

IUCrData

ISSN 2414-3146

Received 12 June 2018 Accepted 18 June 2018

Edited by W. T. A. Harrison, University of Aberdeen, Scotland

Keywords: crystal structure; hydrogen bond; π -stacking; crystal structure.

CCDC reference: 1850161

Structural data: full structural data are available from iucrdata.iucr.org

Ethyl 5-(4-methylphenyl)-2,4,5,7-tetraazatricyclo-[6.4.0.0^{2,6}]dodeca-1(8),3,6,9,11-pentaene-3carboxylate

Ahmed Moussaif,^a* Youssef Ramli,^b Lhoussaine El Ghayati,^c El Mokhtar Essassi^c and Joel T. Mague^d

^aNational Center of Energy Sciences and Nuclear Techniques, Rabat, Morocco, ^bLaboratory of Medicinal Chemistry, Faculty of Medicine and Pharmacy, Mohammed V University Rabat, Morocco, ^cLaboratoire de Chimie Organique Heterocyclique URAC 21, Av. Ibn Battouta, BP 1014, Faculté des Sciences, Université Mohammed V, Rabat, Morocco, and ^dDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA. *Correspondence e-mail: ahmed_moussaif@yahoo.com

In the title compound, $C_{18}H_{16}N_4O_2$, the dihedral angle between the fused tricyclic ring system and the pendant benzene ring is 11.03 (4)°. The C–O–C–C torsion angle in the ethyl ester is 102.97 (12)°. The molecular conformation is supported by intramolecular C–H···N and C–H···O hydrogen bonds, which close *S*(6) and *S*(7) rings, respectively. Aromatic π - π stacking is observed in the crystal [shortest centroid–centroid separation = 3.5274 (7) Å].

Structure description

As a continuation of our research into benzimidazole derivatives (Moussaif *et al.* 2016, El Bakri *et al.* 2018), the title compound (Fig. 1) was prepared and characterized by single-crystal X-ray diffraction.

The fused tricyclic unit deviates slightly from planarity as indicated by the dihedral angle of 3.87 (6)° between the planes of the C1/C6/N1/C7/N4 and the C7/N2/N3/C8/N4 rings and by the dihedral angle of 2.05 (6)° between the planes of the C1/C6/N1/C7/N4 and the C1–C6 rings. The plane of the pendant C12–C17 ring is inclined to that of the C7/N2/N3/C8/N4 ring by 7.70 (5)°, which is likely due to the combination of the intra-molecular C17–H17···N1 hydrogen bond (Table 1 and Fig. 2) and the π -stacking interactions between C7/N2/N3/C8/N4 and C12–C17 rings in inversion-related pairs of molecules [centroid–centroid separation = 3.5274 (7) Å, interplanar angle = 7.70 (5)°]. The orientation of the carboxyl group of the ester substituent is partially determined by the intramolecular C2–H2···O1 hydrogen bond.

Figure 1

The title molecule with 50% probability ellipsoids. The intramolecular hydrogen bonds are shown as dashed lines.

Synthesis and crystallization

6 mmol of methylmercaptobenzimidazole was dissolved in 40 ml of THF and 8.1 mmol of diphenylnitrileimine and 8.1 mmol of TEA were added. The mixture was refluxed for 24 h using a chilled condenser and $CaCl_2$ trap to minimize water ingress. After cooling, the salts were removed by filtration and the solvent was evaporated under reduced pressure. Light-yellow blocks were obtained by recrystallization from ethanol solution.

Figure 2

Packing viewed along the *a*-axis direction with π -stacking interactions shown as dashed lines.

Table 1	
Hydrogen-bond geometry (Å, °).	

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
C2−H2···O1	0.941 (14)	2.498 (13)	3.1480 (14)	126.3 (11)
C17−H17···N1	0.956 (13)	2.490 (12)	3.1473 (14)	125.8 (10)

Table 2

Experimental details.

