

IUCrData

ISSN 2414-3146

Received 30 May 2018 Accepted 3 June 2018

Edited by W. T. A. Harrison, University of Aberdeen, Scotland

Keywords: crystal structure; 2,3-dihydro-1*H*indene ring system; N—H···O hydrogen bonds; π - π stacking interaction.

CCDC reference: 1846924

Structural data: full structural data are available from iucrdata.iucr.org

N-(4-Chlorophenyl)-*N*'-{4-[(*Z*)-hydroxy(1-oxo-1,3-dihydro-2*H*-inden-2-ylidene)methyl]phenyl}urea

Ísmail Çelik,^a Zeliha Atioğlu,^b Gamze Ordu,^c Hayreddin Gezegen^d and Mehmet Akkurt^e*

^aDepartment of Physics, Faculty of Sciences, Cumhuriyet University, 58140 Sivas, Turkey, ^bilke Education and Health Foundation, Cappadocia University, Cappadocia Vocational College, The Medical Imaging Techniques Program, 50420 Mustafapaşa, Ürgüp, Nevşehir, Turkey, ^cCumhuriyet University, Institute of Science, Department of Physics, 58140 Sivas, Turkey, ^dDepartment of Nutrition and Dietetics, Faculty of Health Sciences, Cumhuriyet University, 58140 Sivas, Turkey, and ^eDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey. *Correspondence e-mail: akkurt@erciyes.edu.tr

In the title compound, $C_{23}H_{17}ClN_2O_3$, the 2,3-dihydro-1*H*-indene ring system (r.m.s deviation = 0.004 Å) subtends dihedral angles of 81.12 (16) and 7.56 (14)° with the chlorophenyl and benzene rings, respectively. The molecular conformation features an intramolecular O-H···O hydrogen bond, forming an *S*(6) ring motif. In the crystal, molecules are linked by N-H···O hydrogen bonds generating [100] chains featuring $R_1^2(6)$ loops. Weak aromatic π - π stacking [centroid–centroid distance = 3.656 (2) Å] is also oberved.

Structure description

Organic compounds containing the phenylurea unit are known to be valuable in terms of biological activity (Jiang *et al.*, 2016; Sikka *et al.*, 2015). As part of our studies in this area, we new report the crystal structure (Fig. 1) of the title compound (Gezegen *et al.*, 2017).

The 2,3-dihydro-1*H*-indene ring system (C15–C23) is essentially planar (r.m.s deviation = 0.004 Å), and is inclined at dihedral angles of 81.12 (16) and 7.56 (14)° with the chlorophenyl (C1–C6) and benzene (C8–C13) rings, respectively. The N–(C=O)–N plane involving the urea group is oriented at dihedral angles of 54.36 (17), 40.01 (15) and 56.15 (14)°, respectively, with the chlorophenyl ring, the benzene ring and the 2,3-dihydro-1*H*-indene ring system, respectively. The bond lengths and the bond angles of the title structure are within their normal ranges and are comparable to related structures (*e.g.* Yassine *et al.*, 2015; Mague *et al.*, 2015). The molecular conformation of the title

Table 1			
Hydrogen-bond geometry	(Å,	°).	

$D - H \cdot \cdot \cdot A$	D-H	$H \cdots A$	$D \cdots A$	$D - H \cdots A$
$O2-H2O\cdots O3$	0.89(5)	1.71 (5)	2.543 (4)	154 (5)
$N1 - H1N \cdots O1$ $N2 - H2N \cdots O1^{i}$	0.87(6) 0.81(5)	2.03 (5) 2.18 (5)	2.835 (4) 2.904 (4)	138 (4) 148 (4)

Symmetry code: (i) x + 1, y, z.

compound is consolidated by an intramolecular $O-H\cdots O$ hydrogen bond, forming an S(6) ring motif (Table 1).

