

ISSN 2414-3146

Received 17 May 2018 Accepted 17 May 2018

Edited by M. Bolte, Goethe-Universität Frankfurt, Germany

Keywords: crystal structure; palladium.

CCDC reference: 1843858

Structural data: full structural data are available from iucrdata.iucr.org

Tetraethylammonium (acetonitrile)trichloridopalladate(II)

Alan J. Oberley,^{a,b} Lava R. Kadel,^a Nilmini K. Senaratne^a and David M. Eichhorn^a*

^aDepartment of Chemistry, Wichita State University, 1845 Fairmount, Wichita, KS 67260-0051, USA, and ^bDivision of Science and Mathematics, Newman University, 3100 McCormick, Wichita, KS 67213, USA. *Correspondence e-mail: david.eichhorn@wichita.edu

A new square-planar palladium complex salt, $(C_8H_{20}N)[PdCl_3(C_2H_3N)]$, has been formed with one of the Cl atoms in tetrachloridopalladate(II) replaced by an acetonitrile coordinated through the N atom. This compound could be a useful precursor for synthesis of palladium complexes. The complex salt crystallizes in the monoclinic $P2_1/c$ space group.

Structure description

In the title compound (Fig. 1), the palladium is square planar, with three chlorine atoms, and one acetonitrile coordinated through the nitrogen. Charge balance for the monoanionic complex is provided by a tetraethylammonium ion. A search of the Cambridge Structural Database reveals one other complex with a (nitrile)PdCl₃ structure (Chitsaz *et al.*, 2000) and ten complexes with the PdCl₃ moiety coordinated by a N donor (Urankar *et al.*, 2010; Maronna *et al.*, 2011; Gómez-Villarraga *et al.*, 2017; Savel'eva *et al.*, 2009; Lee *et al.*, 2005; von Arnim *et al.*, 1991; Kelly *et al.*, 1991; Makotchenko & Buidina, 2009; Kelly *et al.*, 1995; Aragay *et al.*, 2008). Structures have also been reported of $[(CH_3CN)_2PdCl_2]$ (Edwards *et al.*, 1998; Ramirez de Arellano *et al.*, 2006; Malecki, 2013; Malecki, 2017) and of $[(CH_3CN)_3PdCl]^+$ (Demchuk *et al.*, 2011). The title compound shows very similar Pd—N and Pd—Cl bond distances (Table 1) to all of the previously reported complexes.

Synthesis and crystallization

The title compound was synthesized by dissolving 0.498 g of 3-ethyl-4-cyanopyrazole in 30 ml of acetonitrile, with some impurities left to settle. The solution was decanted, and added to a solution of 0.15 g of tetraethylammonium tetrachloridopalladate(II) in 50 ml of acetonitrile. The solvent was removed, and the precipitate was redissolved in aceto-

Figure 1

The title compound with displacement ellipsoids drawn at the 50% probability level. H atoms drawn as spheres of arbitrary radii.

nitrile. Diethyl ether was allowed to diffuse into the acetonitrile solution, and crystals appeared overnight.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

Acknowledgements

AO acknowledges Newman University for providing sabbatical support.

Funding information

Funding for this research was provided by: Newman University; Wichita State University.

References

- Aragay, G., Pons, J., García-Antón, J., Solans, X., Font-Bardia, M. & Ros, J. (2008). J. Organomet. Chem. 693, 3396-3404.
- Arnim, H. von, Massa, W., Zinn, A. & Dehnicke, K. (1991). Z. Naturforsch. Teil B, 46, 992-998.
- Bruker (2012). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2016). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609-613.
- Chitsaz, S., Neumüller, B. & Dehnicke, K. (2000). Z. Anorg. Allg. Chem. 626, 634-638.
- Demchuk, O. M., Kielar, K. & Pietrusiewicz, K. M. (2011). Pure Appl. Chem. 83, 633-644.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.
- Edwards, P. G., Paisey, S. J. & Albers, T. (1998). Private communication (refcode: FEQCOT). CCDC, Cambridge, England.
- Gómez-Villarraga, F., De Tovar, J., Guerrero, M., Nolis, P., Parella, T., Lecante, P., Romero, N., Escriche, L., Bofill, R., Ros, J., Sala, X., Philippot, K. & García-Antón, J. (2017). Dalton Trans. 46, 11768-11778
- Kelly, P. F. & Slawin, A. M. Z. (1995). Angew. Chem. Int. Ed. Engl. 34, 1758-1759.

