Received 1 May 2018
Accepted 3 May 2018

Edited by J. Simpson, University of Otago, New Zealand

Keywords: crystal structure; pyrrolopyrazine; isoindoline analogue; three-centre (bifurcated) hydrogen bonds; 3_{1} helix.

CCDC reference: 1841267

Structural data: full structural data are available from iucrdata.iucr.org

(5Z,7Z)- N^{5}, N^{7}-Bis(pyridin-2-yl)-5H-6,7-dihydro-pyrrolo[3,4-b]pyrazine-5,7-diimine

Maciej Posel ${ }^{\text {a }}$ and Helen Stoeckli-Evans ${ }^{\text {b }}$ *

${ }^{\text {a }}$ Institute of Chemistry, University of Neuchâtel, Av de Bellevaux 51, CH-2000 Neuchâtel, Switzerland, and ${ }^{\mathbf{b}}$ Institute of Physics, University of Neuchâtel, rue Emile-Argand 11, CH-2000 Neuchâtel, Switzerland. *Correspondence e-mail: helen.stoeckli-evans@unine.ch

The whole molecule of the title compound, $\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{~N}_{7}$, is relatively planar, with an r.m.s. deviation of $0.061 \AA$ for all 23 heteroatoms. It exhibits symmetric threecentre (bifurcated) intramolecular hydrogen bonds. In the crystal, molecules are linked by $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds, forming 3_{1} helices propagating along the c-axis direction. Within the helices, there is evidence of offset $\pi-\pi$ stacking being present [intercentroid distances $=3.648$ (6) and 3.832 (6) Å].

3D view

Chemical scheme

Structure description

Symmetrical isoindolines have been synthesized to study a number of properties, such as their birefringence (Wong et al., 2012). The isoindoline 1,3-bis(2-pyridylimino)isoindoline [systematic name: $(1 Z, 3 Z)-N^{1}, N^{3}$-bis(pyridin-2-yl)isoindoline-1,3-diimine], possesses mirror symmetry and exhibits symmetric three-centre (bifurcated) intramolecular hydrogen bonds (Schilf, 2004). Such compounds are ideal tridentate ligands; for example, a series of six bis(pyridylimino)isoindolines with different substituents in the 4-position on the pyridine rings have been used to form homoleptic iron complexes for the study of their temperature-dependent spin and redox states (Scheja et al., 2015). The title compound, the pyrazine analogue of 1,3-bis(2-pyridylimino)isoindoline, was synthesized to study its coordination behaviour with transition metals (Posel, 1998).

The molecular structure of the title compound is illustrated in Fig. 1. The molecule is relatively planar (r.m.s. deviation of $0.061 \AA$ for all 23 heteroatoms), with the two pyridine rings ($\mathrm{N} 4 / \mathrm{C} 6-\mathrm{C} 10$) and ($\mathrm{N} 7 / \mathrm{C} 12-\mathrm{C} 16$) being inclined to each other by 2.7 (5) ${ }^{\circ}$ and to the central pyrrolopyrazine unit (N1/N2/N5/C1-C5/C11) by 4.0 (4) and 4.6 (4) ${ }^{\circ}$, respectively. As in 1,3-bis(2-pyridylimino)isoindoline (Schilf, 2004), the title compound exhibits three-centre (bifurcated) intramolecular hydrogen bonds (Fig. 1 and Table 1), and the configuration about the $\mathrm{C}=\mathrm{N}$ bonds $(\mathrm{C} 5=\mathrm{N} 3$ and $\mathrm{C} 11=\mathrm{N} 6)$ is Z.

In the crystal, molecules are linked by $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds, forming 3_{1} helices propagating along the c-axis direction (Fig. 2 and Table 1). Within the helices there is

Figure 1
The molecular structure of the title compound, with the atom labelling and displacement ellipsoids drawn at the 50% probability level. The intramolecular three-centre (bifurcated) $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds are shown as dashed lines (see Table 1).
evidence of offset $\pi-\pi$ stacking involving the pyrazine ring (N1/N2/C1-C4; centroid Cg2) and pyridine ring (N7/C12-C16; centroid Cg4), and the two pyridine rings (N4/C6-C10; centroid $C g 3$, and $\mathrm{N} 7 / \mathrm{C} 12-\mathrm{C} 16$; centroid $C g 4$): $C g 2 \cdots C g 4^{\mathrm{ii}}=$ 3.648 (6) \AA, interplanar distance $=3.264(4) \AA$, slippage $=$ $1.63 \AA$, and $C g 3 \cdots C g 4^{i i i}=3.832(6) \AA$, interplanar distance $=$ 3.338 (4) \AA, slippage $=1.884 \AA$; symmetry codes: (ii) $x, x-y$, $z+\frac{1}{2}$, (iii) $x, x-y, z-\frac{1}{2}$.