In the crystal, adjacent molecules are linked by N-H···O hydrogen bonds (Fig. 2), generating infinite [100] chains incorporating $R_1^2(6)$ loops. In addition, weak aromatic $\pi - \pi$

Figure 1

The molecular structure of the title compound, showing displacement ellipsoids drawn at the 50\% probability level.

Figure 2

A view along the c axis of the crystal packing of the title compound. H bonds are shown as dashed lines and H atoms not involved in these interactions have been omitted for clarity.

stacking interactions are observed $[Cg1\cdots Cg4^i = 3.656 (2) \text{ Å}; Cg1 \text{ and } Cg4 \text{ are the centroids of the five- and six-membered rings (C15–C17/C22/C23 and C17–C22) of the 2,3-dihydro-1$ *H*-indene ring system, respectively; symmetry code: (i), <math>x + 1, y, z].

Synthesis and crystallization

For the systhesis of the title compound, see: Gezegen *et al.*, 2017. The crystals were grown from a DMSO solution by slow evaporation.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

Acknowledgements

The authors are indebted to the X-ray laboratory of Sinop University Scientific and Technological Applied and Research Center, Sinop, Turkey, for use of the X-ray diffractometer.

Crystal data	
Chemical formula	$C_{23}H_{17}CIN_2O_3$
M.	404 84
Crystal system, space group	Triclinic. P1
Temperature (K)	296
a. b. c (Å)	4.6032 (4), 6.9338 (8), 15.4421
α, β, γ (°)	89.811 (4), 87.510 (3), 70.866
$V(A^3)$	465.18 (8)
Z	1
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	0.23
Crystal size (mm)	$0.16 \times 0.14 \times 0.10$
Data collection	
Diffractometer	Bruker APEXII CCD
Absorption correction	Multi-scan (<i>SADABS</i> ; Sheldr 2003)
T_{\min}, T_{\max}	0.680, 0.744
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	16956, 4386, 3678
R _{int}	0.039
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.668
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.041, 0.102, 1.11
No. of reflections	4386
No. of parameters	276
No. of restraints	3
H-atom treatment	H atoms treated by a mixture independent and constrain refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({\rm e} {\rm \AA}^{-3})$	0.22, -0.19
Absolute structure	Flack (1983)
Absolute structure parameter	0.05 (10)

Computer programs: *APEX2* and *SAINT* (Bruker, 2007), *SHELXS97* (Sheldrick, 2008), *SHELXL2014* (Sheldrick, 2015), *ORTEP-3 for Windows* (Farrugia, 2012) and *PLATON* (Spek, 2009).

Funding information

This work was supported by the Scientific Research Project Fund of Cumhuriyet University under the project number F-585. The authors are indebted to the Technical Research Council of Turkey (grant TUBİTAK-114Z634) for the financial support of the synthesis of the compound reported in this work.

References

Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.

Flack, H. D. (1983). Acta Cryst. A39, 876-881.

- Gezegen, H., Hepokur, C., Tutar, U. & Ceylan, M. (2017). Chem. Biodivers. 14, e1700223.
- Jiang, N., Bu, Y., Wang, Y., Nie, M., Zhang, D. & Zhai, X. (2016). Molecules, 21, 1572–1583.
- Mague, J. T., Mohamed, S. K., Akkurt, M., Omran, O. A. & Albayati, M. R. (2015). Acta Cryst. E71, 088–089.
- Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Sikka, P., Sahu, J. K., Mishra, A. K. & Hashim, S. R. (2015). Med. Chem. 5, 479–483.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Yassine, H., Khouili, M., El Ammari, L., Saadi, M. & Ketatni, E. M. (2015). Acta Cryst. E**71**, o297–o298.

full crystallographic data

IUCrData (2018). **3**, x180817 [https://doi.org/10.1107/S2414314618008179]

N-(4-Chlorophenyl)-*N*'-{4-[(*Z*)-hydroxy(1-oxo-1,3-dihydro-2*H*-inden-2-yl-idene)methyl]phenyl}urea

