

IUCrData

ISSN 2414-3146

Received 12 June 2018 Accepted 18 June 2018

Edited by W. T. A. Harrison, University of Aberdeen, Scotland

Keywords: tosylates; crystal structure; crosscoupling reactions.

CCDC reference: 1849908

Structural data: full structural data are available from iucrdata.iucr.org

Naphthalene-2,6-diyl bis(4-methylbenzenesulfonate)

Aleksandra Piontek, Dawid Siodłak and Bartosz Zarychta*

Faculty of Chemistry, University of Opole, Oleska 48, 45-052 Opole, Poland. *Correspondence e-mail: bzarychta@uni.opole.pl

The complete molecule of the title compound, $C_{24}H_{20}O_6S_2$, is generated by a crystallographic inversion centre at the middle of the naphthalene ring system. The dihedral angle between the naphthalene ring system and the pendant benzene ring is 10.23 (6)° and the C-S-O-C torsion angle is -172.05 (10)°. In the crystal, weak C-H···O interactions link the molecules into (101) sheets.

Structure description

Aryl tosylates have attracted considerable attention as electrophiles in transition-metal catalyzed cross-coupling reactions (Piontek & Szostak, 2017; Chen *et al.*, 2015; Ackermann *et al.*, 2006). The use of these compounds can have advantages over the corresponding aryl halides in that the phenol group is a useful directing group for the introduction of other functional groups on the aromatic ring and as such can allow access to a wider substrate scope (Bisz & Szostak, 2017*a,b*, 2018; Ackermann *et al.*, 2006).

The asymmetric unit of the title compound consists of one independent half-molecule. The complete molecule is generated by an inversion centre at the middle of the C4–C4(2 - x, 1 - y, 1 - z) bond. The molecular structure is shown in Fig. 1.

In the crystal, $C-H\cdots O$ hydrogen bonds (Table 1) connect the molecules into (101) sheets (Fig. 2).

Synthesis and crystallization

The title compound was synthesized according to the procedure described by Murai *et al.* (2012). Diethyl ether (0.8 ml) was placed in a reaction vial (8 ml) provided with a rubber septum. The title compound was added to the diethyl ether until a saturated solution was obtained. The resulting solution was then heated and left to stand in a refrigerator $(-20^{\circ}C)$ and colourless irregular crystals formed.

Figure 1

The molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level. Unlabelled atoms are generated by the symmetry operation 2 - x, 1 - y, 1 - z.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

Funding information

We gratefully acknowledge Narodowe Centrum Nauki (grant No. 2014/15/D/ST5/02731).

Figure 2 The crystal packing of the title compound, viewed along the *b* axis.

Table 1		
Hydrogen-bond	geometry (Å, °).	

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C2-H2\cdots O1^{i}$	0.93	2.46	3.3261 (18)	156

Symmetry code: (i) $-x + \frac{3}{2}$, $y + \frac{1}{2}$, $-z + \frac{1}{2}$.

Table 2 Experimental details.

Crystal data	
Chemical formula	$C_{24}H_{20}O_6S_2$
M _r	468.52
Crystal system, space group	Monoclinic, $P2_1/n$
Temperature (K)	100
a, b, c (Å)	12.2270 (3), 5.7229 (1), 15.9353 (5)
β (°)	109.869 (3)
$V(Å^3)$	1048.68 (5)
Z	2
Radiation type	Μο Κα
$\mu (\text{mm}^{-1})$	0.30
Crystal size (mm)	$0.5 \times 0.45 \times 0.4$
Data collection	
Diffractometer	Oxford Diffraction Xcalibur
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	6789, 2046, 1806
R _{int}	0.016
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.617
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.028, 0.082, 1.08
No. of reflections	2046
No. of parameters	146
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({\rm e} {\rm \AA}^{-3})$	0.37, -0.34

Computer programs: CrysAlis CCD (Oxford Diffraction, 2008), SHELXT2014 (Sheldrick, 2015a), SHELXL2014 (Sheldrick, 2015bb) and Mercury (Macrae et al., 2008).