There are small channel-like cavities in the crystal, with a total potential solvent area volume of ca72 \AA^{3} (ca 1.1% of the unit-cell volume). They are represented in brown/yellow in

Figure 2
A partial view along the b axis of the crystal packing of the title compound. The intra- and intermolecular hydrogen bonds are shown as dashed lines (see Table 1; atoms H5N and H2 are shown as grey balls).

Table 1
Hydrogen-bond geometry $\left(\AA \AA^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
N5-H5N $\cdots \mathrm{N} 4$	$0.88(6)$	$2.12(7)$	$2.653(11)$	$119(5)$
N5-H5N $\cdots \mathrm{N} 7$	$0.88(6)$	$2.12(6)$	$2.670(8)$	$120(5)$
C2-H2 \cdots N $^{\mathrm{i}}$	0.93	2.62	$3.395(11)$	141

Symmetry code: (i) $-y+\frac{2}{3}, x-y+\frac{1}{3}, z+\frac{1}{3}$.

Fig. 3. There is no evidence of any residual electron density being present in these cavities on examination of the final difference Fourier map (see Table 2).

Synthesis and crystallization

The title compound was synthesized by the reaction of pyra-zine-2,3-dicarbonitrile with 2-aminopyridine.

Synthesis of pyrazine-2,3-dicarbonitrile (L). 12.5 ml of deionized water in a round-bottomed flask fitted with a reflux condenser was acidified with $\mathrm{H}_{2} \mathrm{SO}_{4}$ (tech.) to $\mathrm{pH}=1$, then with vigorous stirring $2.7 \mathrm{~g}(0.025 \mathrm{~mol})$ of 2,3-diaminomaleonitrile were added. After it had dissolved (temp $=323 \mathrm{~K}$), a suspension of $5.8 \mathrm{~g}(0.03 \mathrm{~mol})$ of a 30% aqueous solution of glyoxal was added slowly dropwise. An orange precipitate was obtained and the suspension was warmed to 370 K and stirred at this temperature for 1.3 h . The suspension was then cooled to room temperature, and the orange product filtered off and washed several times with small amounts of deionized water. Immediately after, the product was purified by dissolving in a mixture of diluted oxalic acid ($2-3 \%$ aqueous solution) and ethanol and heating it almost to boiling point, with the addition of active carbon; the mixture was then heated to reflux for 10 min and filtered immediately. The pale-yellow solution was left overnight in a refrigerator and the next day a white crystalline product was filtered off and washed several times with ethanol. The product was dried under vacuum in a

Figure 3
A view along the c axis of the crystal packing of the title compound. The hydrogen bonds are shown as dashed lines (see Table 1) and only H atoms $\mathrm{H} 5 N$ and H 2 have been included (grey balls). The small cavities (ca 1.1% of the unit-cell volume) are represented in brown/yellow (Mercury; Macrae et al., 2008).

Table 2
Experimental details.

Crystal data	
Chemical formula	$\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{~N}_{7}$
M_{r}	301.32
Crystal system, space group	Trigonal, $R 3 c: H$
Temperature (K)	293
$a, c(\AA)$	$29.781(4), 8.3901(14)$
$V\left(\AA^{3}\right)$	$6444.3(19)$
Z	18
Radiation type	Mo $\mathrm{K} \alpha$
$\mu\left(\mathrm{mm}^{-1}\right)$	0.09
Crystal size (mm)	$0.68 \times 0.19 \times 0.19$
Data collection	
Diffractometer	Stoe Siemens AED2 four-circle
No. of measured, independent and	$7762,2629,1606$
\quad observed $[I>2 \sigma(I)]$ reflections	
$R_{\text {int }}$	0.115
(sin $\theta / \lambda)_{\text {max }}\left(\AA^{-1}\right)$	0.606
Refinement	
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$	$0.066,0.147,1.10$
No. of reflections	2629
No. of parameters	213
No. of restraints	2
H-atom treatment	H atoms treated by a mixture of
	independent and constrained
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA \AA^{-3}\right)$	refinement