Table	1
0 1	1

Selected geometric parameters (Å, °).

Pd1-Cl1	2.3040 (11)	Pd1-N1	2.024 (3)
Pd1-Cl2	2.2621 (10)	N1-C2	1.108 (5)
Pd1-Cl3	2.2953 (11)		
Cl2-Pd1-Cl1	90.44 (3)	Cl3-Pd1-Cl1	177.84 (3)
Cl2-Pd1-Cl3	90.26 (3)	N1-Pd1-Cl2	177.08 (8)
N1-Pd1-Cl1	90.55 (9)	C2-N1-Pd1	171.1 (3)
N1-Pd1-Cl3	88.84 (9)		

Table 2 Experimental details.

Crystal data	
Chemical formula	$(C_8H_{20}N)[PdCl_3(C_2H_3N)]$
$M_{\rm r}$	384.05
Crystal system, space group	Monoclinic, $P2_1/c$
Temperature (K)	150
a, b, c (Å)	7.286 (2), 17.379 (5), 12.950 (3)
β (°)	102.769 (13)
$V(Å^3)$	1599.3 (8)
Ζ	4
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	1.64
Crystal size (mm)	$0.63 \times 0.57 \times 0.31$
Data collection	
Diffractometer	Bruker APEXII CCD
Absorption correction	Numerical (<i>SADABS</i> ; Bruker, 2012)
T_{\min}, T_{\max}	0.589, 0.746
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	54175, 3516, 2804
R _{int}	0.054
$(\sin^{\mathrm{max}} \theta / \lambda)_{\mathrm{max}} (\mathrm{\AA}^{-1})$	0.642
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.033, 0.092, 1.06
No. of reflections	3516
No. of parameters	150
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({ m e} \ { m \AA}^{-3})$	0.91, -0.61

Computer programs: APEX2 and SAINT (Bruker, 2016), SIR2004 (Burla et al., 2007), SHELXL (Sheldrick, 2008) and OLEX2 (Dolomanov et al., 2009).

- Kelly, P. F., Slawin, A. M. Z., Williams, D. J. & Woollins, J. D. (1991). Polyhedron, 10, 2337-2340.
- Lee, H. M., Chiu, P. L., Hu, C.-H., Lai, C. L. & Chou, Y.-C. J. (2005). J. Organomet. Chem. 690, 403-414.
- Makotchenko, E. V. & Buidina, I. A. (2009). Russ. J. Coord. Chem. 35, 212-216.
- Malecki, J. G. (2013). Private communication (refcode: FEQCOT02). CCDC, Cambridge, England.
- Malecki, J. G. (2017). Private communication (refcode: FEQCOT03). CCDC, Cambridge, England.
- Maronna, A., Bindewald, E., Kaifer, E., Wadepohl, H. & Himmel, H. J. (2011). Eur. J. Inorg. Chem. pp. 1302-1314.
- Ramirez de Arellano, R., Asensio, G., Medio-Simon, M., Rodriguez, N. & Mancha, G. (2006). Private communication (refcode: FEQCOT01). CCDC, Cambridge, England.
- Savel'eva, Z. A., Glinskaya, L. A., Popov, S. A., Klevtsova, R. F., Tkachev, A. V. & Larionov, S. V. (2009). Russ. J. Coord. Chem. 35, 668-673.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Urankar, D., Pevec, A., Turel, I. & Košmrlj, J. (2010). Cryst. Growth Des. 10, 4920-4927.

full crystallographic data

IUCrData (2018). **3**, x180750 [https://doi.org/10.1107/S2414314618007502]