References

- Ackermann, L., Althammer, A. & Born, R. (2006). *Angew. Chem. Int. Ed.* **45**, 2619–2622.
- Bisz, E. & Szostak, M. (2017a). ChemSusChem, 10, 3964–3981.
- Bisz, E. & Szostak, M. (2017b). Green Chem. 19, 5361-5366.
- Bisz, E. & Szostak, M. (2018). ChemSusChem, 11, 1290-1294.
- Chen, X., Quan, Z.-J. & Wang, X.-C. (2015). *Appl. Organomet. Chem.* **29**, 296–300.
- Murai, N., Miyano, M., Yonaga, M. & Tanaka, K. (2012). Org. Lett. 14, 2818–2821.
- Oxford Diffraction (2008). *CrysAlis CCD* and *CrysAlis RED*. Oxford Diffraction Ltd, Abingdon, England.
- Piontek, A. & Szostak, M. (2017). Eur. J. Org. Chem. 7272-7276.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.

Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.

Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.

full crystallographic data

IUCrData (2018). **3**, x180890 [https://doi.org/10.1107/S2414314618008908]

Naphthalene-2,6-diyl bis(4-methylbenzenesulfonate)

Aleksandra Piontek, Dawid Siodłak and Bartosz Zarychta

Naphthalene-2,6-diyl bis(4-methylbenzenesulfonate)

Crystal data

 $\begin{array}{l} C_{24}H_{20}O_6S_2\\ M_r = 468.52\\ \text{Monoclinic, } P2_1/n\\ a = 12.2270 \ (3) \ \text{\AA}\\ b = 5.7229 \ (1) \ \text{\AA}\\ c = 15.9353 \ (5) \ \text{\AA}\\ \beta = 109.869 \ (3)^\circ\\ V = 1048.68 \ (5) \ \text{\AA}^3\\ Z = 2 \end{array}$

Data collection

Oxford Diffraction Xcalibur diffractometer Radiation source: fine-focus sealed tube Detector resolution: 1024 x 1024 with blocks 2 x 2 pixels mm⁻¹ ω scan 6789 measured reflections

Refinement

Primary atom site location: structure-invariant
direct methods
Hydrogen site location: inferred from
neighbouring sites
H-atom parameters constrained
$w = 1/[\sigma^2(F_o^2) + (0.0472P)^2 + 0.3531P]$
where $P = (F_o^2 + 2F_c^2)/3$
$(\Delta/\sigma)_{\rm max} = 0.001$
$\Delta \rho_{\rm max} = 0.37 \ {\rm e} \ {\rm \AA}^{-3}$
$\Delta \rho_{\rm min} = -0.34 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

F(000) = 488

 $\theta = 3.5 - 26.0^{\circ}$

 $\mu = 0.30 \text{ mm}^{-1}$

T = 100 K

 $R_{\rm int} = 0.016$

 $h = -15 \rightarrow 15$

 $k = -6 \rightarrow 7$ $l = -19 \rightarrow 18$

 $D_{\rm x} = 1.484 {\rm Mg m^{-3}}$

Irregular, colourless

 $0.5 \times 0.45 \times 0.4$ mm

2046 independent reflections

 $\theta_{\text{max}} = 26.0^{\circ}, \ \theta_{\text{min}} = 3.5^{\circ}$

1806 reflections with $I > 2\sigma(I)$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 6789 reflections

Refinement. All H atoms were found in a difference map but set to idealized positions and treated as riding with C—H = 0.93 Å and $U_{iso}(H) = 1.2U_{eq}(C)$ for C—H and with C—H₃ = 0.96 Å and $U_{iso} = 1.5U_{eq}(C)$.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
S1	0.60178 (3)	0.69746 (7)	0.34689 (2)	0.01589 (13)
01	0.69632 (9)	0.56049 (19)	0.31607 (7)	0.0179 (3)
02	0.61916 (9)	0.9428 (2)	0.34060 (7)	0.0237 (3)
03	0.60474 (9)	0.6029 (2)	0.43036 (7)	0.0226 (3)
C1	0.81150 (12)	0.5696 (3)	0.37842 (9)	0.0152 (3)
C2	0.88107 (13)	0.7606 (3)	0.37395 (10)	0.0180 (3)
H2	0.8523	0.8769	0.3314	0.022*
C3	0.99199 (13)	0.7727 (3)	0.43334 (10)	0.0171 (3)
Н3	1.0392	0.8981	0.4308	0.021*
C4	0.96386 (12)	0.4036 (3)	0.50119 (9)	0.0137 (3)
C5	0.84882 (13)	0.3929 (3)	0.43857 (10)	0.0157 (3)
Н5	0.8002	0.2680	0.4387	0.019*
C6	0.47502 (12)	0.6087 (3)	0.26206 (10)	0.0145 (3)
C7	0.42327 (13)	0.7571 (3)	0.19026 (10)	0.0156 (3)
H7	0.4582	0.8978	0.1848	0.019*
C8	0.31833 (13)	0.6905 (3)	0.12701 (10)	0.0162 (3)
H8	0.2827	0.7883	0.0788	0.019*
С9	0.26556 (12)	0.4792 (3)	0.13462 (10)	0.0159 (3)
C10	0.32065 (13)	0.3337 (3)	0.20673 (10)	0.0170 (3)
H10	0.2866	0.1916	0.2119	0.020*
C11	0.42491 (13)	0.3965 (3)	0.27083 (10)	0.0173 (3)
H11	0.4608	0.2984	0.3189	0.021*
C12	0.15007 (14)	0.4100 (3)	0.06714 (11)	0.0222 (4)
H12A	0.0889	0.4959	0.0782	0.033*
H12B	0.1378	0.2456	0.0721	0.033*
H12C	0.1500	0.4445	0.0082	0.033*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters (\mathring{A}^2)

