbenzylidene)-8-(3,5-dimethylphenyl)-1,3,5,7-tetraphenyl-2,4,7,8-tetrahydro-4,7-methanoazulene acetonitrile disolvate

Sonya K. Adas, Andrew J. Peloquin, Scott T. Iacono and Gary J. Balaich

9-(3,5-Dimethylbenzylidene)-8-(3,5-dimethylphenyl)-1,3,5,7-tetraphenyl-2,4,7,8-tetrahydro-4,7-methanoazulene acetonitrile disolvate

Crystal data

 $C_{52}H_{44} \cdot 2C_{2}H_{3}N$ $M_{r} = 750.98$ Triclinic, *P*1 *a* = 10.4026 (3) Å *b* = 13.6115 (4) Å *c* = 16.5769 (6) Å *a* = 105.502 (2)° *β* = 105.796 (2)° *y* = 94.038 (2)° *V* = 2150.30 (12) Å³

Data collection

Bruker APEXII CCD	8992 independent reflections
diffractometer	5894 reflections with $I > 2\sigma(I)$
φ and ω scans	$R_{\rm int} = 0.059$
Absorption correction: multi-scan	$\theta_{\rm max} = 26.8^\circ, \ \theta_{\rm min} = 1.7^\circ$
(SADABS; Bruker, 2017)	$h = -13 \rightarrow 13$
$T_{\min} = 0.804, \ T_{\max} = 0.914$	$k = -17 \rightarrow 17$
32078 measured reflections	$l = -20 \rightarrow 20$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.053$ $wR(F^2) = 0.140$ S = 1.028992 reflections 529 parameters 0 restraints Primary atom site location: dual

Z = 2 F(000) = 800 $D_x = 1.160 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 3666 reflections $\theta = 2.7-23.0^{\circ}$ $\mu = 0.07 \text{ mm}^{-1}$ T = 100 KPrism, dark red $0.19 \times 0.18 \times 0.18 \text{ mm}$

Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0524P)^2 + 0.8994P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.26$ e Å⁻³ $\Delta\rho_{min} = -0.24$ e Å⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	у	Z	$U_{ m iso}$ */ $U_{ m eq}$	
C1	0.62899 (18)	0.47941 (15)	0.14895 (12)	0.0208 (4)	
C2	0.6900 (2)	0.59098 (15)	0.17214 (13)	0.0233 (4)	
H2A	0.643654	0.622662	0.127142	0.028*	
H2B	0.787475	0.597427	0.177324	0.028*	
C3	0.66858 (18)	0.64125 (15)	0.25942 (13)	0.0216 (4)	
C4	0.60350 (18)	0.56787 (14)	0.28198 (12)	0.0195 (4)	