Tetraethylammonium (acetonitrile)trichloridopalladate(II)

Alan J. Oberley, Lava R. Kadel, Nilmini K. Senaratne and David M. Eichhorn

Tetraethylammonium (acetonitrile)trichloridopalladate(II)

Crystal data

 $\begin{array}{l} (C_8H_{20}N)[PdCl_3(C_2H_3N)]\\ M_r = 384.05\\ Monoclinic, P2_1/c\\ a = 7.286 \ (2) \ \text{\AA}\\ b = 17.379 \ (5) \ \text{\AA}\\ c = 12.950 \ (3) \ \text{\AA}\\ \beta = 102.769 \ (13)^\circ\\ V = 1599.3 \ (8) \ \text{\AA}^3\\ Z = 4 \end{array}$

Data collection

Bruker APEXII CCD diffractometer Radiation source: sealed X-ray tube Graphite monochromator Detector resolution: 5.6 pixels mm⁻¹ φ and ω scans Absorption correction: numerical (SADABS; Bruker, 2012) $T_{\min} = 0.589$, $T_{\max} = 0.746$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.033$ $wR(F^2) = 0.092$ S = 1.063516 reflections 150 parameters 0 restraints

F(000) = 776 $D_x = 1.595 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 8735 reflections $\theta = 3.2-26.2^{\circ}$ $\mu = 1.64 \text{ mm}^{-1}$ T = 150 KIrregular, reddish brown $0.63 \times 0.57 \times 0.31 \text{ mm}$

54175 measured reflections 3516 independent reflections 2804 reflections with $I > 2\sigma(I)$ $R_{int} = 0.054$ $\theta_{max} = 27.2^{\circ}, \theta_{min} = 3.7^{\circ}$ $h = -9 \rightarrow 9$ $k = -22 \rightarrow 22$ $l = -16 \rightarrow 16$

Primary atom site location: structure-invariant direct methods Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0519P)^2 + 0.4406P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.91$ e Å⁻³ $\Delta\rho_{min} = -0.61$ e Å⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Pd1	0.25580 (3)	0.43656 (2)	0.67953 (2)	0.03879 (10)
Cl1	0.32497 (12)	0.30742 (5)	0.70147 (6)	0.0518 (2)
Cl2	0.19617 (13)	0.44208 (4)	0.84354 (7)	0.0518 (2)
C13	0.19872 (15)	0.56612 (5)	0.65811 (9)	0.0645 (3)
N1	0.2950 (4)	0.43234 (17)	0.5297 (2)	0.0567 (8)
C1	0.2887 (7)	0.4325 (3)	0.3309 (3)	0.0967 (19)
H1A	0.1600	0.4424	0.2911	0.145*
H1B	0.3308	0.3824	0.3100	0.145*
H1C	0.3725	0.4729	0.3154	0.145*
C2	0.2927 (5)	0.4320 (2)	0.4438 (3)	0.0649 (10)
N2	0.2491 (3)	0.80441 (13)	0.48732 (17)	0.0363 (5)
C3	0.5222 (5)	0.8575 (2)	0.4139 (3)	0.0559 (8)
H3A	0.4597	0.8401	0.3428	0.084*
H3B	0.6589	0.8538	0.4223	0.084*
H3C	0.4874	0.9110	0.4235	0.084*
C4	0.4611 (4)	0.80727 (18)	0.4959 (2)	0.0450 (7)
H4A	0.5222	0.8264	0.5672	0.054*
H4B	0.5069	0.7543	0.4894	0.054*
C5	0.0118 (4)	0.74911 (19)	0.5853 (3)	0.0529 (8)
H5A	-0.0551	0.7241	0.5200	0.079*
H5B	-0.0451	0.7994	0.5920	0.079*
H5C	0.0030	0.7170	0.6462	0.079*
C6	0.2159 (4)	0.75965 (17)	0.5818 (2)	0.0441 (7)
H6A	0.2744	0.7082	0.5818	0.053*
H6B	0.2806	0.7865	0.6472	0.053*
C7	0.2554 (5)	0.93366 (18)	0.5807 (3)	0.0600 (9)
H7A	0.1960	0.9846	0.5739	0.090*
H7B	0.3905	0.9393	0.5844	0.090*
H7C	0.2362	0.9087	0.6454	0.090*
C8	0.1677 (4)	0.88483 (17)	0.4855 (3)	0.0499 (8)
H8A	0.0308	0.8807	0.4815	0.060*
H8B	0.1846	0.9114	0.4206	0.060*
С9	0.1992 (5)	0.6812 (2)	0.3746 (3)	0.0612 (9)
H9A	0.1275	0.6610	0.3070	0.092*
H9B	0.1670	0.6521	0.4330	0.092*
H9C	0.3341	0.6760	0.3774	0.092*
C10	0.1512 (5)	0.7654 (2)	0.3845 (2)	0.0532 (8)
H10A	0.0135	0.7698	0.3775	0.064*
H10B	0.1834	0.7938	0.3247	0.064*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U^{33}	U^{12}	U^{13}	U^{23}
Pd1	0.03429 (15)	0.03990 (17)	0.04187 (15)	-0.00227 (9)	0.00774 (10)	-0.00026 (9)
Cl1	0.0536 (4)	0.0426 (4)	0.0575 (4)	0.0055 (4)	0.0087 (3)	-0.0088 (3)