Computer programs: STADI4 and X-RED (Stoe \& Cie, 1997), SHELXS97 (Sheldrick, 2008), PLATON (Spek, 2009), Mercury (Macrae et al., 2008), SHELXL2014 (Sheldrick, 2015) and publCIF (Westrip, 2010).
desiccator over silica (yield $2.8 \mathrm{~g}, 86 \%$; m.p. 404-405 K). IR (KBr pellet, cm^{-1}): 3425, 3105, 3075, 3056, 2929, 2818, 2708, 2359, 2296, 2245, 2103, 1977, 1862, 1748, 1645, 1564, 1551, 1525, 1413, 1387, 1270, 1224, 1178, 1143, 1121, 1082, 1053, 990, 972, 876, 865, 695, 613, 574, 537, 470, 446. This compound (CASnumber 13481-25-9) is also available commercially.

Synthesis of the title compound. A round-bottomed flask was charged with $0.65 \mathrm{~g}(5 \mathrm{mmol})$ of $\boldsymbol{L}, 0.06 \mathrm{~g}(0.054 \mathrm{mmol})$ of anhydrous CaCl_{2} and $0.99 \mathrm{~g}(10.5 \mathrm{mmol})$ of 2 -aminopyridine and 25 ml of dry 1-butanol. The mixture was heated for 48 h at 333 K to give a green product. The resulting solution was evaporated to dryness under reduced pressure, and the residue was dissolved in 40 ml of deionized water. The product was extracted several times with chloroform ($4 \times 100 \mathrm{ml}$), then the solution was again evaporated to dryness under
reduced pressure and dried in a vacuum desiccator over silica (yield: $1.35 \mathrm{~g}, 89.6 \%$). The pale-green-brown product was chromatographed over silica (Kieselgel 60 particle size 0.063-$0.200,70-230$ Mesh ASTM, Merck) with chloroform as eluent; the yellow fraction was collected. After evaporated to dryness under reduced pressure, the yellow product obtained was dried in a vacuum desiccator over silica (yield $0.5 \mathrm{~g}, 37 \%$; m.p. 547-548 K). Calculated for $\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{~N}_{7}$ (\%): C 63.78, H 3.68, N 32.54; found: C 63.69 , H 3.89, N 32.40%. IR (KBr pellet, cm^{-1}): 3443, 3057, 1706, 1641, 1607, 1581, 1554, 1477, 1458, $1435,1378,1354,1296,1261,1249,1203,1166,1139,1091,1053$, 998, 870, 790, 736, 725, 705, 538, 484, 431, 413.

Note: Despite many crystallization attempts, it was not possible to obtain suitable crystals of the yellow product. The only crystals of the title compound, suitable for crystal structure analysis, were obtained from reactions of the title compound with metal salts.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. The NH hydrogen was located in a difference Fourier map and freely refined.

Funding information

Funding for this research was provided by: Swiss National Science Foundation; University of Neuchâtel.

References

Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. \& Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.
Posel, M. (1998). PhD thesis, University of Neuchâtel, Switzerland.
Scheja, A., Baade, D., Menzel, D., Pietzonka, C., Schweyen, P. \& Bröring, M. (2015). Chem. Eur. J. 21, 14196-14204.
Schilf, W. (2004). J. Mol. Struct. 691, 141-148.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.
Stoe \& Cie (1997). STADI4 and X-RED. Stoe \& Cie GmbH, Damstadt, Germany.
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
Wong, E. W. Y., Ovens, J. S. \& Leznoff, D. B. (2012). Chem. Eur. J. 18, 6781-6787.

full crystallographic data

IUCrData (2018). 3, x180682 [https://doi.org/10.1107/S241431461800682X]
(5Z,7Z)- N^{5}, N^{\top}-Bis(pyridin-2-yl)-5H-6,7-dihydropyrrolo[3,4-b] pyrazine-5,7-diimine

Maciej Posel and Helen Stoeckli-Evans

(5Z,7Z)- N^{5}, N^{7}-Bis(pyridin-2-yl)-5H-6,7-dihydropyrrolo[3,4-b]pyrazine-5,7-diimine

Crystal data

$\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{~N}_{7}$
$M_{r}=301.32$
Trigonal, $R 3 c: H$
$a=29.781$ (4) \AA
$c=8.3901(14) \AA$
$V=6444.3(19) \AA^{3}$
$Z=18$
$F(000)=2808$