Ísmail Çelik, Zeliha Atioğlu, Gamze Ordu, Hayreddin Gezegen and Mehmet Akkurt

N-(4-Chlorophenyl)-N'-{4-[(Z)-hydroxy(1-oxo-1,3-dihydro-2H-inden-2-ylidene)methyl]phenyl}urea

Crystal data

C₂₃H₁₇ClN₂O₃ $M_r = 404.84$ Triclinic, P1 Hall symbol: P 1 a = 4.6032 (4) Å b = 6.9338 (8) Å c = 15.4421 (15) Å $\alpha = 89.811$ (4)° $\beta = 87.510$ (3)° $\gamma = 70.866$ (3)° V = 465.18 (8) Å³

Data collection

Bruker APEXII CCD diffractometer φ and ω scans Absorption correction: multi-scan (SADABS; Sheldrick, 2003) $T_{\min} = 0.680, T_{\max} = 0.744$ 16956 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.041$ $wR(F^2) = 0.102$ S = 1.114386 reflections 276 parameters 3 restraints Primary atom site location: structure-invariant direct methods Hydrogen site location: mixed Z = 1 F(000) = 210 $D_x = 1.445 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 9876 reflections $\theta = 3.1-28.3^{\circ}$ $\mu = 0.23 \text{ mm}^{-1}$ T = 296 K Block, yellow $0.16 \times 0.14 \times 0.10 \text{ mm}$

4386 independent reflections 3678 reflections with $I > 2\sigma(I)$ $R_{int} = 0.039$ $\theta_{max} = 28.4^{\circ}, \ \theta_{min} = 3.1^{\circ}$ $h = -6 \rightarrow 5$ $k = -9 \rightarrow 9$ $l = -20 \rightarrow 20$

H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0294P)^2 + 0.143P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.22$ e Å⁻³ $\Delta\rho_{min} = -0.19$ e Å⁻³ Extinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc² λ^3 /sin(2 θ)]^{-1/4} Extinction coefficient: 0.128 (16) Absolute structure: Flack (1983) Absolute structure parameter: 0.05 (10)

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. The H-atoms of the OH and NH groups were freely refined [O—H = 0.89 (5) Å, N—H = 0.87 (6) and 0.81 (5) Å]. The C-bound H-atoms were placed at calculated positions, with C—H = 0.93 - 0.97 Å, and refined as riding on their carrier C-atom, with $U_{iso}(H) = 1.2U_{eo}(C)$.

Refinement on F^2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The observed criterion of $F^2 > 2$ sigma(F^2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
C1	0.5548 (8)	0.8679 (5)	0.1780 (2)	0.0429 (8)
H1	0.5605	0.7338	0.1700	0.051*
C2	0.3778 (9)	1.0201 (6)	0.1255 (3)	0.0515 (9)
H2	0.2630	0.9891	0.0828	0.062*
C3	0.3741 (9)	1.2159 (5)	0.1371 (2)	0.0515 (10)
C4	0.5390 (10)	1.2646 (5)	0.1997 (3)	0.0576 (11)
H4	0.5330	1.3990	0.2070	0.069*
C5	0.7158 (9)	1.1128 (5)	0.2523 (2)	0.0491 (9)
Н5	0.8301	1.1452	0.2948	0.059*
C6	0.7226 (6)	0.9138 (4)	0.2420 (2)	0.0335 (6)
C7	0.8067 (6)	0.6309 (4)	0.3429 (2)	0.0310 (6)
C8	0.9592 (6)	0.3525 (4)	0.4474 (2)	0.0330 (7)
С9	0.7154 (7)	0.4119 (4)	0.5074 (2)	0.0387 (7)
Н9	0.5857	0.5468	0.5092	0.046*
C10	0.6618 (7)	0.2726 (4)	0.5648 (2)	0.0389 (7)
H10	0.4958	0.3155	0.6048	0.047*
C11	0.8519 (7)	0.0691 (4)	0.5639 (2)	0.0333 (6)
C12	1.0962 (7)	0.0118 (5)	0.5029 (2)	0.0409 (8)
H12	1.2259	-0.1231	0.5004	0.049*
C13	1.1506 (8)	0.1517 (5)	0.4456 (2)	0.0425 (8)
H13	1.3170	0.1102	0.4057	0.051*
C14	0.8025 (7)	-0.0849 (4)	0.6237 (2)	0.0361 (7)
C15	0.5883 (7)	-0.0554 (5)	0.6905 (2)	0.0374 (7)
C16	0.3507 (7)	0.1363 (5)	0.7274 (2)	0.0384 (7)
H16A	0.4470	0.2324	0.7473	0.046*
H16B	0.2022	0.2020	0.6848	0.046*
C17	0.2012 (8)	0.0579 (5)	0.8020 (2)	0.0403 (7)
C18	-0.0360 (9)	0.1673 (6)	0.8598 (2)	0.0526 (9)
H18	-0.1205	0.3085	0.8565	0.063*
C19	-0.1423 (10)	0.0608 (7)	0.9221 (3)	0.0630 (11)
H19	-0.3000	0.1321	0.9612	0.076*
C20	-0.0203 (10)	-0.1495 (7)	0.9279 (3)	0.0630 (11)
H20	-0.0976	-0.2170	0.9705	0.076*