Experimental actans.	
Crystal data	
Chemical formula	$C_{18}H_{16}N_4O_2$
M _r	320.35
Crystal system, space group	Monoclinic, $P2_1/n$
Temperature (K)	100
<i>a</i> , <i>b</i> , <i>c</i> (Å)	9.2366 (11), 10.2045 (12), 16.1922 (18)
β (°)	92.144 (2)
$V(Å^3)$	1525.1 (3)
Ζ	4
Radiation type	Μο Κα
$\mu (\text{mm}^{-1})$	0.10
Crystal size (mm)	$0.33 \times 0.17 \times 0.11$
Data collection	
Diffractometer	Bruker SMART APEX CCD
Absorption correction	Multi-scan (SADABS; Krause et al., 2015)
T_{\min}, T_{\max}	0.88, 0.99
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	28729, 4119, 3269
R _{int}	0.034
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.688
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.044, 0.126, 1.10
No. of reflections	4119
No. of parameters	281
H-atom treatment	All H-atom parameters refined
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({ m e} { m \AA}^{-3})$	0.43, -0.19

Computer programs: *APEX3* and *SAINT* (Bruker, 2016), *SHELXT* (Sheldrick, 2015*a*), *SHELXL2018* (Sheldrick, 2015*b*), *DIAMOND* (Brandenburg & Putz, 2012) and *SHELXTL* (Sheldrick, 2008).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

Funding information

JTM thanks Tulane University for support of the Tulane Crystallography Laboratory.

References

- Brandenburg, K. & Putz, H. (2012). *DIAMOND*, Crystal Impact GbR, Bonn, Germany.
- Bruker (2016). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- El Bakri, Y., Anouar, E. H., Ramli, Y., Essassi, E. M. & Mague, J. T. (2018). J. Mol. Struct. 1152, 154–162.
- Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.
- Moussaif, A., Ramli, Y., Sebbar, N. K., Essassi, E. M. & Mague, J. T. (2016). *IUCrData*, **1**, x161948.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.

full crystallographic data

IUCrData (2018). **3**, x180892 [https://doi.org/10.1107/S2414314618008921]

Ethyl 5-(4-methylphenyl)-2,4,5,7-tetraazatricyclo-

[6.4.0.0^{2,6}]dodeca-1(8),3,6,9,11-pentaene-3-carboxylate

Ahmed Moussaif, Youssef Ramli, Lhoussaine El Ghayati, El Mokhtar Essassi and Joel T. Mague

F(000) = 672

 $\theta = 2.5 - 29.2^{\circ}$ $\mu = 0.10 \text{ mm}^{-1}$

T = 100 K

 $R_{\rm int} = 0.034$

 $h = -12 \rightarrow 12$

 $k = -13 \rightarrow 14$

 $l = -22 \rightarrow 21$

 $D_{\rm x} = 1.395 {\rm Mg m^{-3}}$

Column, light yellow

 $0.33 \times 0.17 \times 0.11 \text{ mm}$

 $\theta_{\rm max} = 29.3^\circ, \ \theta_{\rm min} = 2.4^\circ$

28729 measured reflections 4119 independent reflections

3269 reflections with $I > 2\sigma(I)$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 9939 reflections

Ethyl 5-(4-methylphenyl)-2,4,5,7-tetraazatricyclo[6.4.0.0^{2,6}]dodeca-1(8),3,6,9,11-pentaene-3-carboxylate

Crystal data

 $C_{18}H_{16}N_4O_2$ $M_r = 320.35$ Monoclinic, $P2_1/n$ a = 9.2366 (11) Å b = 10.2045 (12) Å c = 16.1922 (18) Å $\beta = 92.144$ (2)° V = 1525.1 (3) Å³ Z = 4

Data collection

Bruker SMART APEX CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator Detector resolution: 8.3333 pixels mm⁻¹ φ and ω scans Absorption correction: multi-scan (*SADABS*; Krause *et al.*, 2015) $T_{\min} = 0.88, T_{\max} = 0.99$

Refinement

Refinement on F^2 Secondary atom site location: difference Fourier Least-squares matrix: full map $R[F^2 > 2\sigma(F^2)] = 0.044$ Hydrogen site location: difference Fourier map $wR(F^2) = 0.126$ All H-atom parameters refined S = 1.10 $w = 1/[\sigma^2(F_o^2) + (0.0837P)^2]$ 4119 reflections where $P = (F_0^2 + 2F_c^2)/3$ 281 parameters $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{\rm max} = 0.43 \text{ e } \text{\AA}^{-3}$ 0 restraints $\Delta \rho_{\rm min} = -0.19 \ {\rm e} \ {\rm \AA}^{-3}$ Primary atom site location: structure-invariant direct methods