C5	0.57835 (18)	0.46750 (14)	0.21387 (12)	0.0203 (4)	
C6	0.51239 (18)	0.36835 (14)	0.22266 (12)	0.0194 (4)	
H6	0.580932	0.320384	0.224780	0.023*	
C7	0.63983 (19)	0.40180 (15)	0.07072 (12)	0.0221 (4)	
C8	0.6316 (2)	0.42727 (16)	-0.00655 (13)	0.0262 (5)	
H8	0.617660	0.494949	-0.008448	0.031*	
C9	0.6433 (2)	0.35588 (17)	-0.08068 (14)	0.0318 (5)	
Н9	0.634451	0.374417	-0.133041	0.038*	
C10	0.6677 (2)	0.25814 (17)	-0.07852 (14)	0.0351 (5)	
H10	0.677284	0.209527	-0.128810	0.042*	
C11	0.6780 (2)	0.23184 (17)	-0.00221 (15)	0.0377 (6)	
H11	0.695009	0.164728	-0.000227	0.045*	
C12	0.6638 (2)	0.30217 (16)	0.07139 (14)	0.0293 (5)	
H12	0.670427	0.282428	0.123007	0.035*	
C13	0.71457 (19)	0.75077 (15)	0.30998 (13)	0.0228 (4)	
C14	0.8398 (2)	0.80224 (16)	0.31707 (15)	0.0315 (5)	
H14	0.896653	0.766764	0.287011	0.038*	
C15	0.8825 (2)	0.90480 (17)	0.36757 (16)	0.0374 (6)	
H15	0.967772	0.938845	0.371234	0.045*	
C16	0.8021 (2)	0.95767 (16)	0.41248 (15)	0.0335 (5)	
H16	0.832662	1.027197	0.448174	0.040*	
C17	0.6769 (2)	0.90832 (16)	0.40489 (14)	0.0311 (5)	
H17	0.620503	0.944311	0.434985	0.037*	
C18	0.6332 (2)	0.80677 (15)	0.35372 (14)	0.0270 (5)	
H18	0.546002	0.774372	0.348177	0.032*	
C19	0.38835 (19)	0.31274 (15)	0.14540 (12)	0.0216 (4)	
C20	0.29397 (19)	0.36707 (15)	0.10607 (12)	0.0238 (4)	
H20	0.311035	0.440359	0.124881	0.029*	
C21	0.1756 (2)	0.31651 (16)	0.04003 (13)	0.0279 (5)	
C22	0.1519 (2)	0.20943 (17)	0.01294 (14)	0.0332 (5)	
H22	0.070889	0.174148	-0.031758	0.040*	
C23	0.2445 (2)	0.15275 (16)	0.05000 (14)	0.0312 (5)	
C24	0.3626 (2)	0.20562 (15)	0.11579 (13)	0.0269 (5)	
H24	0.426966	0.167545	0.140923	0.032*	
C25	0.0735 (2)	0.37751 (18)	0.00006 (16)	0.0411 (6)	
H25A	0.093454	0.449349	0.037407	0.062*	
H25B	-0.017614	0.347532	-0.004506	0.062*	
H25C	0.078555	0.375134	-0.058587	0.062*	
C26	0.2178 (3)	0.03637 (17)	0.02230 (16)	0.0471 (7)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

