

ISSN 2414-3146

Received 23 March 2018 Accepted 3 April 2018

Edited by M. Zeller, Purdue University, USA

Keywords: crystal structure; N⁵-oxide.

CCDC reference: 1834618

Structural data: full structural data are available from iucrdata.iucr.org

(1S,4R)-1,11,11-Trimethyl-1,2,3,4-tetrahydro-1,4methanophenazine N^5 -oxide

Kevin Quirion, Guy Crundwell* and Neil M. Glagovich

Department of Chemistry & Biochemistry, Central Connecticut State University, New Britain, CT 06053, USA. *Correspondence e-mail: crundwellg@mail.ccsu.edu

The title compound, $C_{16}H_{18}N_2O$, was synthesized *via* reaction of (1S,4R)-1,2,3,4-tetrahydro-1,11,11-trimethyl-1,4-methanophenazine with 3-chloroperbenzoic acid in dichloromethane. The absolute configuration for the product was assigned based on the stereochemistry of the camphorquinone reactant.

Structure description

In the molecule (Fig. 1), all bond lengths and angles are within expected values. The conformation of the product was assigned based upon the stereochemistry of the camphorquinone reactant. No classical hydrogen bonds are present.

Glisic *et al.* (2016) crystallized several chiral 1,2,3,4-tetrahydro-1,11,11-trimethyl-1,4methanophenazine ligands with Au^{+3} . Steel & Fitchett (2000, 2006) illustrate the use of stereochemically active quinoxalines in extended metal–ligand networks.

Synthesis and crystallization

(1S,4R)-1,2,3,4-Tetrahydro-1,11,11-trimethyl-1,4-methanophenazine was synthesized by the condensation reaction of a diketone with a diamine in acid. To a 50 mL round-bottom flask were added (1S)-(+)-camphorquinone (3.1 g, 18.5 mmol), *o*-phenylenediamine (2.0 g, 18.5 mmol), and 20 ml of glacial acetic acid. This solution was then heated to boiling and held at reflux for 16 h. The resulting brown-colored solution was poured over 550 ml of cold water, neutralized with sodium carbonate, and isolated *via* vacuum filtration, which produced a light-brown solid. A hot gravity filtration with petroleum ether and activated charcoal, after evaporation of the petroleum ether, yielded 3.3 g of (1S,4R)-1,2,3,4-tetrahydro-1,11,11-trimethyl-1,4-methanophenazine (75%).

(1S,4R)-1,2,3,4-Tetrahydro-1,11,11-trimethyl-1,4-methanophenazine (3.3 g, 13.8 mmol) and 3-chloroperbenzoic acid (4.8 g, 27.6 mmol) were dissolved in dichloro-

Figure 1

A view of the title compound. Displacement ellipsoids are drawn at the 50% probability level.

methane and stirred at room temperature for 24 h. Several spots were observed during TLC, suggesting the other possible oxide was also formed. The product was isolated *via* column chromatography (SiO₂, 50% dichloromethane/50% ethyl acetate, $R_{\rm f} = 0.5$) to yield 1.77 g of the title compound (50%), m.p. 433.2 K. ATR–IR (cm⁻¹): 2971, 1496, 780; ¹H NMR (300 MHz, CDCl₃): δ 8.653 (*dd*, 1H, *J* = 8.3 Hz, 1.5 Hz), 8.113 (*dd*, 1H, *J* = 7.7 Hz, 1.7 Hz), 7.763 (*dt*, 1H, *J* = 7.6 Hz, 1.8 Hz), 7.701 (*dt*, 1H, *J* = 7.6 Hz, 1.8 Hz), 3.674 (*d*, 1H, *J* = 4.17 Hz), 2.310 (*m*, 1H), 2.087 (*m*, 1H), 1.498 (*m*, 2H), 1.459 (*s*, 3H), 1.142 (*s*, 3H), 0.756 (*s*, 3H); ¹³C NMR (300 MHz, CDCl₃): δ 168.06, 144.26, 130.15, 129.30, 128.40, 118.71, 77.23, 76.51, 55.00, 54.71, 47.92, 32.37, 23.78, 20.32, 18.40, 10.14; UV/Vis (CH₂Cl₂; $\lambda_{\rm max}$) 315 nm.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1. Reflections affected by the beam stop were omitted from the refinement.