C21	0.2155 (10)	-0.2602 (6)	0.8710 (3)	0.0560 (10)
H21	0.2989	-0.4015	0.8746	0.067*
C22	0.3231 (8)	-0.1528 (5)	0.8084 (2)	0.0423 (8)
C23	0.5676 (8)	-0.2277 (5)	0.7414 (2)	0.0424 (8)
Cl1	0.1535 (3)	1.40938 (18)	0.07167 (9)	0.0914 (5)
N1	0.9113 (6)	0.7605 (4)	0.29524 (19)	0.0409 (7)
N2	1.0222 (6)	0.4939 (4)	0.38897 (19)	0.0394 (7)
01	0.5366 (5)	0.6352 (4)	0.34347 (17)	0.0434 (6)
O2	0.9969 (6)	-0.2732 (3)	0.60665 (19)	0.0527 (7)
03	0.7349 (7)	-0.4103 (3)	0.72891 (19)	0.0589 (7)
H2N	1.202 (10)	0.487 (6)	0.383 (3)	0.052 (11)*
H1N	1.100 (12)	0.752 (7)	0.303 (3)	0.064 (13)*
H2O	0.955 (12)	-0.353 (8)	0.647 (3)	0.083 (16)*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.1031 (10)	0.0650 (7)	0.0752 (8)	0.0144 (6)	-0.0048 (7)	0.0354 (6)
O1	0.0243 (11)	0.0494 (13)	0.0607 (14)	-0.0172 (10)	-0.0089 (9)	0.0211 (11)
O2	0.0614 (16)	0.0255 (11)	0.0601 (16)	-0.0012 (10)	0.0120 (12)	0.0047 (11)
O3	0.0753 (19)	0.0300 (12)	0.0624 (17)	-0.0063 (12)	0.0066 (14)	0.0116 (11)
N1	0.0239 (13)	0.0464 (15)	0.0561 (18)	-0.0162 (11)	-0.0072 (12)	0.0212 (13)
N2	0.0199 (13)	0.0440 (15)	0.0556 (17)	-0.0122 (11)	-0.0050 (11)	0.0180 (12)
C1	0.0452 (19)	0.0348 (16)	0.049 (2)	-0.0133 (14)	-0.0077 (15)	0.0064 (14)
C2	0.055 (2)	0.050(2)	0.047 (2)	-0.0142 (17)	-0.0103 (17)	0.0118 (17)
C3	0.053 (2)	0.0430 (18)	0.044 (2)	0.0024 (16)	0.0071 (16)	0.0151 (15)
C4	0.084 (3)	0.0302 (17)	0.056 (2)	-0.0173 (18)	0.005 (2)	0.0048 (15)