H26A	0.199817	0.013230	0.069850	0.071*
H26B	0.297117	0.009100	0.009420	0.071*
H26C	0.139204	0.011188	-0.030373	0.071*
C27	0.47673 (18)	0.39042 (14)	0.31296 (12)	0.0198 (4)
C28	0.36308 (19)	0.45486 (14)	0.30875 (12)	0.0204 (4)
H28	0.269753	0.426725	0.287361	0.024*
C29	0.40990 (19)	0.55538 (15)	0.33861 (12)	0.0208 (4)
C30	0.56498 (18)	0.57118 (14)	0.36412 (12)	0.0194 (4)
H30	0.610396	0.633564	0.415039	0.023*
C31	0.59450 (18)	0.46958 (14)	0.38120 (12)	0.0193 (4)
C32	0.69876 (18)	0.45072 (15)	0.43931(12)	0.0204 (4)
H32	0.697236	0.380820	0.439198	0.025*
C33	0.44909(19)	0.29195(14)	0.33668(12)	0.0209(4)
C34	0.5261(2)	0.291950(11) 0.21256(15)	0.32410(13)	0.0249(4)
H34	0.598925	0.220035	0.300825	0.020*
C35	0.398923 0.4982(2)	0.12266 (16)	0.34500(13)	0.0290 (5)
H35	0.550963	0.069071	0.335040	0.0250 (5)
C26	0.330903	0.009071 0.11082 (16)	0.333040	0.035
U26	0.3940(2) 0.373663	0.11082 (10)	0.30019(14) 0.202212	0.0300 (3)
П30 С27	0.373003 0.2108 (2)	0.040002	0.393312 0.20607 (14)	0.037°
C37	0.3198 (2)	0.19009 (10)	0.39007 (14)	0.0292 (3)
H37	0.249675	0.185501	0.421/78	0.035*
C38	0.34690 (19)	0.27988 (15)	0.37467 (13)	0.0238 (4)
H38	0.295060	0.333805	0.386105	0.029*
C39	0.33417 (19)	0.64335 (15)	0.33960 (13)	0.0216 (4)
C40	0.2347 (2)	0.64701 (16)	0.26484 (13)	0.0265 (5)
H40	0.209202	0.589441	0.213367	0.032*
C41	0.1732 (2)	0.73391 (17)	0.26525 (15)	0.0318 (5)
H41	0.107113	0.736006	0.213577	0.038*
C42	0.2068 (2)	0.81772 (17)	0.33996 (15)	0.0332 (5)
H42	0.165791	0.877817	0.339330	0.040*
C43	0.3008 (2)	0.81329 (16)	0.41577 (14)	0.0287 (5)
H43	0.321562	0.869367	0.468090	0.034*
C44	0.3647 (2)	0.72731 (15)	0.41550 (13)	0.0243 (4)
H44	0.429979	0.725404	0.467562	0.029*
C45	0.81598 (18)	0.52355 (14)	0.50365 (12)	0.0209 (4)
C46	0.87823 (19)	0.50031 (15)	0.58076 (13)	0.0236 (4)
H46	0.845059	0.437801	0.588632	0.028*
C47	0.98684 (19)	0.56552 (16)	0.64614 (13)	0.0262 (5)
C48	1.03670 (19)	0.65565 (16)	0.63328 (13)	0.0259 (5)
H48	1.110829	0.701187	0.677859	0.031*
C49	0.98033 (19)	0.68044 (15)	0.55664 (13)	0.0256 (5)
C50	0.87020 (19)	0.61401 (15)	0.49205 (13)	0.0236 (4)
H50	0.831347	0.630440	0.439310	0.028*
C51	1.0514 (2)	0.5376 (2)	0.72843 (15)	0.0426 (6)
H51A	0.997946	0.475463	0.728623	0.064*
H51B	1.054786	0.594710	0.779978	0.064*
H51C	1.143378	0.524448	0.730204	0.064*
C52	1.0402 (2)	0.77656 (17)	0.54269 (16)	0.0389 (6)
-	···· (=)	···· · · · · · · · · · · · · · · · · ·	···· ··· (·)	