Data collection

Stoe Siemens AED2 four-circle
diffractometer
Radiation source: fine-focus sealed tube
Plane graphite monochromator
$\omega / 2 \theta$ scans
7762 measured reflections
2629 independent reflections
1606 reflections with $I>2 \sigma(I)$
$D_{\mathrm{x}}=1.398 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71069 \AA$
Cell parameters from 17 reflections
$\theta=12.8-19.2^{\circ}$
$\mu=0.09 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Rod, brown
$0.68 \times 0.19 \times 0.19 \mathrm{~mm}$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.066$
$w R\left(F^{2}\right)=0.147$
$S=1.10$
2629 reflections
213 parameters
2 restraints
Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
$R_{\text {int }}=0.115$
$\theta_{\text {max }}=25.5^{\circ}, \theta_{\text {min }}=2.4^{\circ}$
$h=-35 \rightarrow 36$
$k=-18 \rightarrow 36$
$l=-10 \rightarrow 9$
3 standard reflections every 60 min
intensity decay: 2%

Hydrogen site location: mixed
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0368 P)^{2}+9.7595 P\right]$
where $P=\left(F_{0}^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=0.19 \mathrm{e}^{-3} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.18 \mathrm{e}^{-3}$
Extinction correction: SHELXL2014 (Sheldrick, 2015),
$\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$
Extinction coefficient: 0.0017 (2)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
N1	0.3344 (2)	0.1923 (2)	0.7094 (7)	0.0466 (16)
N2	0.2900 (2)	0.2525 (2)	0.5971 (7)	0.0469 (17)
N3	0.1969 (3)	0.1841 (2)	0.3886 (7)	0.0461 (17)
N4	0.1451 (3)	0.1023 (3)	0.2631 (9)	0.066 (2)
N5	0.2247 (2)	0.1224 (2)	0.4508 (7)	0.0387 (15)
H5N	0.201 (2)	0.095 (2)	0.399 (8)	0.07 (3)*
N6	0.2733 (2)	0.0847 (2)	0.5673 (7)	0.0405 (15)
N7	0.2067 (3)	0.0269 (2)	0.3879 (8)	0.0466 (17)
C1	0.3524 (3)	0.2415 (3)	0.7485 (10)	0.051 (2)
H1	0.3811	0.2573	0.8156	0.061*
C2	0.3310 (3)	0.2710 (3)	0.6946 (10)	0.051 (2)
H2	0.3459	0.3053	0.7283	0.062*
C3	0.2718 (3)	0.2029 (3)	0.5587 (8)	0.0383 (18)
C4	0.2929 (3)	0.1738 (3)	0.6132 (8)	0.0369 (18)
C5	0.2269 (3)	0.1699 (3)	0.4560 (9)	0.0412 (18)
C6	0.1564 (3)	0.1507 (4)	0.2875 (9)	0.050 (2)
C7	0.1303 (4)	0.1729 (4)	0.2118 (11)	0.064 (3)
H7	0.1391	0.2071	0.2320	0.077*
C8	0.0912 (4)	0.1426 (5)	0.1063 (12)	0.078 (3)
H8	0.0734	0.1563	0.0530	0.093*
C9	0.0785 (4)	0.0923 (5)	0.0803 (12)	0.087 (4)
H9	0.0519	0.0711	0.0106	0.105*
C10	0.1060 (4)	0.0741 (4)	0.1597 (14)	0.090 (3)
H10	0.0975	0.0399	0.1417	0.108*
C11	0.2634 (3)	0.1217 (3)	0.5432 (8)	0.0365 (17)
C12	0.2447 (3)	0.0363 (3)	0.4909 (9)	0.0401 (17)
C13	0.2587 (3)	-0.0006 (3)	0.5267 (11)	0.054 (2)
H13	0.2854	0.0070	0.5984	0.065*
C14	0.2327 (4)	-0.0486 (3)	0.4549 (11)	0.065 (3)
H14	0.2411	-0.0741	0.4785	0.078*
C15	0.1944 (4)	-0.0579 (3)	0.3483 (11)	0.063 (3)
H15	0.1767	-0.0897	0.2962	0.075*
C16	0.1822 (3)	-0.0197 (3)	0.3189 (11)	0.054 (2)
H16	0.1557	-0.0267	0.2473	0.064*

Atomic displacement parameters $\left(\hat{A}^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	$0.043(4)$	$0.045(4)$	$0.050(4)$	$0.021(3)$	$-0.007(3)$	$-0.007(3)$