Funding information

This research was funded by a CCSU-AAUP research grant.

References

Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). *Acta Cryst.* A**71**, 59–75.

Crystal data	
Chemical formula	$C_{16}H_{18}N_2O$
M _r	254.32
Crystal system, space group	Orthorhombic, $P2_12_12_1$
Temperature (K)	298
a, b, c (Å)	10.6779 (3), 10.7120 (3), 11.5207 (3)
$V(Å^3)$	1317.76 (6)
Z	4
Radiation type	Μο Κα
$\mu (\text{mm}^{-1})$	0.08
Crystal size (mm)	$0.34 \times 0.28 \times 0.15$
Data collection	
Diffractometer	Oxford Diffraction Xcalibur Sapphire3
Absorption correction	Multi-scan (<i>CrysAlis PRO</i> ; Oxford Diffraction, 2009)
T_{\min}, T_{\max}	0.801, 1.000
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	33091, 4925, 4043
R _{int}	0.040
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.779
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.044, 0.132, 0.93
No. of reflections	4925
No. of parameters	175
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({\rm e} {\rm A}^{-3})$	0.24, -0.14
Absolute structure	Flack x determined using 1516 quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$ (Parsons et al., 2013)
Absolute structure parameter	0.1 (4)

Computer programs: CrysAlis CCD and CrysAlis RED (Oxford Diffraction, 2009), SHELXS2014 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), ORTEP-3 for Windows (Farrugia, 2012) and OLEX2 (Bourhis et al., 2015).

Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.

Glisic, B. D., Hoffmann, M., Warzajtis, B., Gencic, M. S., Blagojevic, P. D., Radulovic, N. S., Rychlewska, U. & Djuran, M. I. (2016). *Polyhedron*, **105**, 137–149.

Oxford Diffraction (2009). CrysAlis CCD, CrysAlis RED and CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.

- Steel, P. J. & Fitchett, C. M. (2000). New J. Chem. 24, 945-947.
- Steel, P. J. & Fitchett, C. M. (2006). Dalton Trans. pp. 4886-4888.

full crystallographic data

IUCrData (2018). **3**, x180531 [https://doi.org/10.1107/S241431461800531X]

(1*S*,4*R*)-1,11,11-Trimethyl-1,2,3,4-tetrahydro-1,4-methanophenazine *N*⁵-oxide

 $D_{\rm x} = 1.282 {\rm Mg m^{-3}}$

 $\theta = 5.1 - 31.4^{\circ}$ $\mu = 0.08 \text{ mm}^{-1}$

T = 298 K

Plate, yellow

 $R_{\rm int} = 0.040$

 $h = -16 \rightarrow 15$

 $k = -16 \rightarrow 16$

 $l = -17 \rightarrow 17$

Melting point: 433.2 K

 $0.34 \times 0.28 \times 0.15 \text{ mm}$

 $\theta_{\text{max}} = 33.6^{\circ}, \ \theta_{\text{min}} = 5.2^{\circ}$

33091 measured reflections

4925 independent reflections

4043 reflections with $I > 2\sigma(I)$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 9304 reflections

Kevin Quirion, Guy Crundwell and Neil M. Glagovich

(1*S*,4*R*)-1,11,11-Trimethyl-1,2,3,4-tetrahydro-1,4-methanophenazine *N*⁵-oxide

Crystal data

C₁₆H₁₈N₂O $M_r = 254.32$ Orthorhombic, $P2_12_12_1$ a = 10.6779 (3) Å b = 10.7120 (3) Å c = 11.5207 (3) Å V = 1317.76 (6) Å³ Z = 4F(000) = 544