Special details

Experimental. The diffraction data were obtained from 3 sets of 400 frames, each of width 0.5° in ω , collected at $\varphi = 0.00$, 90.00 and 180.00° and 2 sets of 800 frames, each of width 0.45° in φ , collected at $\omega = -30.00$ and 210.00°. The scan time was 20 sec/frame.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \text{sigma}(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.27907 (9)	0.03912 (8)	0.51898 (5)	0.0305 (2)	
O2	0.22672 (9)	0.16022 (8)	0.40455 (5)	0.0291 (2)	
N1	0.73373 (10)	0.31219 (9)	0.59612 (5)	0.0225 (2)	
N2	0.59679 (9)	0.35622 (8)	0.46266 (5)	0.0204 (2)	
N3	0.47218 (10)	0.30038 (8)	0.42909 (5)	0.0214 (2)	
N4	0.53322 (10)	0.20134 (8)	0.54708 (5)	0.0198 (2)	
C1	0.56736 (11)	0.14534 (10)	0.62432 (6)	0.0207 (2)	
C2	0.50476 (12)	0.04636 (10)	0.66949 (6)	0.0232 (2)	
H2	0.4245 (16)	-0.0026 (14)	0.6496 (8)	0.033 (3)*	
C3	0.56831 (12)	0.02072 (11)	0.74701 (7)	0.0260 (2)	
H3	0.5272 (15)	-0.0462 (12)	0.7811 (8)	0.029 (3)*	
C4	0.68767 (12)	0.09204 (11)	0.77778 (7)	0.0262 (2)	
H4	0.7286 (15)	0.0763 (13)	0.8336 (8)	0.031 (3)*	
C5	0.75050 (12)	0.19019 (11)	0.73189 (7)	0.0246 (2)	
H5	0.8333 (16)	0.2357 (12)	0.7552 (8)	0.035 (4)*	
C6	0.69074 (11)	0.21704 (10)	0.65324 (6)	0.0212 (2)	
C7	0.63534 (11)	0.29777 (10)	0.53647 (6)	0.0201 (2)	
C8	0.43553 (12)	0.20874 (10)	0.48072 (6)	0.0209 (2)	
C9	0.30540 (12)	0.12523 (10)	0.47099 (6)	0.0231 (2)	
C10	0.09331 (13)	0.08760 (12)	0.38572 (8)	0.0315 (3)	
H10A	0.0950 (14)	0.0742 (12)	0.3234 (8)	0.029 (3)*	
H10B	0.1026 (15)	-0.0018 (15)	0.4127 (8)	0.041 (4)*	
C11	-0.03431 (15)	0.16685 (15)	0.41023 (9)	0.0382 (3)	
H11A	-0.0357 (17)	0.1755 (15)	0.4712 (10)	0.049 (4)*	
H11B	-0.1280 (16)	0.1198 (14)	0.3897 (8)	0.041 (4)*	
H11C	-0.0356 (17)	0.2555 (15)	0.3833 (9)	0.044 (4)*	
C12	0.66049 (11)	0.46589 (9)	0.42400 (6)	0.0192 (2)	
C13	0.58932 (11)	0.52255 (10)	0.35533 (6)	0.0215 (2)	
H13	0.4937 (14)	0.4852 (12)	0.3339 (7)	0.027 (3)*	
C14	0.65297 (12)	0.62930 (10)	0.31773 (6)	0.0233 (2)	
H14	0.5988 (14)	0.6704 (13)	0.2681 (8)	0.034 (3)*	
C15	0.78523 (12)	0.68054 (10)	0.34691 (6)	0.0229 (2)	
C16	0.85299 (12)	0.62162 (11)	0.41557 (7)	0.0248 (2)	
H16	0.9471 (16)	0.6601 (13)	0.4358 (9)	0.038 (4)*	
C17	0.79222 (12)	0.51494 (11)	0.45474 (7)	0.0233 (2)	
H17	0.8409 (14)	0.4748 (12)	0.5014 (8)	0.024 (3)*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