H52A	1.090664	0.825899	0.599695	0.058*
H52B	0.967505	0.807697	0.512110	0.058*
H52C	1.101452	0.758471	0.507218	0.058*
C53	0.6664 (3)	0.9128 (2)	0.15696 (19)	0.0587 (8)
H53A	0.627272	0.895627	0.199880	0.088*
H53B	0.752146	0.885960	0.160801	0.088*
H53C	0.603605	0.881801	0.097701	0.088*
C54	0.6906 (2)	1.0242 (2)	0.17549 (16)	0.0403 (6)
C55	0.9502 (3)	0.8449 (2)	0.80174 (18)	0.0521 (7)
H55A	1.026712	0.842034	0.850591	0.078*
H55B	0.954771	0.797311	0.746906	0.078*
H55C	0.865336	0.824845	0.812274	0.078*
C56	0.9560 (2)	0.9494 (2)	0.79496 (16)	0.0466 (7)
N1	0.7109 (2)	1.11149 (19)	0.18894 (16)	0.0535 (6)
N2	0.9628 (2)	1.0317 (2)	0.79074 (16)	0.0636 (7)

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	<i>U</i> ³³	U^{12}	U^{13}	U^{23}
C1	0.0183 (10)	0.0239 (11)	0.0204 (10)	0.0052 (8)	0.0035 (8)	0.0088 (8)
C2	0.0233 (10)	0.0245 (11)	0.0243 (10)	0.0039 (8)	0.0076 (8)	0.0103 (9)
C3	0.0178 (10)	0.0224 (11)	0.0247 (10)	0.0034 (8)	0.0055 (8)	0.0083 (8)
C4	0.0154 (9)	0.0203 (10)	0.0219 (10)	0.0039 (8)	0.0035 (8)	0.0066 (8)
C5	0.0164 (9)	0.0206 (10)	0.0230 (10)	0.0034 (8)	0.0030 (8)	0.0077 (8)
C6	0.0185 (10)	0.0195 (10)	0.0205 (10)	0.0037 (8)	0.0062 (8)	0.0063 (8)
C7	0.0188 (10)	0.0255 (11)	0.0218 (10)	0.0023 (8)	0.0073 (8)	0.0058 (8)
C8	0.0267 (11)	0.0283 (12)	0.0257 (11)	0.0061 (9)	0.0100 (9)	0.0089 (9)
C9	0.0337 (12)	0.0395 (14)	0.0243 (11)	0.0066 (10)	0.0115 (9)	0.0096 (10)
C10	0.0426 (14)	0.0324 (13)	0.0294 (12)	0.0035 (11)	0.0181 (10)	0.0008 (10)
C11	0.0533 (15)	0.0248 (12)	0.0415 (14)	0.0106 (11)	0.0251 (12)	0.0083 (10)
C12	0.0354 (12)	0.0283 (12)	0.0280 (11)	0.0091 (10)	0.0128 (9)	0.0102 (9)
C13	0.0248 (10)	0.0198 (11)	0.0245 (10)	0.0033 (8)	0.0071 (8)	0.0079 (8)
C14	0.0271 (11)	0.0241 (12)	0.0438 (13)	0.0026 (9)	0.0157 (10)	0.0063 (10)
C15	0.0284 (12)	0.0291 (13)	0.0522 (15)	-0.0043 (10)	0.0158 (11)	0.0064 (11)
C16	0.0401 (13)	0.0189 (11)	0.0397 (13)	0.0001 (10)	0.0133 (10)	0.0054 (9)
C17	0.0402 (13)	0.0217 (12)	0.0371 (12)	0.0065 (10)	0.0203 (10)	0.0090 (10)
C18	0.0274 (11)	0.0221 (11)	0.0353 (12)	0.0023 (9)	0.0141 (9)	0.0104 (9)
C19	0.0223 (10)	0.0219 (11)	0.0200 (10)	0.0010 (8)	0.0073 (8)	0.0050 (8)
C20	0.0267 (11)	0.0206 (11)	0.0224 (10)	0.0029 (8)	0.0069 (8)	0.0044 (8)
C21	0.0251 (11)	0.0309 (12)	0.0241 (11)	0.0017 (9)	0.0029 (9)	0.0078 (9)
C22	0.0301 (12)	0.0338 (13)	0.0251 (11)	-0.0050 (10)	-0.0011 (9)	0.0037 (10)
C23	0.0379 (13)	0.0245 (12)	0.0253 (11)	-0.0016 (10)	0.0064 (9)	0.0026 (9)
C24	0.0324 (12)	0.0219 (11)	0.0244 (11)	0.0053 (9)	0.0077 (9)	0.0047 (9)
C25	0.0334 (13)	0.0383 (14)	0.0409 (14)	0.0052 (11)	-0.0047 (11)	0.0105 (11)
C26	0.0613 (17)	0.0261 (13)	0.0385 (14)	-0.0019 (12)	0.0006 (12)	0.0012 (11)
C27	0.0194 (10)	0.0199 (10)	0.0199 (10)	0.0023 (8)	0.0066 (8)	0.0052 (8)
C28	0.0188 (10)	0.0216 (11)	0.0203 (10)	0.0020 (8)	0.0070 (8)	0.0047 (8)
C29	0.0193 (10)	0.0227 (11)	0.0206 (10)	0.0032 (8)	0.0068 (8)	0.0063 (8)