U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
0.0119 (2)	0.0182 (2)	0.0144 (2)	0.00249 (14)	0.00038 (15)	-0.00300 (14)
0.0111 (5)	0.0247 (6)	0.0138 (5)	0.0040 (4)	-0.0010 (4)	-0.0040 (4)
0.0192 (6)	0.0180 (6)	0.0273 (6)	0.0006 (5)	-0.0008 (5)	-0.0049 (5)
0.0187 (6)	0.0327 (7)	0.0141 (5)	0.0033 (5)	0.0024 (4)	-0.0015 (5)
0.0104 (7)	0.0217 (8)	0.0115 (7)	0.0021 (6)	0.0011 (6)	-0.0036 (6)
0.0187 (8)	0.0200 (8)	0.0148 (7)	0.0046 (6)	0.0051 (6)	0.0052 (6)
0.0164 (7)	0.0168 (8)	0.0190 (8)	-0.0009 (6)	0.0072 (6)	0.0028 (6)
0.0135 (7)	0.0141 (7)	0.0140 (7)	0.0012 (6)	0.0054 (6)	-0.0014 (6)
0.0131 (7)	0.0160 (8)	0.0179 (8)	-0.0006 (6)	0.0051 (6)	-0.0027 (6)
0.0102 (7)	0.0169 (8)	0.0145 (7)	0.0017 (6)	0.0016 (6)	-0.0013 (6)
0.0152 (7)	0.0146 (7)	0.0167 (8)	0.0010 (6)	0.0049 (6)	0.0003 (6)
0.0151 (7)	0.0178 (8)	0.0142 (7)	0.0037 (6)	0.0031 (6)	0.0025 (6)
0.0126 (7)	0.0198 (8)	0.0160 (7)	0.0009 (6)	0.0058 (6)	-0.0031 (6)
0.0171 (8)	0.0142 (8)	0.0205 (8)	-0.0014 (6)	0.0073 (6)	-0.0004 (6)
0.0171 (8)	0.0166 (8)	0.0168 (7)	0.0042 (6)	0.0038 (6)	0.0031 (6)
	U^{11} 0.0119 (2) 0.0111 (5) 0.0192 (6) 0.0187 (6) 0.0187 (8) 0.0164 (7) 0.0135 (7) 0.0135 (7) 0.0131 (7) 0.0152 (7) 0.0151 (7) 0.0126 (7) 0.0171 (8) 0.0171 (8)	U^{11} U^{22} 0.0119 (2) 0.0182 (2) 0.0111 (5) 0.0247 (6) 0.0192 (6) 0.0180 (6) 0.0187 (6) 0.0327 (7) 0.0104 (7) 0.0217 (8) 0.0187 (8) 0.0200 (8) 0.0164 (7) 0.0168 (8) 0.0135 (7) 0.0141 (7) 0.0131 (7) 0.0160 (8) 0.0152 (7) 0.0146 (7) 0.0151 (7) 0.0178 (8) 0.0126 (7) 0.0142 (8) 0.0171 (8) 0.0166 (8)	U^{11} U^{22} U^{33} $0.0119(2)$ $0.0182(2)$ $0.0144(2)$ $0.0111(5)$ $0.0247(6)$ $0.0138(5)$ $0.0192(6)$ $0.0180(6)$ $0.0273(6)$ $0.0187(6)$ $0.0327(7)$ $0.0141(5)$ $0.0104(7)$ $0.0217(8)$ $0.0115(7)$ $0.0187(8)$ $0.0200(8)$ $0.0148(7)$ $0.0164(7)$ $0.0168(8)$ $0.0190(8)$ $0.0135(7)$ $0.0141(7)$ $0.0140(7)$ $0.0131(7)$ $0.0160(8)$ $0.0179(8)$ $0.0102(7)$ $0.0169(8)$ $0.0145(7)$ $0.0151(7)$ $0.0178(8)$ $0.0142(7)$ $0.0126(7)$ $0.0198(8)$ $0.0160(7)$ $0.0171(8)$ $0.0166(8)$ $0.0168(7)$	U^{11} U^{22} U^{33} U^{12} $0.0119(2)$ $0.0182(2)$ $0.0144(2)$ $0.00249(14)$ $0.0111(5)$ $0.0247(6)$ $0.0138(5)$ $0.0040(4)$ $0.0192(6)$ $0.0180(6)$ $0.0273(6)$ $0.0006(5)$ $0.0187(6)$ $0.0327(7)$ $0.0141(5)$ $0.0033(5)$ $0.0104(7)$ $0.0217(8)$ $0.0115(7)$ $0.0021(6)$ $0.0187(8)$ $0.0200(8)$ $0.0148(7)$ $0.0046(6)$ $0.0164(7)$ $0.0168(8)$ $0.0190(8)$ $-0.0009(6)$ $0.0135(7)$ $0.0141(7)$ $0.0140(7)$ $0.0012(6)$ $0.0131(7)$ $0.0160(8)$ $0.0179(8)$ $-0.0006(6)$ $0.0152(7)$ $0.0146(7)$ $0.0167(8)$ $0.0010(6)$ $0.0151(7)$ $0.0178(8)$ $0.0142(7)$ $0.0037(6)$ $0.0126(7)$ $0.0198(8)$ $0.0160(7)$ $0.0009(6)$ $0.0171(8)$ $0.0142(8)$ $0.0205(8)$ $-0.0014(6)$	U^{11} U^{22} U^{33} U^{12} U^{13} $0.0119(2)$ $0.0182(2)$ $0.0144(2)$ $0.00249(14)$ $0.00038(15)$ $0.0111(5)$ $0.0247(6)$ $0.0138(5)$ $0.0040(4)$ $-0.0010(4)$ $0.0192(6)$ $0.0180(6)$ $0.0273(6)$ $0.0006(5)$ $-0.0008(5)$ $0.0187(6)$ $0.0327(7)$ $0.0141(5)$ $0.0033(5)$ $0.0024(4)$ $0.0104(7)$ $0.0217(8)$ $0.0115(7)$ $0.0021(6)$ $0.0011(6)$ $0.0187(8)$ $0.0200(8)$ $0.0148(7)$ $0.0046(6)$ $0.0051(6)$ $0.0164(7)$ $0.0168(8)$ $0.0190(8)$ $-0.0009(6)$ $0.0072(6)$ $0.0135(7)$ $0.0141(7)$ $0.0140(7)$ $0.0012(6)$ $0.0051(6)$ $0.0131(7)$ $0.0160(8)$ $0.0179(8)$ $-0.0006(6)$ $0.0051(6)$ $0.012(7)$ $0.0169(8)$ $0.0145(7)$ $0.0017(6)$ $0.0016(6)$ $0.0151(7)$ $0.0178(8)$ $0.0142(7)$ $0.0037(6)$ $0.0031(6)$ $0.0126(7)$ $0.0198(8)$ $0.0160(7)$ $0.0009(6)$ $0.0073(6)$ $0.0171(8)$ $0.0142(8)$ $0.0205(8)$ $-0.0014(6)$ $0.0073(6)$