C5	0.063 (2)	0.0416 (18)	0.048 (2)	-0.0242 (16)	-0.0075 (17)	0.0037 (15)
C6	0.0261 (14)	0.0352 (15)	0.0399 (16)	-0.0111 (11)	0.0006 (12)	0.0100 (12)
C7	0.0213 (14)	0.0319 (14)	0.0403 (16)	-0.0097 (11)	-0.0011 (11)	0.0053 (12)
C8	0.0268 (15)	0.0333 (15)	0.0403 (17)	-0.0109 (12)	-0.0079 (12)	0.0090 (12)
C9	0.0355 (17)	0.0269 (14)	0.0485 (19)	-0.0035 (12)	0.0002 (14)	0.0059 (13)
C10	0.0357 (17)	0.0318 (16)	0.0437 (19)	-0.0044 (13)	0.0048 (13)	0.0039 (13)
C11	0.0345 (15)	0.0283 (14)	0.0366 (16)	-0.0091 (11)	-0.0065 (12)	0.0034 (12)
C12	0.0406 (18)	0.0268 (15)	0.048 (2)	-0.0009 (13)	-0.0018 (14)	0.0046 (14)
C13	0.0330 (17)	0.0430 (17)	0.0455 (19)	-0.0051 (13)	0.0036 (14)	0.0067 (14)
C14	0.0390 (17)	0.0256 (14)	0.0403 (16)	-0.0056 (12)	-0.0057 (13)	0.0033 (12)
C15	0.0420 (17)	0.0308 (14)	0.0383 (16)	-0.0100 (12)	-0.0059 (13)	0.0090 (12)
C16	0.0404 (17)	0.0332 (15)	0.0377 (17)	-0.0060 (12)	-0.0061 (13)	0.0074 (12)
C17	0.0397 (18)	0.0443 (18)	0.0345 (17)	-0.0100 (14)	-0.0056 (13)	0.0082 (14)
C18	0.052 (2)	0.053 (2)	0.045 (2)	-0.0068 (17)	-0.0007 (16)	0.0094 (17)
C19	0.056 (2)	0.075 (3)	0.047 (2)	-0.009 (2)	0.0057 (18)	0.014 (2)
C20	0.060 (3)	0.073 (3)	0.052 (2)	-0.018 (2)	0.0037 (19)	0.024 (2)
C21	0.059 (2)	0.052 (2)	0.055 (2)	-0.0158 (18)	-0.0078 (18)	0.0229 (18)
C22	0.0459 (19)	0.0421 (17)	0.0383 (18)	-0.0126 (14)	-0.0092 (14)	0.0112 (14)
C23	0.0503 (19)	0.0352 (16)	0.0406 (18)	-0.0120 (14)	-0.0072 (14)	0.0078 (13)