data reports

C18	0.85216 (15)	0.79542 (12)	0.30434 (9)	0.0329 (3)
H18A	0.881 (2)	0.7749 (17)	0.2454 (12)	0.078 (6)*
H18B	0.9384 (18)	0.8226 (15)	0.3336 (9)	0.049 (4)*
H18C	0.786 (2)	0.870 (2)	0.2983 (12)	0.082 (6)*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	<i>U</i> ²³
01	0.0370 (5)	0.0272 (4)	0.0273 (4)	-0.0104 (3)	-0.0013 (3)	0.0036 (3)
O2	0.0304 (4)	0.0284 (4)	0.0279 (4)	-0.0084 (3)	-0.0064 (3)	0.0036 (3)
N1	0.0221 (5)	0.0253 (5)	0.0199 (4)	-0.0003 (4)	-0.0001 (3)	0.0028 (3)
N2	0.0214 (4)	0.0208 (4)	0.0188 (4)	-0.0022 (3)	-0.0002 (3)	0.0005 (3)
N3	0.0227 (4)	0.0208 (4)	0.0205 (4)	-0.0029 (3)	-0.0003 (3)	-0.0018 (3)
N4	0.0227 (4)	0.0184 (4)	0.0183 (4)	0.0001 (3)	0.0007 (3)	0.0005 (3)
C1	0.0231 (5)	0.0208 (5)	0.0185 (5)	0.0036 (4)	0.0016 (4)	0.0002 (4)
C2	0.0238 (5)	0.0207 (5)	0.0253 (5)	0.0010 (4)	0.0031 (4)	0.0007 (4)
C3	0.0295 (6)	0.0242 (5)	0.0246 (5)	0.0033 (4)	0.0064 (4)	0.0051 (4)
C4	0.0279 (6)	0.0298 (6)	0.0211 (5)	0.0059 (4)	0.0025 (4)	0.0038 (4)
C5	0.0225 (5)	0.0279 (6)	0.0233 (5)	0.0025 (4)	0.0010 (4)	0.0008 (4)
C6	0.0213 (5)	0.0209 (5)	0.0214 (5)	0.0018 (4)	0.0039 (4)	0.0011 (4)
C7	0.0209 (5)	0.0205 (5)	0.0191 (5)	0.0003 (4)	0.0027 (4)	-0.0001 (4)
C8	0.0244 (5)	0.0185 (5)	0.0200 (5)	-0.0005 (4)	0.0014 (4)	-0.0020 (4)
C9	0.0263 (5)	0.0204 (5)	0.0226 (5)	-0.0029 (4)	0.0010 (4)	-0.0032 (4)
C10	0.0337 (6)	0.0284 (6)	0.0317 (6)	-0.0108 (5)	-0.0083 (5)	-0.0022 (5)
C11	0.0339 (7)	0.0448 (8)	0.0365 (7)	-0.0162 (6)	0.0078 (5)	-0.0090 (6)
C12	0.0213 (5)	0.0176 (5)	0.0189 (4)	0.0003 (4)	0.0039 (4)	-0.0011 (4)
C13	0.0226 (5)	0.0207 (5)	0.0211 (5)	-0.0010 (4)	0.0018 (4)	-0.0007 (4)
C14	0.0262 (5)	0.0214 (5)	0.0223 (5)	0.0020 (4)	0.0031 (4)	0.0019 (4)
C15	0.0238 (5)	0.0188 (5)	0.0265 (5)	0.0008 (4)	0.0071 (4)	-0.0009 (4)
C16	0.0214 (5)	0.0245 (5)	0.0285 (5)	-0.0017 (4)	0.0023 (4)	-0.0016 (4)
C17	0.0231 (5)	0.0234 (5)	0.0232 (5)	0.0000 (4)	-0.0001 (4)	0.0010 (4)
C18	0.0297 (6)	0.0251 (6)	0.0447 (7)	-0.0028 (5)	0.0096 (5)	0.0079 (5)

Geometric parameters (Å, °)

01—C9	1.2038 (13)	С8—С9	1.4770 (15)
O2—C9	1.3246 (13)	C10—C11	1.4953 (19)
O2—C10	1.4603 (13)	C10—H10A	1.019 (13)
N1—C7	1.3094 (13)	C10—H10B	1.014 (15)
N1—C6	1.4083 (13)	C11—H11A	0.992 (16)
N2—C7	1.3709 (12)	C11—H11B	1.034 (15)
N2—N3	1.3777 (12)	C11—H11C	1.004 (15)
N2-C12	1.4207 (13)	C12—C17	1.3905 (15)
N3—C8	1.3072 (13)	C12—C13	1.3957 (14)
N4—C7	1.3783 (14)	C13—C14	1.3891 (14)
N4—C8	1.3791 (13)	C13—H13	1.011 (13)
N4—C1	1.4002 (12)	C14—C15	1.3950 (15)
C1—C2	1.3860 (14)	C14—H14	1.020 (13)