C30	0.0199 (10)	0.0169 (10)	0.0211 (10)	0.0021 (8)	0.0070 (8)	0.0047 (8)
C31	0.0199 (10)	0.0199 (10)	0.0204 (10)	0.0025 (8)	0.0110 (8)	0.0050 (8)
C32	0.0211 (10)	0.0171 (10)	0.0232 (10)	0.0027 (8)	0.0084 (8)	0.0047 (8)
C33	0.0219 (10)	0.0181 (10)	0.0185 (9)	-0.0012 (8)	0.0025 (8)	0.0032 (8)
C34	0.0281 (11)	0.0217 (11)	0.0256 (11)	0.0039 (9)	0.0093 (9)	0.0069 (9)
C35	0.0395 (13)	0.0215 (11)	0.0257 (11)	0.0081 (9)	0.0090 (9)	0.0068 (9)
C36	0.0370 (13)	0.0216 (11)	0.0296 (12)	-0.0030 (10)	0.0047 (10)	0.0091 (9)
C37	0.0262 (11)	0.0305 (12)	0.0312 (12)	-0.0020 (9)	0.0078 (9)	0.0119 (10)
C38	0.0213 (10)	0.0232 (11)	0.0248 (10)	0.0018 (8)	0.0058 (8)	0.0056 (9)
C39	0.0192 (10)	0.0205 (10)	0.0273 (11)	0.0015 (8)	0.0105 (8)	0.0076 (8)
C40	0.0242 (11)	0.0287 (12)	0.0267 (11)	0.0055 (9)	0.0087 (9)	0.0072 (9)
C41	0.0250 (11)	0.0403 (14)	0.0340 (12)	0.0123 (10)	0.0074 (9)	0.0171 (11)
C42	0.0304 (12)	0.0266 (12)	0.0488 (14)	0.0121 (10)	0.0171 (11)	0.0142 (11)
C43	0.0288 (11)	0.0218 (11)	0.0356 (12)	0.0038 (9)	0.0149 (10)	0.0036 (9)
C44	0.0240 (10)	0.0219 (11)	0.0279 (11)	0.0038 (9)	0.0102 (9)	0.0065 (9)
C45	0.0188 (10)	0.0210 (11)	0.0230 (10)	0.0038 (8)	0.0089 (8)	0.0039 (8)
C46	0.0205 (10)	0.0231 (11)	0.0280 (11)	0.0037 (8)	0.0087 (8)	0.0071 (9)
C47	0.0194 (10)	0.0327 (12)	0.0257 (11)	0.0064 (9)	0.0061 (8)	0.0074 (9)
C48	0.0167 (10)	0.0274 (12)	0.0270 (11)	0.0012 (8)	0.0054 (8)	-0.0008 (9)
C49	0.0205 (10)	0.0233 (11)	0.0315 (11)	0.0019 (8)	0.0094 (9)	0.0048 (9)
C50	0.0213 (10)	0.0248 (11)	0.0247 (10)	0.0029 (8)	0.0071 (8)	0.0074 (9)
C51	0.0296 (13)	0.0536 (16)	0.0386 (14)	-0.0004 (11)	-0.0031 (10)	0.0195 (12)
C52	0.0347 (13)	0.0340 (13)	0.0420 (14)	-0.0084 (10)	0.0069 (10)	0.0099 (11)
C53	0.070 (2)	0.0522 (18)	0.0521 (17)	-0.0051 (15)	0.0122 (15)	0.0229 (14)
C54	0.0357 (13)	0.0501 (17)	0.0417 (14)	0.0102 (12)	0.0161 (11)	0.0192 (13)
C55	0.0455 (16)	0.0554 (18)	0.0453 (16)	-0.0020 (13)	0.0127 (12)	0.0019 (13)
C56	0.0338 (14)	0.061 (2)	0.0344 (14)	-0.0010 (13)	0.0034 (11)	0.0066 (13)
N1	0.0609 (15)	0.0514 (15)	0.0639 (15)	0.0208 (12)	0.0363 (12)	0.0217 (12)
N2	0.0529 (15)	0.0726 (19)	0.0565 (16)	0.0047 (14)	0.0003 (12)	0.0230 (14)

Geometric parameters (Å, °)