Data collection

Oxford Diffraction Xcalibur Sapphire3 diffractometer Radiation source: Enhance (Mo) X-ray Source Graphite monochromator Detector resolution: 16.1790 pixels mm⁻¹ ω scans Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) $T_{\min} = 0.801, T_{\max} = 1.000$

Refinement

Refinement on F^2 H-atom parameters constrained Least-squares matrix: full $w = 1/[\sigma^2(F_0^2) + (0.0978P)^2]$ $R[F^2 > 2\sigma(F^2)] = 0.044$ where $P = (F_0^2 + 2F_c^2)/3$ $wR(F^2) = 0.132$ $(\Delta/\sigma)_{\rm max} < 0.001$ S = 0.93 $\Delta \rho_{\rm max} = 0.24 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\rm min} = -0.14 \ {\rm e} \ {\rm \AA}^{-3}$ 4925 reflections 175 parameters Absolute structure: Flack x determined using 0 restraints 1516 quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$ (Parsons et Hydrogen site location: inferred from al., 2013) neighbouring sites Absolute structure parameter: 0.1 (4)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. H atoms were included in calculated positions with C—H distances of 0.93 Å, 0.96 Å, 0.97 Å, and 0.98 Å based upon type of carbon and were included in the refinement in riding motion approximation with $U_{iso} = 1.2 U_{eq}$ for CH and CH₂ and 1.5 U_{eq} for CH₃ groups, respectively. of the carrier atom.

