

ISSN 2414-3146

Received 4 June 2018 Accepted 8 June 2018

Edited by C. Rizzoli, Universita degli Studi di Parma, Italy

Keywords: crystal structure; molybdenum; diphosphazane.

CCDC reference: 1848117

Structural data: full structural data are available from iucrdata.iucr.org

Tetracarbonyl[*N*-(diphenylphosphanyl-*κP*)-*N*,*N*'diisopropyl-*P*-phenylphosphorus diamide-*κP*]molybdenum(0) with an unknown solvent

Martha Höhne, Marc Gongoll, Anke Spannenberg, Bernd H. Müller, Normen Peulecke and Uwe Rosenthal*

Leibniz-Institut für Katalyse e. V. an der Universität Rostock, Albert-Einstein-Str. 29a, 18059 Rostock, Germany. *Correspondence e-mail: uwe.rosenthal@catalysis.de

The title complex, $[Mo(C_{24}H_{30}N_2P_2)(CO)_4]$, contains a molybdenum centre bearing a P,P'-cis-chelating Ph₂PN(ⁱPr)P(Ph)NH(ⁱPr) and four carbonyl ligands in a distorted octahedral coordination geometry. This results in a nearly planar four-membered metallacycle. In the crystal, molecules are linked by N-H···O and C-H···O hydrogen bonds to form layers parallel to the *ac* plane. For the final refinement, the contributions of disordered solvent molecules were removed from the diffraction data with SQUEEZE in *PLATON* [Spek (2015). *Acta Cryst.* C71, 9–18]. The given chemical formula and other crystal data do not take into account the unknown solvent molecule(*s*).

Structure description

The title complex (Fig. 1) contains a molybdenum centre coordinated to a P,P'-cischelating Ph₂PN(ⁱPr)P(Ph)NH(ⁱPr) ligand and four carbonyl ligands in a distorted octahedral geometry, forming a nearly planar four-membered Mo-P-N-P metallacycle (r.m.s. deviation for Mo1, P1, N1, P2 = 0.053 Å). The P-Mo-P bite angle amounts to 64.948 (13)° and complies with those in comparable [Mo(CO)₄{Ph₂PN(*R*)PPh₂}] ($R \neq$ H) complexes [range from 64.38 (8) to 66.14 (3)°; Al-Masri *et al.*, 2013; Biricik *et al.*, 2003; Gaw *et al.*, 2000, 2002; Majoumo *et al.*, 2004; Majoumo-Mbe *et al.*, 2015; Payne *et al.*, 1965] and is slightly smaller than that found in the analogous chromium complex [P-Cr-P = 67.90 (2), 67.95 (12)°] published by Aluri *et al.* (2010) and Dulai *et al.* (2011). As a result of the ring strain, the P-N-P bond angle [103.10 (6)°] is clearly smaller than that observed in the uncoordinated Ph₂PN(ⁱPr)P(Ph)NH(ⁱPr) molecule [121.53 (11)°; Peitz *et al.*, 2010] but conforms with comparable [Mo(CO)₄{Ph₂PN(*R*)PPh₂]] ($R \neq$ H) complexes

data reports

 Table 1

 Hydrogen-bond geometry (Å, °).

$D - \mathbf{H} \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$\begin{array}{c} C8 - H8 \cdots O1^{i} \\ N2 - H2 \cdots O1^{ii} \end{array}$	0.95 0.83 (1)	2.53 2.54 (1)	3.338 (2) 3.3419 (18)	143 163 (1)

Symmetry codes: (i) $x, -y + \frac{1}{2}, z + \frac{1}{2}$; (ii) $x + \frac{1}{2}, y, -z + \frac{1}{2}$.

(Al-Masri *et al.*, 2013; Biricik *et al.*, 2003; Gaw *et al.*, 2000, 2002; Majoumo *et al.*, 2004; Majoumo-Mbe *et al.*, 2015; Payne *et al.*, 1965). The P–N bond lengths [range from 1.6462 (13) to 1.7185 (13) Å] are noticeably shortened compared to the calculated sum of the covalent radii by Pyykkö [single: $\Sigma rcov(P-N) = 1.82$ Å; Pyykkö, 2015] and show some multiple-bond character [double: $\Sigma rcov(P=N) = 1.62$ Å; Pyykkö, 2015]. Consistent with this geometry, the central N1 atom is nearly trigonal planar [$\Sigma(\angle N1) = 359^{\circ}$]. The Mo–P distances are slightly different [Mo1–P1 = 2.4731 (5), Mo1–P2 = 2.5056 (6) Å], which might be an effect of the asymmetric *P*,*P*'-cis-ligating Ph₂PN(^{*i*}Pr)P(Ph)NH(^{*i*}Pr) ligand.

In the crystal, $N-H\cdots O$ and $C-H\cdots O$ hydrogen bonds (Table 1) link the molecules into layers parallel to the *ac* plane.