						data reports
C12	0.0164 (8)	0.0271 (9)	0.0210 (8)	-0.0036 (7)	0.0036 (6)	-0.0012 (7)
Geomet	ric parameters (.	Å, °)				
S1-03	3	1.424	49 (12)	C6—C11		1.389 (2)
S102	2	1.428	85 (12)	C6—C7		1.392 (2)
S101	l	1.605	56 (11)	C7—C8		1.389 (2)
S1—Cé	-)	1.750	03 (15)	С7—Н7		0.9300
01—C	1	1.422	20 (17)	C8—C9		1.395 (2)
C1—C5	5	1.361	1 (2)	C8—H8		0.9300
C1—C2	2	1.401	1 (2)	C9—C10		1.393 (2)
C2—C3	3	1.360	5 (2)	C9—C12		1.508 (2)
С2—Н2	2	0.930	00	C10—C11		1.383 (2)
C3—C4	4 ⁱ	1.419) (2)	C10—H10		0.9300
С3—Н	3	0.930	00	C11—H11		0.9300
C4—C3	3 ⁱ	1.419	9(2)	C12—H12A		0.9600
C4—C4	4 ⁱ	1.422	2(3)	C12—H12B		0.9600
C4—C5	5	1.423	3 (2)	C12—H12C		0.9600
С5—Н:	5	0.930	00			
O3—S1		118.7	79 (7)	C11—C6—S1		118.77 (11)
O3—S1	01	107.9	92 (6)	C7—C6—S1		119.57 (12)
O2—S1	01	108.5	58 (7)	C8—C7—C6		118.61 (14)
O3—S1	—С6	110.2	22 (7)	С8—С7—Н7		120.7
02—S1	—С6	110.1	17 (7)	С6—С7—Н7		120.7
01—S1	—С6	99.30	5 (6)	С7—С8—С9		121.02 (14)
C1O	1—S1	114.4	41 (9)	С7—С8—Н8		119.5
C5—C1	I—C2	123.4	45 (14)	С9—С8—Н8		119.5
C5—C1	l—01	118.6	59 (13)	C10—C9—C8		118.78 (13)
C2—C1	l—01	117.8	36 (13)	C10-C9-C12		120.27 (14)
C3—C2	2—C1	118.7	76 (14)	C8—C9—C12		120.94 (14)
C3—C2	2—Н2	120.6	6	C11—C10—C9		121.33 (14)
C1-C2	2—Н2	120.6	6	C11—C10—H10		119.3
C2—C3	$3-C4^{i}$	120.8	35 (14)	С9—С10—Н10		119.3
C2—C3	3—Н3	119.6	5	C10—C11—C6		118.70 (14)
C4 ⁱ —C	3—Н3	119.6	5	C10-C11-H11		120.6
C3 ⁱ —C	4—C4 ⁱ	119.1	12 (16)	C6-C11-H11		120.6
C3 ⁱ —C	4—C5	121.5	55 (14)	C9—C12—H12A		109.5
C4 ⁱ —C	4—C5	119.3	33 (17)	C9-C12-H12B		109.5
C1—C5	5—C4	118.4	48 (14)	H12A—C12—H1	2B	109.5
C1—C5	5—Н5	120.8	3	С9—С12—Н12С		109.5
C4—C5	5—H5	120.8	3	H12A—C12—H1	2C	109.5
C11—C	С6—С7	121.5	55 (14)	H12B—C12—H1	2C	109.5
O3—S1		-57.1	12 (12)	O1—S1—C6—C	11	84.27 (13)
O2—S1		72.80	5 (11)	O3—S1—C6—C	7	147.51 (12)
C6—S1		-172	.05 (10)	O2—S1—C6—C	7	14.51 (14)
S101		93.80	0 (14)	01—S1—C6—C	7	-99.35 (13)

S1-01-C1-C2 C5-C1-C2-C3	-86.75(14)	C11—C6—C7—C8	0.8(2)
01-C1-C2-C3	179.94 (13)	C6-C7-C8-C9	-0.2(2)
$C1 - C2 - C3 - C4^{\circ}$	-0.4 (2)	C7—C8—C9—C10	-0.6 (2)
C2 - C1 - C5 - C4	1.0 (2)	C7—C8—C9—C12	178.42 (14)
O1—C1—C5—C4	-179.60 (12)	C8—C9—C10—C11	0.9 (2)
C3 ⁱ —C4—C5—C1	179.05 (14)	C12—C9—C10—C11	-178.12 (14)
C4 ⁱ —C4—C5—C1	-0.3 (2)	C9—C10—C11—C6	-0.3 (2)
O3—S1—C6—C11	-28.87 (14)	C7—C6—C11—C10	-0.6 (2)
O2—S1—C6—C11	-161.87 (12)	S1—C6—C11—C10	175.75 (11)

Symmetry code: (i) -x+2, -y+1, -z+1.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H…A
С2—Н2…О1 ^{ії}	0.93	2.46	3.3261 (18)	156

Symmetry code: (ii) -x+3/2, y+1/2, -z+1/2.