C1—C2	1.509 (3)	C28—C29	1.329 (3)
C1—C5	1.361 (3)	C29—C30	1.536 (3)
C1—C7	1.475 (3)	C29—C39	1.478 (3)
C2—H2A	0.9900	C30—H30	1.0000
C2—H2B	0.9900	C30—C31	1.519 (2)
C2—C3	1.509 (3)	C31—C32	1.331 (3)
C3—C4	1.356 (2)	C32—H32	0.9500
C3—C13	1.472 (3)	C32—C45	1.471 (3)
C4—C5	1.474 (3)	C33—C34	1.395 (3)
C4—C30	1.511 (3)	C33—C38	1.396 (3)
C5—C6	1.531 (2)	C34—H34	0.9500
С6—Н6	1.0000	C34—C35	1.390 (3)
C6—C19	1.524 (3)	C35—H35	0.9500
C6—C27	1.596 (3)	C35—C36	1.382 (3)
С7—С8	1.396 (3)	C36—H36	0.9500
C7—C12	1.398 (3)	C36—C37	1.380 (3)

С8—Н8	0.9500	С37—Н37	0.9500
C8—C9	1.389 (3)	C37—C38	1.392 (3)
С9—Н9	0.9500	C38—H38	0.9500
C9—C10	1.380 (3)	C39—C40	1.397 (3)
C10—H10	0.9500	C39—C44	1.397 (3)
C10—C11	1.383 (3)	C40—H40	0.9500
C11—H11	0.9500	C40—C41	1.383 (3)
C11—C12	1.386 (3)	C41—H41	0.9500
C12—H12	0.9500	C41—C42	1.382 (3)
C13—C14	1.395 (3)	C42—H42	0.9500
C13—C18	1.397 (3)	C42—C43	1.385 (3)
C14—H14	0.9500	C43—H43	0.9500
C14—C15	1.390 (3)	C43—C44	1.385 (3)
С15—Н15	0.9500	C44—H44	0.9500
C15—C16	1.382 (3)	C45—C46	1.396 (3)
С16—Н16	0.9500	C45—C50	1.400 (3)
C16—C17	1.381 (3)	C46—H46	0.9500
C17—H17	0.9500	C46-C47	1 384 (3)
C17—C18	1.383 (3)	C47—C48	1.389 (3)
C18—H18	0.9500	C47—C51	1.507(3)
C19 - C20	1 395 (3)	C48—H48	0.9500
C19—C24	1 389 (3)	C48—C49	1 387 (3)
C20—H20	0.9500	C49 - C50	1 395 (3)
C_{20} C_{21}	1 390 (3)	C49-C52	1.599 (3)
C_{21} C_{21} C_{22}	1 388 (3)	C50—H50	0.9500
$C_{21} = C_{22}$	1 514 (3)	C51—H51A	0.9800
C22_H22	0.9500	C51—H51B	0.9800
$C_{22} = C_{23}$	1 392 (3)	C_{51} —H51C	0.9800
$C_{22} = C_{23}$	1.392(3) 1 394(3)	C_{52} —H52A	0.9800
$C_{23} = C_{24}$	1 509 (3)	C52—H52R	0.9800
C24_H24	0.9500	C52_H52D	0.9800
C_{25} H254	0.9800	C52_H52C	0.9800
C25—H25R	0.9800	C53—H53R	0.9800
C25 H25C	0.9800	C53_H53D	0.9800
C26_H264	0.9800	$C_{53} - C_{54}$	1.452(4)
C26 H26B	0.9800	C54 N1	1.432(4)
C26 H26C	0.9800	C55 H55A	1.142(3)
C_{20}	1,510 (3)	C55 H55R	0.9800
$C_{27} = C_{28}$	1.519(3) 1.522(3)	C55_H55C	0.9800
$C_{27} = C_{31}$	1.555(5) 1.524(2)	C55_C56	0.9800
$C_{2} = C_{3}$	1.324(2)	C56 N2	1.433(4)
C28—H28	0.9500	C30—N2	1.140 (3)
C5—C1—C2	108.57 (17)	C29—C28—C27	111.86 (16)
C5—C1—C7	130.12 (18)	C29—C28—H28	124.1
C7—C1—C2	121.10 (16)	C28—C29—C30	109.16 (17)
С1—С2—Н2А	110.9	C28—C29—C39	129.03 (17)
C1—C2—H2B	110.9	C39—C29—C30	121.42 (16)
C1—C2—C3	104.33 (15)	C4—C30—C29	107.43 (15)