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C1—C6	1.4190 (14)	C15—C16	1.3918 (15)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C2—C3	1.3905 (15)	C15—C18	1.5045 (15)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С2—Н2	0.941 (14)	C16—C17	1.3889 (15)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C3—C4	1.3973 (17)	C16—H16	0.999 (14)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С3—Н3	0.965 (12)	C17—H17	0.956 (13)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C4—C5	1.3872 (16)	C18—H18A	1.021 (19)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C4—H4	0.980 (14)	C18—H18B	0.952 (17)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C5—C6	1.3961 (14)	C18—H18C	0.98 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С5—Н5	0.960 (15)		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C9—O2—C10	117.77 (9)	O2—C10—C11	109.73 (10)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C7—N1—C6	101.65 (9)	O2—C10—H10A	103.4 (7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C7—N2—N3	110.48 (8)	C11—C10—H10A	112.1 (7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C7—N2—C12	128.95 (8)	O2—C10—H10B	108.0 (8)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N3—N2—C12	120.37 (8)	C11—C10—H10B	115.3 (8)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C8—N3—N2	106.03 (8)	H10A—C10—H10B	107.5 (11)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C7—N4—C8	107.14 (8)	C10-C11-H11A	110.6 (9)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C7—N4—C1	105.68 (9)	C10—C11—H11B	108.8 (8)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C8—N4—C1	146.85 (9)	H11A—C11—H11B	108.6 (12)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C2—C1—N4	133.18 (10)	C10—C11—H11C	111.6 (9)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C2—C1—C6	123.18 (9)	H11A—C11—H11C	110.6 (12)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N4—C1—C6	103.63 (9)	H11B—C11—H11C	106.4 (12)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C1—C2—C3	116.31 (10)	C17—C12—C13	121.06 (9)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C1—C2—H2	123.0 (8)	C17—C12—N2	119.81 (9)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C3—C2—H2	120.7 (8)	C13—C12—N2	119.14 (9)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C2—C3—C4	121.64 (10)	C14—C13—C12	118.66 (10)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С2—С3—Н3	119.2 (8)	C14—C13—H13	121.6 (7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С4—С3—Н3	119.1 (8)	C12—C13—H13	119.7 (7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C5—C4—C3	121.70 (10)	C13—C14—C15	121.67 (10)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C5—C4—H4	117.3 (8)	C13—C14—H14	117.6 (8)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C3—C4—H4	121.0 (8)	C15—C14—H14	120.7 (8)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C4—C5—C6	118.12 (10)	C16—C15—C14	118.07 (10)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С4—С5—Н5	118.8 (8)	C16—C15—C18	121.49 (10)
C5—C6—N1128.52 (10)C17—C16—C15121.74 (10)C5—C6—C1119.02 (10)C17—C16—H16121.4 (8)N1—C6—C1112.43 (9)C15—C16—H16116.9 (8)N1—C7—N2138.13 (10)C16—C17—C12118.80 (10)N1—C7—N4116.59 (9)C16—C17—H17120.7 (8)N2—C7—N4105.22 (9)C15—C18—H18A113.1 (10)N3—C8—N4111.10 (9)C15—C18—H18A113.1 (10)N3—C8—C9125.01 (9)C15—C18—H18B106.6 (14)O1—C9—O2127.09 (10)C15—C18—H18C112.8 (12)O1—C9—C8122.38 (10)H18A—C18—H18C104.3 (15)O2—C9—C8-0.56 (11)C1—N4—C7—N2-177.11 (8)	С6—С5—Н5	123.1 (8)	C14—C15—C18	120.43 (10)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C5—C6—N1	128.52 (10)	C17—C16—C15	121.74 (10)