Cl2	0.0653 (5)	0.0451 (5)	0.0501 (4)	0.0020 (4)	0.0238 (4)	-0.0034 (3)
C13	0.0693 (6)	0.0423 (5)	0.0804 (6)	0.0015 (4)	0.0132 (5)	0.0140 (4)
N1	0.0544 (18)	0.070 (2)	0.0474 (16)	-0.0053 (14)	0.0142 (13)	-0.0013 (13)
C1	0.074 (3)	0.167 (6)	0.054 (2)	-0.021 (3)	0.024 (2)	0.003 (2)
C2	0.053 (2)	0.095 (3)	0.048 (2)	-0.0111 (18)	0.0134 (16)	0.0024 (17)
N2	0.0383 (12)	0.0328 (13)	0.0364 (11)	-0.0015 (10)	0.0056 (9)	0.0030 (9)
C3	0.055 (2)	0.056 (2)	0.0615 (19)	-0.0063 (16)	0.0226 (16)	-0.0014 (16)
C4	0.0394 (16)	0.0444 (18)	0.0496 (16)	-0.0019 (13)	0.0061 (13)	-0.0002 (13)
C5	0.058 (2)	0.048 (2)	0.0550 (17)	-0.0044 (15)	0.0195 (15)	0.0043 (14)
C6	0.0541 (18)	0.0394 (17)	0.0382 (14)	-0.0017 (14)	0.0085 (13)	0.0057 (12)
C7	0.069 (2)	0.0399 (19)	0.077 (2)	-0.0035 (16)	0.030(2)	-0.0095 (16)
C8	0.0473 (17)	0.0362 (17)	0.0653 (19)	0.0015 (14)	0.0107 (14)	0.0114 (14)
C9	0.059 (2)	0.064 (2)	0.064 (2)	-0.0167 (18)	0.0215 (17)	-0.0266 (17)
C10	0.0543 (19)	0.063 (2)	0.0388 (15)	-0.0153 (17)	0.0036 (13)	-0.0013 (14)

Geometric parameters (Å, °)