H2A—C2—H2B	108.9	C4—C30—H30	114.2
С3—С2—Н2А	110.9	C4—C30—C31	104.56 (15)
С3—С2—Н2В	110.9	С29—С30—Н30	114.2
C4—C3—C2	107.99 (17)	C31—C30—C29	101.13 (14)
C4—C3—C13	127.47 (18)	C31—C30—H30	114.2
C13—C3—C2	124.52 (16)	C30—C31—C27	103.66 (15)
C3—C4—C5	110.18 (17)	C32—C31—C27	126.94 (17)
C3—C4—C30	131.60 (18)	C32—C31—C30	129.37 (17)
C5—C4—C30	118.04 (16)	С31—С32—Н32	115.6
C1—C5—C4	108.93 (16)	C31—C32—C45	128.72 (18)
C1—C5—C6	128.46 (18)	С45—С32—Н32	115.6
C4—C5—C6	122.53 (16)	C34—C33—C27	122.01 (17)
С5—С6—Н6	107.1	C_{34} C_{33} C_{38}	117.59 (17)
C5-C6-C27	110.84 (15)	C38—C33—C27	120.38 (18)
C19 - C6 - C5	113 78 (15)	C33—C34—H34	119.4
C19 - C6 - H6	107.1	C_{35} C_{34} C_{33}	121 18 (19)
C19 - C6 - C27	110.62 (15)	C35—C34—H34	119.4
C_{27} C_{6} H_{6}	107.1	C_{34} C_{35} H_{35}	119.4
$C_{2}^{*} = C_{0}^{*} = C_{1}^{*}$	120 45 (18)	C_{36} C_{35} C_{34}	119.8 120.4(2)
C_{8} C_{7} C_{12}	117 38 (18)	$C_{36} = C_{35} = C_{34}$	110.8
$C_{12} = C_{12} = C_{12}$	117.36(10) 122.12(17)	C35 C36 H36	119.8
$C_{12} = C_{12} = C_{12}$	110.3	$C_{35} = C_{30} = H_{30}$	120.4
C^{0} C^{8} C^{7}	117.5	$C_{37} = C_{30} = C_{35}$	119.28 (19)
C_{9}	121.49 (19)	$C_{3} = C_{30} = H_{30}$	120.4
C^{9}	119.5	$C_{30} = C_{37} = C_{38}$	119.8
C10 C0 C8	119.9	$C_{30} = C_{37} = C_{38}$	120.5 (2)
C10 - C9 - C8	120.2 (2)	$C_{38} = C_{37} = H_{37}$	119.8
C10-C9-H9	119.9	C33—C38—H38	119.5
C9—C10—H10	120.4	$C_{37} = C_{38} = C_{33}$	121.0 (2)
C9—C10—C11	119.2 (2)	C37—C38—H38	119.5
СП—СІ0—НІ0	120.4	C40—C39—C29	121.53 (18)
С10—С11—Н11	119.6	C40—C39—C44	118.30 (18)
C10—C11—C12	120.8 (2)	C44—C39—C29	120.13 (17)
C12—C11—H11	119.6	С39—С40—Н40	119.8
C7—C12—H12	119.5	C41—C40—C39	120.4 (2)
C11—C12—C7	120.91 (19)	C41—C40—H40	119.8
C11—C12—H12	119.5	C40—C41—H41	119.6
C14—C13—C3	122.04 (18)	C42—C41—C40	120.8 (2)
C14—C13—C18	117.55 (18)	C42—C41—H41	119.6
C18—C13—C3	120.41 (17)	C41—C42—H42	120.3
C13—C14—H14	119.6	C41—C42—C43	119.4 (2)
C15—C14—C13	120.8 (2)	C43—C42—H42	120.3
C15—C14—H14	119.6	C42—C43—H43	119.9
C14—C15—H15	119.7	C42—C43—C44	120.2 (2)
C16—C15—C14	120.6 (2)	C44—C43—H43	119.9
C16—C15—H15	119.7	C39—C44—H44	119.6
C15—C16—H16	120.4	C43—C44—C39	120.82 (19)
C17—C16—C15	119.2 (2)	C43—C44—H44	119.6
C17—C16—H16	120.4	C46—C45—C32	117.90 (17)