N2	$0.057(4)$	$0.035(4)$	$0.046(4)$	$0.021(3)$	$0.005(4)$	$0.000(3)$
N3	$0.054(4)$	$0.054(4)$	$0.041(4)$	$0.035(4)$	$-0.002(3)$	$0.002(3)$
N4	$0.058(5)$	$0.059(5)$	$0.079(6)$	$0.027(4)$	$-0.018(4)$	$-0.007(4)$
N5	$0.040(4)$	$0.033(4)$	$0.042(4)$	$0.018(3)$	$-0.008(3)$	$-0.001(3)$
N6	$0.042(4)$	$0.037(4)$	$0.045(4)$	$0.021(3)$	$-0.002(3)$	$-0.003(3)$
N7	$0.050(4)$	$0.034(4)$	$0.052(4)$	$0.019(3)$	$-0.003(3)$	$-0.002(3)$
C1	$0.047(5)$	$0.049(5)$	$0.052(5)$	$0.021(4)$	$-0.003(4)$	$-0.006(4)$
C2	$0.057(5)$	$0.037(5)$	$0.052(5)$	$0.016(4)$	$0.001(4)$	$-0.007(4)$
C3	$0.046(5)$	$0.036(4)$	$0.033(4)$	$0.021(4)$	$0.002(3)$	$0.004(3)$
C4	$0.037(4)$	$0.035(4)$	$0.036(4)$	$0.016(4)$	$0.007(3)$	$0.002(3)$
C5	$0.046(5)$	$0.037(4)$	$0.043(5)$	$0.023(4)$	$0.008(4)$	$0.002(4)$
C6	$0.048(5)$	$0.065(6)$	$0.044(5)$	$0.034(5)$	$0.006(4)$	$0.004(4)$
C7	$0.068(6)$	$0.103(8)$	$0.043(5)$	$0.059(6)$	$0.003(5)$	$0.000(5)$
C8	$0.075(7)$	$0.138(10)$	$0.054(6)$	$0.079(8)$	$-0.001(5)$	$0.003(7)$
C9	$0.061(7)$	$0.136(10)$	$0.072(7)$	$0.055(7)$	$-0.022(5)$	$-0.023(7)$
C10	$0.074(7)$	$0.083(8)$	$0.100(8)$	$0.030(6)$	$-0.034(7)$	$-0.027(7)$
C11	$0.037(4)$	$0.038(4)$	$0.038(4)$	$0.021(4)$	$0.006(3)$	$0.003(3)$
C12	$0.045(4)$	$0.031(4)$	$0.044(4)$	$0.019(4)$	$0.010(4)$	$0.004(3)$
C13	$0.062(5)$	$0.050(5)$	$0.062(5)$	$0.038(5)$	$0.001(4)$	$-0.001(4)$
C14	$0.087(7)$	$0.049(6)$	$0.071(6)$	$0.043(6)$	$0.012(6)$	$0.005(5)$
C15	$0.079(7)$	$0.038(5)$	$0.062(6)$	$0.023(5)$	$0.012(5)$	$0.003(4)$
C16	$0.056(5)$	$0.043(5)$	$0.055(5)$	$0.019(4)$	$-0.006(4)$	$-0.004(4)$

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

N1-C1	$1.324(9)$	C3-C5	$1.477(10)$
N1-C4	$1.341(9)$	$\mathrm{C} 4-\mathrm{C} 11$	$1.472(9)$
N2-C3	$1.335(9)$	$\mathrm{C} 6-\mathrm{C} 7$	$1.400(11)$
N2-C2	$1.338(10)$	$\mathrm{C} 7-\mathrm{C} 8$	$1.380(13)$
N3-C5	$1.293(9)$	$\mathrm{C} 7-\mathrm{H} 7$	0.9300
N3-C6	$1.402(10)$	$\mathrm{C} 8-\mathrm{C} 9$	$1.367(14)$
N4-C6	$1.319(11)$	$\mathrm{C} 8-\mathrm{H} 8$	0.9300
N4-C10	$1.354(11)$	$\mathrm{C} 9-\mathrm{C} 10$	$1.362(14)$
N5-C5	$1.384(8)$	C9-H9	0.9300
N5-C11	$1.397(9)$	C10-H10	0.9300
N5-H5N	$0.88(3)$	C12-C13	$1.389(10)$
N6-C11	$1.288(9)$	C13-C14	$1.378(11)$
N6-C12	$1.410(9)$	C13-H13	0.9300
N7-C16	$1.335(9)$	C14-C15	$1.364(12)$
N7-C12	$1.340(9)$	C14-H14	0.9300
C1-C2	$1.396(11)$	C15-C16	$1.379(11)$
C1-H1	0.9300	C15-H15	0.9300
C2-H2	0.9300	C16-H16	0.9300
C3-C4	$1.377(10)$		
C1-N1-C4	$112.6(7)$	C6-C7-H7	
C3-N2-C2	$112.6(7)$	C9-C8-C7	121.1
C5-N3-C6	$121.5(7)$	C9-C8-H8	$120.0(9)$