Pd1—Cl1	2.3040 (11)	C5—H5A	0.9800	
Pd1—Cl2	2.2621 (10)	С5—Н5В	0.9800	
Pd1—Cl3	2.2953 (11)	С5—Н5С	0.9800	
Pd1—N1	2.024 (3)	C5—C6	1.509 (4)	
N1—C2	1.108 (5)	С6—Н6А	0.9900	
C1—H1A	0.9800	C6—H6B	0.9900	
C1—H1B	0.9800	С7—Н7А	0.9800	
C1—H1C	0.9800	С7—Н7В	0.9800	
C1—C2	1.457 (5)	С7—Н7С	0.9800	
N2—C4	1.524 (4)	С7—С8	1.517 (5)	
N2—C6	1.514 (3)	C8—H8A	0.9900	
N2—C8	1.516 (4)	C8—H8B	0.9900	
N2-C10	1.524 (4)	С9—Н9А	0.9800	
С3—НЗА	0.9800	С9—Н9В	0.9800	
С3—Н3В	0.9800	С9—Н9С	0.9800	
С3—Н3С	0.9800	C9—C10	1.517 (5)	
C3—C4	1.515 (4)	C10—H10A	0.9900	
C4—H4A	0.9900	C10—H10B	0.9900	
C4—H4B	0.9900			
Cl2—Pd1—Cl1	90.44 (3)	H5B—C5—H5C	109.5	
Cl2—Pd1—Cl3	90.26 (3)	C6—C5—H5A	109.5	
N1—Pd1—Cl1	90.55 (9)	C6—C5—H5B	109.5	
N1—Pd1—Cl3	88.84 (9)	C6—C5—H5C	109.5	
Cl3—Pd1—Cl1	177.84 (3)	N2—C6—H6A	108.5	
N1—Pd1—Cl2	177.08 (8)	N2—C6—H6B	108.5	
C2—N1—Pd1	171.1 (3)	C5—C6—N2	114.9 (2)	
H1A—C1—H1B	109.5	С5—С6—Н6А	108.5	
H1A—C1—H1C	109.5	С5—С6—Н6В	108.5	
H1B—C1—H1C	109.5	H6A—C6—H6B	107.5	
C2—C1—H1A	109.5	H7A—C7—H7B	109.5	

C2—C1—H1B	109.5	H7A—C7—H7C	109.5
C2—C1—H1C	109.5	H7B—C7—H7C	109.5
N1-C2-C1	179.3 (5)	С8—С7—Н7А	109.5
C6—N2—C4	107.4 (2)	С8—С7—Н7В	109.5
C6—N2—C8	110.8 (2)	С8—С7—Н7С	109.5
C6—N2—C10	110.5 (2)	N2—C8—C7	114.2 (3)
C8—N2—C4	111.0 (2)	N2—C8—H8A	108.7
C8—N2—C10	106.9 (2)	N2—C8—H8B	108.7
C10—N2—C4	110.5 (2)	С7—С8—Н8А	108.7
НЗА—СЗ—НЗВ	109.5	С7—С8—Н8В	108.7
НЗА—СЗ—НЗС	109.5	H8A—C8—H8B	107.6
НЗВ—СЗ—НЗС	109.5	H9A—C9—H9B	109.5
С4—С3—НЗА	109.5	H9A—C9—H9C	109.5
С4—С3—Н3В	109.5	H9B—C9—H9C	109.5
C4—C3—H3C	109.5	С10—С9—Н9А	109.5
N2—C4—H4A	108.6	С10—С9—Н9В	109.5
N2—C4—H4B	108.6	С10—С9—Н9С	109.5
C3—C4—N2	114.7 (2)	N2-C10-H10A	108.4
C3—C4—H4A	108.6	N2-C10-H10B	108.4
C3—C4—H4B	108.6	C9—C10—N2	115.6 (3)
H4A—C4—H4B	107.6	C9—C10—H10A	108.4
H5A—C5—H5B	109.5	C9—C10—H10B	108.4
H5A—C5—H5C	109.5	H10A—C10—H10B	107.4
C4—N2—C6—C5	-178.5 (3)	C8—N2—C4—C3	-52.5 (3)
C4—N2—C8—C7	-57.2 (3)	C8—N2—C6—C5	60.2 (3)
C4—N2—C10—C9	64.6 (3)	C8—N2—C10—C9	-174.6 (3)
C6—N2—C4—C3	-173.7 (3)	C10—N2—C4—C3	65.8 (3)
C6—N2—C8—C7	61.9 (3)	C10—N2—C6—C5	-58.0 (3)
C6—N2—C10—C9	-54.0 (3)	C10—N2—C8—C7	-177.7 (3)