Geometric parameters (Å, °)

C11—C3	1.743 (4)	C15—C16	1.512 (5)
O1—C7	1.234 (4)	C15—C23	1.455 (5)
O2—C14	1.338 (3)	C16—C17	1.506 (5)
O3—C23	1.258 (4)	C17—C18	1.393 (5)
N1—C6	1.418 (4)	C17—C22	1.388 (5)
N1—C7	1.353 (4)	C18—C19	1.379 (6)
N2—C7	1.353 (4)	C19—C20	1.384 (6)
N2—C8	1.420 (4)	C20—C21	1.384 (7)
02—H2O	0.89 (5)	C21—C22	1.389 (6)
C1-C2	1.387 (5)	C_{22} C_{23}	1.458 (5)
C1-C6	1 380 (5)	C1—H1	0.9300
N1—H1N	0.87(6)	C2H2	0.9300
N2—H2N	0.87(0)	C4—H4	0.9300
C_2	1 365 (5)	С5—Н5	0.9300
$C_2 = C_3$	1.363 (6)	С9—Н9	0.9300
C_{3}	1.305 (0)	C_{10} H_{10}	0.9300
C_{4}	1.380(3)	C12 H12	0.9300
C_{3}	1.300(4)	C12—1112 C13—1112	0.9300
C_{0}	1.377(4)		0.9300
$C_0 = C_{10}$	1.362 (4)		0.9700
C_{2}	1.362 (4)		0.9700
	1.395 (4)		0.9300
	1.4/6 (4)	C19—H19	0.9300
	1.388 (5)	C20—H20	0.9300
C12—C13	1.386 (5)	C21—H21	0.9300
C14—C15	1.363 (5)		
C6—N1—C7	123.5 (3)	C17—C18—C19	118.3 (4)
C7—N2—C8	124.3 (3)	C18—C19—C20	121.7 (4)
C14—O2—H2O	106 (3)	C19—C20—C21	120.7 (4)
C2—C1—C6	120.5 (3)	C20—C21—C22	117.6 (4)
C7—N1—H1N	115 (3)	C17—C22—C21	122.0 (3)
C6—N1—H1N	121 (3)	C17—C22—C23	108.4 (3)
C1—C2—C3	119.2 (4)	C21—C22—C23	129.6 (3)
C8—N2—H2N	116 (3)	O3—C23—C22	126.3 (3)
C7—N2—H2N	120 (3)	C15—C23—C22	108.7 (3)
Cl1—C3—C4	118.8 (3)	O3—C23—C15	125.0 (3)
C2—C3—C4	121.2 (3)	C2—C1—H1	120.00
Cl1—C3—C2	120.0 (3)	С6—С1—Н1	120.00
C3—C4—C5	119.6 (3)	C1—C2—H2	120.00
C4—C5—C6	120.2 (3)	C3—C2—H2	120.00
N1—C6—C1	121.7 (3)	C3—C4—H4	120.00
C1—C6—C5	119.1 (3)	C5—C4—H4	120.00
N1-C6-C5	119.1 (3)	C4—C5—H5	120.00
01—C7—N2	122.5 (3)	C6-C5-H5	120.00
01 - C7 - N1	122.6 (3)	C8-C9-H9	120.00
N1-C7-N2	114 9 (3)	С10—С9—Н9	120.00
$111 \bigcirc / _ 112$	117.7 (3)		120.00