С16—С17—Н17	119.8	C46—C45—C50	117.86 (17)
C16—C17—C18	120.3 (2)	C50—C45—C32	124.23 (17)
C18—C17—H17	119.8	C45—C46—H46	119.0
C13—C18—H18	119.3	C47—C46—C45	122.04 (18)
C17—C18—C13	121.41 (19)	C47—C46—H46	119.0
C17—C18—H18	119.3	C46—C47—C48	118.63 (18)
C20—C19—C6	121.36 (17)	C46—C47—C51	120.43 (19)
C24—C19—C6	120.25 (17)	C48—C47—C51	120.92 (18)
C24—C19—C20	118.28 (18)	C47—C48—H48	119.4
С19—С20—Н20	119.2	C49—C48—C47	121.27 (18)
C21—C20—C19	121.58 (18)	C49—C48—H48	119.4
С21—С20—Н20	119.2	C48—C49—C50	119.05 (18)
C20—C21—C25	120.40 (19)	C48—C49—C52	120.19 (18)
C22—C21—C20	118.70 (19)	C50—C49—C52	120.74 (18)
C22—C21—C25	120.89 (18)	С45—С50—Н50	119.5
С21—С22—Н22	119.4	C49—C50—C45	121.09 (18)
C21—C22—C23	121.27 (19)	С49—С50—Н50	119.5
C23—C22—H22	119.4	C47—C51—H51A	109.5
C22—C23—C24	118.70 (19)	C47—C51—H51B	109.5
C22—C23—C26	121.51 (19)	C47—C51—H51C	109.5
C24—C23—C26	119.8 (2)	H51A—C51—H51B	109.5
C19—C24—C23	121.45 (19)	H51A—C51—H51C	109.5
C19—C24—H24	119.3	H51B—C51—H51C	109.5
C23—C24—H24	119.3	С49—С52—Н52А	109.5
С21—С25—Н25А	109.5	С49—С52—Н52В	109.5
С21—С25—Н25В	109.5	С49—С52—Н52С	109.5
С21—С25—Н25С	109.5	H52A—C52—H52B	109.5
H25A—C25—H25B	109.5	H52A—C52—H52C	109.5
H25A—C25—H25C	109.5	H52B—C52—H52C	109.5
H25B—C25—H25C	109.5	H53A—C53—H53B	109.5
С23—С26—Н26А	109.5	Н53А—С53—Н53С	109.5
С23—С26—Н26В	109.5	Н53В—С53—Н53С	109.5
С23—С26—Н26С	109.5	С54—С53—Н53А	109.5
H26A—C26—H26B	109.5	С54—С53—Н53В	109.5
H26A—C26—H26C	109.5	С54—С53—Н53С	109.5
H26B—C26—H26C	109.5	N1—C54—C53	178.7 (3)
C28—C27—C6	108.65 (14)	H55A—C55—H55B	109.5
C28—C27—C31	100.54 (15)	Н55А—С55—Н55С	109.5
C28—C27—C33	114.32 (15)	H55B—C55—H55C	109.5
C31—C27—C6	105.60 (14)	С56—С55—Н55А	109.5
C33—C27—C6	112.36 (15)	С56—С55—Н55В	109.5
C33—C27—C31	114.40 (15)	С56—С55—Н55С	109.5
C27—C28—H28	124.1	N2—C56—C55	178.8 (3)

Hydrogen-bond geometry (Å, °)

$$D$$
—H··· A D —H H··· A D ··· A D —H··· A

C34—H34…N1 ⁱ	0.95	2.63	3.417 (3)	140	

Symmetry code: (i) x, y-1, z.