C6-N4-C10	116.7 (8)
C5-N5-C11	112.3 (6)
C5-N5-H5N	123 (6)
C11-N5-H5N	124 (6)
C11-N6-C12	121.6 (6)
C16-N7-C12	117.4 (7)
N1-C1-C2	123.8 (8)
N1-C1-H1	118.1
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1$	118.1
N2-C2-C1	123.3 (7)
N2-C2-H2	118.3
C1-C2-H2	118.3
N2-C3-C4	123.8 (7)
N2-C3-C5	127.4 (7)
C4-C3-C5	108.7 (6)
N1-C4-C3	123.9 (7)
N1-C4-C11	127.9 (7)
C3-C4-C11	108.2 (6)
N3-C5-N5	129.2 (7)
N3-C5-C3	125.5 (7)
N5-C5-C3	105.2 (6)
N4-C6-C7	123.1 (9)
N4-C6-N3	121.9 (7)
C7-C6-N3	115.0 (8)
C8-C7-C6	117.9 (10)
C8-C7-H7	121.1
$\mathrm{C} 4-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	-0.4 (11)
$\mathrm{C} 3-\mathrm{N} 2-\mathrm{C} 2-\mathrm{C} 1$	0.6 (11)
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{N} 2$	-0.4 (13)
$\mathrm{C} 2-\mathrm{N} 2-\mathrm{C} 3-\mathrm{C} 4$	-0.1 (10)
$\mathrm{C} 2-\mathrm{N} 2-\mathrm{C} 3-\mathrm{C} 5$	179.1 (7)
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 4-\mathrm{C} 3$	0.9 (10)
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 4-\mathrm{C} 11$	178.6 (7)
N2-C3-C4-N1	-0.8 (11)
C5-C3-C4-N1	179.9 (7)
N2-C3-C4-C11	-178.8 (6)
C5-C3-C4-C11	1.8 (7)
C6-N3-C5-N5	-3.1(12)
C6-N3-C5-C3	177.3 (6)
C11-N5-C5-N3	-178.4 (7)
C11-N5-C5-C3	1.2 (8)
N2-C3-C5-N3	-1.5 (12)
C4-C3-C5-N3	177.8 (7)
N2-C3-C5-N5	178.8 (7)
C4-C3-C5-N5	-1.9 (8)
C10-N4-C6-C7	-0.2 (13)
C10-N4-C6-N3	-178.2 (8)

$\mathrm{C} 7-\mathrm{C} 8-\mathrm{H} 8$	120.0
$\mathrm{C} 10-\mathrm{C} 9-\mathrm{C} 8$	$117.8(10)$
$\mathrm{C} 10-\mathrm{C} 9-\mathrm{H} 9$	121.1
$\mathrm{C} 8-\mathrm{C} 9-\mathrm{H} 9$	121.1
$\mathrm{~N} 4-\mathrm{C} 10-\mathrm{C} 9$	$124.5(10)$
$\mathrm{N} 4-\mathrm{C} 10-\mathrm{H} 10$	117.7
$\mathrm{C} 9-\mathrm{C} 10-\mathrm{H} 10$	117.7
$\mathrm{~N} 6-\mathrm{C} 11-\mathrm{N} 5$	$129.9(6)$
$\mathrm{N} 6-\mathrm{C} 11-\mathrm{C} 4$	$124.6(6)$
$\mathrm{N} 5-\mathrm{C} 11-\mathrm{C} 4$	$105.5(6)$
$\mathrm{N} 7-\mathrm{C} 12-\mathrm{C} 13$	$122.2(7)$
$\mathrm{N} 7-\mathrm{C} 12-\mathrm{N} 6$	$121.4(6)$
$\mathrm{C} 13-\mathrm{C} 12-\mathrm{N} 6$	$116.5(7)$
$\mathrm{C} 14-\mathrm{C} 13-\mathrm{C} 12$	$119.4(8)$
$\mathrm{C} 14-\mathrm{C} 13-\mathrm{H} 13$	120.3
$\mathrm{C} 12-\mathrm{C} 13-\mathrm{H} 13$	120.3
$\mathrm{C} 15-\mathrm{C} 14-\mathrm{C} 13$	$118.5(8)$
$\mathrm{C} 15-\mathrm{C} 14-\mathrm{H} 14$	120.8
$\mathrm{C} 13-\mathrm{C} 14-\mathrm{H} 14$	120.8
$\mathrm{C} 14-\mathrm{C} 15-\mathrm{C} 16$	$119.2(9)$
C14-C15-H15	120.4
C16-C15-H15	120.4
N7-C16-C15	$123.4(8)$
N7-C16-H16	118.3
C15-C16-H16	118.3