	X	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
C1	0.39348 (13)	0.85071 (12)	0.83151 (13)	0.0297 (3)
C2	0.20009 (13)	0.95167 (14)	0.82727 (14)	0.0332 (3)
C3	0.07772 (15)	0.96131 (18)	0.78408 (17)	0.0435 (4)
H3	0.0479	0.9039	0.7302	0.052*
C4	0.00214 (16)	1.0572 (2)	0.82275 (19)	0.0510 (4)
H4	-0.0782	1.0660	0.7926	0.061*
C5	0.04485 (18)	1.14087 (18)	0.9064 (2)	0.0499 (4)
Н5	-0.0086	1.2027	0.9339	0.060*
C6	0.16511 (17)	1.13333 (16)	0.94883 (18)	0.0439 (4)
H6	0.1926	1.1901	1.0044	0.053*
C7	0.24709 (14)	1.03897 (13)	0.90783 (14)	0.0343 (3)
C8	0.43617 (13)	0.94590 (12)	0.90722 (13)	0.0301 (3)
C9	0.56940 (13)	0.91155 (13)	0.93723 (14)	0.0312 (3)
C10	0.55122 (17)	0.79711 (15)	1.01944 (15)	0.0401 (3)
H10A	0.6299	0.7736	1.0555	0.048*
H10B	0.4906	0.8158	1.0797	0.048*
C11	0.50284 (17)	0.69165 (14)	0.93913 (15)	0.0400 (3)
H11A	0.4211	0.6624	0.9637	0.048*
H11B	0.5606	0.6217	0.9377	0.048*
C12	0.49567 (13)	0.75654 (13)	0.81835 (12)	0.0308 (3)
H12	0.4898	0.7012	0.7508	0.037*
C13	0.61140 (13)	0.84520 (13)	0.82243 (13)	0.0316 (3)
C14	0.61709 (19)	0.93181 (18)	0.71758 (16)	0.0450 (4)
H14A	0.6400	0.8847	0.6500	0.068*
H14B	0.6783	0.9958	0.7311	0.068*
H14C	0.5365	0.9695	0.7057	0.068*
C15	0.73576 (16)	0.77619 (18)	0.8335 (2)	0.0483 (4)
H15A	0.7303	0.7162	0.8953	0.073*
H15B	0.8012	0.8349	0.8503	0.073*
H15C	0.7540	0.7340	0.7620	0.073*
C16	0.64970 (16)	1.01615 (17)	0.98404 (18)	0.0445 (4)
H16A	0.6561	1.0811	0.9269	0.067*
H16B	0.7318	0.9848	1.0016	0.067*
H16C	0.6123	1.0491	1.0534	0.067*
N1	0.27666 (11)	0.85118 (11)	0.79122 (11)	0.0314 (3)
N2	0.36923 (12)	1.03772 (12)	0.94822 (12)	0.0356 (3)
01	0.23308 (12)	0.76566 (11)	0.72480 (12)	0.0454 (3)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0288 (6)	0.0278 (6)	0.0326 (6)	-0.0004 (5)	-0.0027 (5)	-0.0014 (5)
C2	0.0283 (6)	0.0345 (7)	0.0368 (7)	0.0008 (5)	0.0002 (5)	0.0076 (6)
C3	0.0321 (7)	0.0500 (9)	0.0484 (9)	0.0001 (7)	-0.0059 (6)	0.0099 (8)
C4	0.0306 (7)	0.0597 (11)	0.0628 (11)	0.0084 (7)	-0.0004(7)	0.0196 (9)
C5	0.0402 (8)	0.0477 (10)	0.0619 (11)	0.0136 (8)	0.0118 (8)	0.0140 (8)
C6	0.0418 (8)	0.0401 (9)	0.0498 (9)	0.0100 (7)	0.0081 (7)	0.0017 (7)
C7	0.0329 (6)	0.0318 (6)	0.0382 (7)	0.0030 (6)	0.0032 (6)	0.0030 (5)
C8	0.0287 (6)	0.0277 (6)	0.0341 (6)	-0.0005 (5)	-0.0021 (5)	-0.0030 (5)
C9	0.0280 (6)	0.0299 (6)	0.0356 (7)	0.0004 (5)	-0.0046 (5)	-0.0040 (5)
C10	0.0475 (8)	0.0399 (7)	0.0330 (7)	0.0005 (7)	-0.0067 (6)	0.0036 (6)
C11	0.0495 (9)	0.0295 (6)	0.0409 (8)	-0.0024 (6)	-0.0027 (7)	0.0049 (6)
C12	0.0331 (6)	0.0254 (6)	0.0341 (6)	-0.0002(5)	-0.0021 (5)	-0.0032 (5)
C13	0.0295 (6)	0.0298 (6)	0.0355 (6)	0.0002 (5)	0.0003 (5)	-0.0022 (5)
C14	0.0498 (9)	0.0449 (8)	0.0404 (8)	-0.0058 (7)	0.0075 (7)	0.0051 (7)
C15	0.0342 (7)	0.0510 (10)	0.0598 (11)	0.0100 (7)	-0.0009 (7)	-0.0119 (8)
C16	0.0372 (7)	0.0410 (8)	0.0553 (10)	-0.0044 (6)	-0.0104 (7)	-0.0125 (7)
N1	0.0298 (5)	0.0319 (6)	0.0324 (6)	-0.0039 (4)	-0.0026 (4)	0.0014 (5)
N2	0.0346 (6)	0.0318 (6)	0.0404 (6)	0.0032 (5)	-0.0012 (5)	-0.0060(5)
01	0.0430 (6)	0.0453 (6)	0.0480 (6)	-0.0082(5)	-0.0101 (5)	-0.0100 (6)

Atomic displacement parameters $(Å^2)$

Geometric parameters (Å, °)