N1—C6—C1112.43 (9)C15—C16—H16116.9 (8)N1—C7—N2138.13 (10)C16—C17—C12118.80 (10)N1—C7—N4116.59 (9)C16—C17—H17120.7 (8)N2—C7—N4105.22 (9)C12—C17—H17120.5 (8)N3—C8—N4111.10 (9)C15—C18—H18A113.1 (10)N3—C8—C9125.01 (9)C15—C18—H18B110.4 (9)N4—C8—C9123.88 (9)H18A—C18—H18B106.6 (14)O1—C9—O2127.09 (10)C15—C18—H18C112.8 (12)O1—C9—C8122.38 (10)H18A—C18—H18C104.3 (15)O2—C9—C8110.53 (9)H18B—C18—H18C109.3 (14)	C5—C6—C1	119.02 (10)	C17—C16—H16	121.4 (8)
N1—C7—N2138.13 (10)C16—C17—C12118.80 (10)N1—C7—N4116.59 (9)C16—C17—H17120.7 (8)N2—C7—N4105.22 (9)C12—C17—H17120.5 (8)N3—C8—N4111.10 (9)C15—C18—H18A113.1 (10)N3—C8—C9125.01 (9)C15—C18—H18B110.4 (9)N4—C8—C9123.88 (9)H18A—C18—H18B106.6 (14)O1—C9—O2127.09 (10)C15—C18—H18C112.8 (12)O1—C9—C8122.38 (10)H18A—C18—H18C104.3 (15)O2—C9—C8110.53 (9)H18B—C18—H18C109.3 (14)	N1—C6—C1	112.43 (9)	C15—C16—H16	116.9 (8)
N1—C7—N4116.59 (9)C16—C17—H17120.7 (8)N2—C7—N4105.22 (9)C12—C17—H17120.5 (8)N3—C8—N4111.10 (9)C15—C18—H18A113.1 (10)N3—C8—C9125.01 (9)C15—C18—H18B110.4 (9)N4—C8—C9123.88 (9)H18A—C18—H18B106.6 (14)O1—C9—O2127.09 (10)C15—C18—H18C112.8 (12)O1—C9—C8122.38 (10)H18A—C18—H18C104.3 (15)O2—C9—C8110.53 (9)H18B—C18—H18C109.3 (14)	N1—C7—N2	138.13 (10)	C16—C17—C12	118.80 (10)
N2—C7—N4 105.22 (9) C12—C17—H17 120.5 (8) N3—C8—N4 111.10 (9) C15—C18—H18A 113.1 (10) N3—C8—C9 125.01 (9) C15—C18—H18B 110.4 (9) N4—C8—C9 123.88 (9) H18A—C18—H18B 106.6 (14) O1—C9—O2 127.09 (10) C15—C18—H18C 112.8 (12) O1—C9—C8 122.38 (10) H18A—C18—H18C 104.3 (15) O2—C9—C8 110.53 (9) H18B—C18—H18C 109.3 (14)	N1—C7—N4	116.59 (9)	С16—С17—Н17	120.7 (8)
N3—C8—N4 111.10 (9) C15—C18—H18A 113.1 (10) N3—C8—C9 125.01 (9) C15—C18—H18B 110.4 (9) N4—C8—C9 123.88 (9) H18A—C18—H18B 106.6 (14) O1—C9—O2 127.09 (10) C15—C18—H18C 112.8 (12) O1—C9—C8 122.38 (10) H18A—C18—H18C 104.3 (15) O2—C9—C8 110.53 (9) H18B—C18—H18C 109.3 (14)	N2—C7—N4	105.22 (9)	С12—С17—Н17	120.5 (8)
N3—C8—C9 125.01 (9) C15—C18—H18B 110.4 (9) N4—C8—C9 123.88 (9) H18A—C18—H18B 106.6 (14) O1—C9—O2 127.09 (10) C15—C18—H18C 112.8 (12) O1—C9—C8 122.38 (10) H18A—C18—H18C 104.3 (15) O2—C9—C8 110.53 (9) H18B—C18—H18C 109.3 (14) C7—N2—N3—C8 -0.56 (11) C1—N4—C7—N2 -177.11 (8)	N3—C8—N4	111.10 (9)	C15—C18—H18A	113.1 (10)
N4—C8—C9 123.88 (9) H18A—C18—H18B 106.6 (14) O1—C9—O2 127.09 (10) C15—C18—H18C 112.8 (12) O1—C9—C8 122.38 (10) H18A—C18—H18C 104.3 (15) O2—C9—C8 110.53 (9) H18B—C18—H18C 109.3 (14) C7—N2—N3—C8 -0.56 (11) C1—N4—C7—N2 -177.11 (8)	N3—C8—C9	125.01 (9)	C15—C18—H18B	110.4 (9)
O1—C9—O2 127.09 (10) C15—C18—H18C 112.8 (12) O1—C9—C8 122.38 (10) H18A—C18—H18C 104.3 (15) O2—C9—C8 110.53 (9) H18B—C18—H18C 109.3 (14) C7—N2—N3—C8 -0.56 (11) C1—N4—C7—N2 -177.11 (8)	N4—C8—C9	123.88 (9)	H18A—C18—H18B	106.6 (14)
O1—C9—C8 122.38 (10) H18A—C18—H18C 104.3 (15) O2—C9—C8 110.53 (9) H18B—C18—H18C 109.3 (14) C7—N2—N3—C8 -0.56 (11) C1—N4—C7—N2 -177.11 (8)	01—C9—O2	127.09 (10)	C15—C18—H18C	112.8 (12)
O2—C9—C8 110.53 (9) H18B—C18—H18C 109.3 (14) C7—N2—N3—C8 -0.56 (11) C1—N4—C7—N2 -177.11 (8)	O1—C9—C8	122.38 (10)	H18A—C18—H18C	104.3 (15)
C7—N2—N3—C8 -0.56 (11) C1—N4—C7—N2 -177.11 (8)	O2—C9—C8	110.53 (9)	H18B—C18—H18C	109.3 (14)
	C7—N2—N3—C8	-0.56 (11)	C1—N4—C7—N2	-177.11 (8)