C9—C8—C13	119.1 (3)	С9—С10—Н10	119.00
N2—C8—C9	121.5 (2)	C11—C10—H10	119.00
N2—C8—C13	119.4 (3)	C11—C12—H12	119.00
C8—C9—C10	120.5 (3)	C13—C12—H12	119.00
C9—C10—C11	121.3 (3)	C8—C13—H13	120.00
C10—C11—C14	123.1 (3)	С12—С13—Н13	120.00
C12—C11—C14	119.5 (3)	C15—C16—H16A	111.00
C10—C11—C12	117.4 (3)	C15—C16—H16B	111.00
C11—C12—C13	121.3 (3)	С17—С16—Н16А	111.00
C8-C13-C12	120.4 (3)	C17—C16—H16B	111.00
O2—C14—C11	112.9 (3)	H16A—C16—H16B	109.00
C11—C14—C15	127.9 (3)	С17—С18—Н18	121.00
02-C14-C15	119.3 (3)	C19—C18—H18	121.00
C14—C15—C23	120.2 (3)	С18—С19—Н19	119.00
C14-C15-C16	131.5 (3)	C20-C19-H19	119.00
C16-C15-C23	108.2 (3)	C19—C20—H20	120.00
C_{15} C_{16} C_{17}	103.0(3)	C21—C20—H20	120.00
$C_{16} - C_{17} - C_{18}$	1287(3)	C_{20} C_{21} H_{21}	121.00
C18 - C17 - C22	1197(3)	$C_{22} = C_{21} = H_{21}$	121.00
$C_{16} - C_{17} - C_{22}$	111.6 (3)		121.00
010 011 022	111.0 (3)		
C7—N1—C6—C1	-55.6 (4)	C12—C11—C14—C15	175.9 (3)
C7—N1—C6—C5	126.9 (3)	C11—C12—C13—C8	-0.7(5)
C6—N1—C7—O1	0.4 (5)	O2—C14—C15—C16	177.1 (3)
C6—N1—C7—N2	179.4 (3)	O2—C14—C15—C23	-1.3(5)
C7—N2—C8—C9	-46.4 (4)	C11—C14—C15—C16	-3.4(6)
C7—N2—C8—C13	135.2 (3)	C11—C14—C15—C23	178.2 (3)
C8—N2—C7—N1	175.9 (3)	C14—C15—C16—C17	-178.1 (4)
C8—N2—C7—O1	-5.1 (5)	C23—C15—C16—C17	0.5 (4)
C6—C1—C2—C3	0.8 (6)	C14—C15—C23—O3	-0.5(6)
C2-C1-C6-N1	-178.5 (3)	C14—C15—C23—C22	179.5 (3)
C2—C1—C6—C5	-1.0 (5)	C16—C15—C23—O3	-179.2(3)
C1—C2—C3—C4	-0.5(6)	C16—C15—C23—C22	0.8 (4)
C1-C2-C3-C11	179.9 (3)	C15—C16—C17—C18	-179.9 (4)
Cl1—C3—C4—C5	-180.0(3)	C15—C16—C17—C22	-1.6 (4)
C2-C3-C4-C5	0.5 (7)	C16—C17—C18—C19	178.2 (4)
C3—C4—C5—C6	-0.7(6)	C22—C17—C18—C19	0.0 (6)
C4—C5—C6—N1	178.5 (3)	C16—C17—C22—C21	-178.3(4)
C4-C5-C6-C1	0.9 (5)	C_{16} C_{17} C_{22} C_{23}	2.2 (4)
N2—C8—C9—C10	-178.7(3)	C18—C17—C22—C21	0.2 (6)
C13 - C8 - C9 - C10	-0.3(5)	C18 - C17 - C22 - C23	-179.4(3)
N2-C8-C13-C12	179.0 (3)	C17 - C18 - C19 - C20	-0.3(7)
C9—C8—C13—C12	0.6 (5)	C18 - C19 - C20 - C21	0.3 (7)
C8-C9-C10-C11	0.1 (5)	C19 - C20 - C21 - C22	-0.1(7)
C9-C10-C11-C12	-0.3 (5)	C_{20} C_{21} C_{22} C_{17}	-0.1 (6)
C9-C10-C11-C14	-179.7(3)	C_{20} C_{21} C_{22} C_{23}	179.4 (4)
C10-C11-C12-C13	0.5 (5)	C17 - C22 - C23 - O3	178.1 (4)
C_{14} C_{11} C_{12} C_{13}	-1800(3)	C17 - C22 - C23 - C15	-1.8(4)
017 011 012-013	100.0 (3)	017 022 - 023 - 013	1.0 (+)

data reports

C10-C11-C14-O2	174.9 (3)	C21—C22—C23—O3	-1.4 (7)
C10-C11-C14-C15	-4.7 (5)	C21—C22—C23—C15	178.7 (4)
C12—C11—C14—O2	-4.6 (4)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H…A	D····A	D—H···A	
O2—H2 <i>O</i> ···O3	0.89 (5)	1.71 (5)	2.543 (4)	154 (5)	
N1—H1 <i>N</i> ···O1 ⁱ	0.87 (6)	2.03 (5)	2.853 (4)	158 (4)	
N2—H2 N ···O1 ⁱ	0.81 (5)	2.18 (5)	2.904 (4)	148 (4)	

Symmetry code: (i) x+1, y, z.