C1—N1	1.3310 (17)	C10—C11	1.549 (2)
C1—C8	1.4172 (19)	C10—H10A	0.9700
C1—C12	1.4937 (19)	C10—H10B	0.9700
C2—C3	1.402 (2)	C11—C12	1.557 (2)
C2—C7	1.410 (2)	C11—H11A	0.9700
C2—N1	1.4142 (19)	C11—H11B	0.9700
C3—C4	1.380 (3)	C12—C13	1.559 (2)
С3—Н3	0.9300	C12—H12	0.9800
C4—C5	1.393 (3)	C13—C14	1.524 (2)
C4—H4	0.9300	C13—C15	1.525 (2)
C5—C6	1.376 (3)	C14—H14A	0.9600
С5—Н5	0.9300	C14—H14B	0.9600
C6—C7	1.418 (2)	C14—H14C	0.9600
С6—Н6	0.9300	C15—H15A	0.9600
C7—N2	1.385 (2)	C15—H15B	0.9600
C8—N2	1.3045 (18)	C15—H15C	0.9600
C8—C9	1.5095 (19)	C16—H16A	0.9600
C9—C16	1.510 (2)	C16—H16B	0.9600
C9—C10	1.561 (2)	C16—H16C	0.9600
С9—С13	1.567 (2)	N101	1.2811 (15)
N1—C1—C8	120.89 (12)	C12—C11—H11A	111.2
N1—C1—C12	130.68 (13)	C10—C11—H11B	111.2
	× /		

C8—C1—C12	108.26 (11)	C12—C11—H11B	111.2
C3—C2—C7	121.10 (15)	H11A—C11—H11B	109.1
C3—C2—N1	119.38 (15)	C1—C12—C11	104.29 (12)
C7—C2—N1	119.50 (12)	C1—C12—C13	99.47 (11)
C4—C3—C2	119.03 (18)	C11—C12—C13	101.89 (12)
С4—С3—Н3	120.5	C1—C12—H12	116.3
С2—С3—Н3	120.5	C11—C12—H12	116.3
C3—C4—C5	120.72 (16)	С13—С12—Н12	116.3
C3—C4—H4	119.6	C14—C13—C15	109.07 (14)
C5—C4—H4	119.6	C14—C13—C12	112.23 (12)
C6—C5—C4	120.90 (17)	C15—C13—C12	113.41 (12)
С6—С5—Н5	119.6	C14—C13—C9	113.84 (12)
С4—С5—Н5	119.6	C15—C13—C9	113.47 (13)
C5—C6—C7	119.96 (18)	C12—C13—C9	94.29 (11)
С5—С6—Н6	120.0	C13—C14—H14A	109.5
C7—C6—H6	120.0	C13—C14—H14B	109.5
N2-C7-C2	123.37 (13)	H14A—C14—H14B	109.5
N2-C7-C6	118.45 (15)	C13—C14—H14C	109.5
C2-C7-C6	118.18 (15)	H14A—C14—H14C	109.5
N2-C8-C1	126.10 (13)	H14B—C14—H14C	109.5
N2-C8-C9	128.12 (13)	C13—C15—H15A	109.5
C1—C8—C9	105.59 (11)	C13—C15—H15B	109.5
C8—C9—C16	115.85 (12)	H15A—C15—H15B	109.5
C8—C9—C10	102.30 (12)	C13—C15—H15C	109.5
C16—C9—C10	115.88 (14)	H15A—C15—H15C	109.5
C8—C9—C13	100.78 (11)	H15B—C15—H15C	109.5
C16—C9—C13	118.38 (13)	C9—C16—H16A	109.5
C10—C9—C13	101.04 (11)	C9—C16—H16B	109.5
C11—C10—C9	104.58 (12)	H16A—C16—H16B	109.5
C11—C10—H10A	110.8	C9—C16—H16C	109.5
C9—C10—H10A	110.8	H16A—C16—H16C	109.5
C11—C10—H10B	110.8	H16B—C16—H16C	109.5
C9—C10—H10B	110.8	01—N1—C1	123.09 (12)
H10A—C10—H10B	108.9	01—N1—C2	120.65 (12)
C10—C11—C12	102.98 (12)	C1—N1—C2	116.25 (12)
C10—C11—H11A	111.2	C8—N2—C7	113.68 (13)
C7—C2—C3—C4	-0.9 (2)	C10—C11—C12—C1	-67.26 (15)
N1—C2—C3—C4	177.78 (15)	C10-C11-C12-C13	35.86 (15)
C2—C3—C4—C5	-2.2 (3)	C1—C12—C13—C14	-66.52 (15)
C3—C4—C5—C6	2.8 (3)	C11—C12—C13—C14	-173.42 (13)
C4—C5—C6—C7	-0.3 (3)	C1—C12—C13—C15	169.31 (15)
C3—C2—C7—N2	-176.30 (15)	C11—C12—C13—C15	62.41 (16)
N1—C2—C7—N2	5.0 (2)	C1—C12—C13—C9	51.42 (12)
C3—C2—C7—C6	3.2 (2)	C11—C12—C13—C9	-55.48 (13)
N1-C2-C7-C6	-175.42 (14)	C8—C9—C13—C14	65.83 (15)
C5—C6—C7—N2	176.95 (16)	C16—C9—C13—C14	-61.56 (18)
C5—C6—C7—C2	-2.6 (2)	C10—C9—C13—C14	170.79 (13)