-175.94 (8)	N2—N3—C8—N4	-0.66 (12)
179.09 (11)	N2—N3—C8—C9	178.15 (9)
7.4 (2)	C7—N4—C8—N3	1.62 (12)
0.22 (10)	C1—N4—C8—N3	173.26 (13)
-171.48 (14)	C7—N4—C8—C9	-177.21 (9)
-177.77 (10)	C1—N4—C8—C9	-5.6 (2)
0.92 (15)	C10—O2—C9—O1	-0.36 (17)
0.69 (16)	C10—O2—C9—C8	-179.86 (9)
-1.30 (17)	N3—C8—C9—O1	177.45 (10)
0.26 (16)	N4—C8—C9—O1	-3.88 (17)
179.03 (10)	N3—C8—C9—O2	-3.03 (15)
1.28 (15)	N4—C8—C9—O2	175.64 (10)
-176.48 (11)	C9—O2—C10—C11	102.97 (12)
1.39 (11)	C7—N2—C12—C17	10.61 (16)
-1.94 (16)	N3—N2—C12—C17	-174.96 (9)
177.08 (9)	C7—N2—C12—C13	-169.52 (9)
179.97 (9)	N3—N2—C12—C13	4.91 (14)
-1.02 (11)	C17—C12—C13—C14	0.22 (15)
175.57 (12)	N2-C12-C13-C14	-179.65 (9)
-1.28 (12)	C12-C13-C14-C15	-0.02 (16)
-175.57 (12)	C13—C14—C15—C16	-0.06 (16)
-0.7 (2)	C13—C14—C15—C18	179.39 (10)
1.52 (11)	C14—C15—C16—C17	-0.07 (16)
176.39 (9)	C18—C15—C16—C17	-179.52 (11)
175.98 (9)	C15-C16-C17-C12	0.28 (16)
0.72 (12)	C13—C12—C17—C16	-0.35 (16)
-1.85 (11)	N2-C12-C17-C16	179.52 (9)
	$\begin{array}{c} -175.94 \ (8) \\ 179.09 \ (11) \\ 7.4 \ (2) \\ 0.22 \ (10) \\ -171.48 \ (14) \\ -177.77 \ (10) \\ 0.92 \ (15) \\ 0.69 \ (16) \\ -1.30 \ (17) \\ 0.26 \ (16) \\ 179.03 \ (10) \\ 1.28 \ (15) \\ -176.48 \ (11) \\ 1.39 \ (11) \\ -1.94 \ (16) \\ 177.08 \ (9) \\ 179.97 \ (9) \\ -1.02 \ (11) \\ 175.57 \ (12) \\ -1.28 \ (12) \\ -175.57 \ (12) \\ -0.7 \ (2) \\ 1.52 \ (11) \\ 176.39 \ (9) \\ 175.98 \ (9) \\ 0.72 \ (12) \\ -1.85 \ (11) \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
С2—Н2…О1	0.941 (14)	2.498 (13)	3.1480 (14)	126.3 (11)
C17—H17…N1	0.956 (13)	2.490 (12)	3.1473 (14)	125.8 (10)