$\mathrm{N} 3-\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8$	$177.8(7)$
$\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9$	$0.9(13)$
$\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10$	$-0.8(16)$
$\mathrm{C} 6-\mathrm{N} 4-\mathrm{C} 10-\mathrm{C} 9$	$0.3(17)$
$\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10-\mathrm{N} 4$	$0.2(19)$
$\mathrm{C} 12-\mathrm{N} 6-\mathrm{C} 11-\mathrm{N} 5$	$2.8(11)$
$\mathrm{C} 12-\mathrm{N} 6-\mathrm{C} 11-\mathrm{C} 4$	$-177.3(6)$
$\mathrm{C} 5-\mathrm{N} 5-\mathrm{C} 11-\mathrm{N} 6$	$179.8(7)$
$\mathrm{C} 5-\mathrm{N} 5-\mathrm{C} 11-\mathrm{C} 4$	$-0.1(8)$
$\mathrm{N} 1-\mathrm{C} 4-\mathrm{C} 11-\mathrm{N} 6$	$1.0(11)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 11-\mathrm{N} 6$	$179.0(7)$
$\mathrm{N} 1-\mathrm{C} 4-\mathrm{C} 11-\mathrm{N} 5$	$-179.1(7)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 11-\mathrm{N} 5$	$-1.1(7)$
$\mathrm{C} 16-\mathrm{N} 7-\mathrm{C} 12-\mathrm{C} 13$	$-0.2(11)$
$\mathrm{C} 16-\mathrm{N} 7-\mathrm{C} 12-\mathrm{N} 6$	$178.8(7)$
$\mathrm{C} 11-\mathrm{N} 6-\mathrm{C} 12-\mathrm{N} 7$	$1.2(10)$
$\mathrm{C} 11-\mathrm{N} 6-\mathrm{C} 12-\mathrm{C} 13$	$-179.7(7)$
N7-C12-C13-C14	$-0.2(12)$
$\mathrm{N} 6-\mathrm{C} 12-\mathrm{C} 13-\mathrm{C} 14$	$-179.3(7)$
C12-C13-C14-C15	$1.1(13)$
C13-C14-C15-C16	$-1.4(13)$

$\mathrm{C} 5-\mathrm{N} 3-\mathrm{C} 6-\mathrm{N} 4$	$3.7(11)$	$\mathrm{C} 12-\mathrm{N} 7-\mathrm{C} 16-\mathrm{C} 15$	$-0.2(12)$
$\mathrm{C} 5-\mathrm{N} 3-\mathrm{C} 6-\mathrm{C} 7$	$-174.4(7)$	$\mathrm{C} 14-\mathrm{C} 15-\mathrm{C} 16-\mathrm{N} 7$	$1.0(13)$
$\mathrm{N} 4-\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8$	$-0.4(13)$		

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 5 — \mathrm{H} 5 N \cdots \mathrm{~N} 4$	$0.88(6)$	$2.12(7)$	$2.653(11)$	$119(5)$
$\mathrm{N} 5 — \mathrm{H} 5 N \cdots \mathrm{~N} 7$	$0.88(6)$	$2.12(6)$	$2.670(8)$	$120(5)$
$\mathrm{C} 2 — \mathrm{H} 2 \cdots \mathrm{~N} 2^{\mathrm{i}}$	0.93	2.62	$3.395(11)$	141

Symmetry code: (i) $-y+2 / 3, x-y+1 / 3, z+1 / 3$.