N1—C1—C8—N2	2.7 (2)	C8—C9—C13—C15	-168.62 (13)
C12—C1—C8—N2	-173.03 (15)	C16—C9—C13—C15	63.99 (18)
N1-C1-C8-C9	177.97 (13)	C10—C9—C13—C15	-63.66 (15)
C12—C1—C8—C9	2.21 (16)	C8—C9—C13—C12	-50.78 (12)
N2-C8-C9-C16	-24.0 (2)	C16—C9—C13—C12	-178.17 (13)
C1—C8—C9—C16	160.86 (15)	C10—C9—C13—C12	54.18 (12)
N2-C8-C9-C10	102.99 (17)	C8—C1—N1—O1	-178.35 (13)
C1—C8—C9—C10	-72.13 (14)	C12—C1—N1—O1	-3.7 (2)
N2-C8-C9-C13	-153.07 (15)	C8—C1—N1—C2	0.7 (2)
C1—C8—C9—C13	31.82 (14)	C12—C1—N1—C2	175.35 (14)
C8—C9—C10—C11	69.77 (15)	C3—C2—N1—O1	-3.8 (2)
C16—C9—C10—C11	-163.24 (14)	C7—C2—N1—O1	174.85 (13)
C13—C9—C10—C11	-33.97 (15)	C3—C2—N1—C1	177.13 (14)
C9—C10—C11—C12	-0.94 (17)	C7—C2—N1—C1	-4.19 (19)
N1-C1-C12-C11	-105.67 (18)	C1—C8—N2—C7	-2.1 (2)
C8-C1-C12-C11	69.52 (14)	C9—C8—N2—C7	-176.23 (14)
N1-C1-C12-C13	149.38 (16)	C2C7C8	-1.8 (2)
C8—C1—C12—C13	-35.42 (14)	C6—C7—N2—C8	178.64 (14)
N2-C8-C9-C13 C1-C8-C9-C13 C8-C9-C10-C11 C16-C9-C10-C11 C13-C9-C10-C11 C9-C10-C11-C12 N1-C1-C12-C11 C8-C1-C12-C11 N1-C1-C12-C13 C8-C1-C12-C13	$\begin{array}{r} -153.07 (15) \\ 31.82 (14) \\ 69.77 (15) \\ -163.24 (14) \\ -33.97 (15) \\ -0.94 (17) \\ -105.67 (18) \\ 69.52 (14) \\ 149.38 (16) \\ -35.42 (14) \end{array}$	C8—C1—N1—C2 C12—C1—N1—C2 C3—C2—N1—O1 C7—C2—N1—O1 C3—C2—N1—C1 C7—C2—N1—C1 C1—C8—N2—C7 C9—C8—N2—C7 C2—C7—N2—C8 C6—C7—N2—C8	0.7 (2) 175.35 (14) -3.8 (2) 174.85 (13) 177.13 (14) -4.19 (19) -2.1 (2) -176.23 (14) -1.8 (2) 178.64 (14)