Synthesis and crystallization

 $Mo(CO)_4(pip)_2$ (pip = piperidine; 0.99 g, 2.617 mmol) and $Ph_2PN(^iPr)P(Ph)NH(^iPr)$ (1.305 g, 3.193 mmol), were dissolved in CH₂Cl₂ (30 ml) at r.t. After 2 h of refluxing, 20 ml CH₂Cl₂ was removed *in vacuo*. Ethanol (15 ml) was added and the solution was cooled. The white solid was washed with *n*-hexane at $-78^{\circ}C$ and dried under vacuum. Yield 1.45 g (90%). Crystals were obtained from a saturated CH₂Cl₂/EtOH solution at $-78^{\circ}C$.

¹H NMR (300 MHz, C₆D₆, 298 K): δ (p.p.m.) 7.95–7.88 (*m*, 2H, Ar*H*), 7.69–7.53 (*m*, 4H, Ar*H*), 7.14–6.98 (*m*, 9H, Ar*H*),

Figure 1

The molecular structure of the title compound with atom labelling and displacement ellipsoids drawn at 30% probability level. C-bound hydrogen atoms are omitted for clarity.

Table	2	
Experi	mental	details

Crystal data	
Chemical formula	$[Mo(C_{24}H_{30}N_2P_2)(CO)_4]$
M _r	616.42
Crystal system, space group	Orthorhombic, Pbca
Temperature (K)	150
a, b, c (Å)	15.634 (3), 17.716 (4), 21.661 (4)
$V(Å^3)$	5999 (2)
Z	8
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	0.58
Crystal size (mm)	$0.46 \times 0.38 \times 0.36$
Data collection	
Diffractometer	Stoe IPDS II
Absorption correction	Numerical (X-SHAPE and X-RED32; Stoe & Cie, 2005)
T_{\min}, T_{\max}	0.75, 0.89
No. of measured, independent and	95647, 6886, 5657
observed $[I > 2\sigma(I)]$ reflections	
R _{int}	0.041
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.650
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.022, 0.050, 0.92
No. of reflections	6886
No. of parameters	342
No. of restraints	1
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$	0.38, -0.31

Computer programs: X-AREA (Stoe & Cie, 2005), XP in SHELXTL and SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015) and publCIF (Westrip, 2010).

4.17 (*m*, 1H, CHCH₃), 3.31 (*m*, 1H, CHCH₃), 2.19 (*t*, 1H, NH), 1.22 (*d*, ${}^{3}J_{H,H} = 6.5$ Hz, 3H, CHCH₃), 1.15 (*d*, ${}^{3}J_{H,H} = 6.4$ Hz, 3H, CHCH₃), 0.89 (*d*, J = 6.7 Hz, 3H, CHCH₃), 0.38 (*d*, ${}^{3}J_{H,H} =$ 6.7 Hz, 3H, CHCH₃). 13 C NMR (100 MHz, C₆D₆, 298 K): δ (p.p.m.) 219.7 (*m*, CO), 212.4 (*m*, CO), 141.7, 141.0, 138.7, 138.2, 136.2, 138.8, 133.8, 131.3, 130.8, 130.0, 128.9, 128.7, 128.5 (ArC), 55.7 (t, ${}^{2}J_{PC} = 6.0$ Hz, CHCH₃), 49.3 (d, ${}^{2}J_{PC} = 18.0$ Hz, CHCH₃), 26.3 (d, ${}^{3}J_{BC} = 4.5$ Hz, CHCH₃), 25.6 (d, ${}^{3}J_{BC} =$ 4.5 Hz, CHCH₃), 24.3 (*br* s, CHCH₃) 24.2 (*br* s, CHCH₃). 31 P NMR (121 MHz, CD₂Cl₂, 298 K): $\delta = 96.7$ (d, ${}^{2}J_{PP} = 8.7$ Hz), 80.2 (d, ${}^{2}J_{PP} = 8.7$ Hz). Elemental analysis calcd. (%) for C₂₈H₃₀MoN₂O₄P₂ (616.44): C 54.56, H 4.91, N 4.54. Found: C 55.42, H 4.96, N 4.65. IR (CH₂Cl₂, cm⁻¹): ν (CO) 1870, 1896, 1918, 2005. M.p. 180°C (dec.).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. Six outliers (4 0 10, 6 3 4, 1 2 11, 5 7 4, 1 2 8, 2 3 8) were omitted in the last cycles of refinement. For the final refinement, the contributions of disordered solvent molecules were removed from the diffraction data with SQUEEZE in *PLATON* (Spek, 2015). SQUEEZE estimated the electron counts in each of the four voids of 111 and 112 Å³, respectively to be 34. **Funding information**

Funding for this research was provided by: Open Access Fund of the Leibniz Association.

References

- Al-Masri, H. T., Mohamed, B. M., Moussa, Z. & Alkordi, M. H. (2013). *Helv. Chim. Acta*, 96, 738–746.
- Aluri, B. R., Peulecke, N., Peitz, S., Spannenberg, A., Müller, B. H., Schulz, S., Drexler, H.-J., Heller, D., Al-Hazmi, M. H., Mosa, F. M., Wöhl, A., Müller, W. & Rosenthal, U. (2010). *Dalton Trans.* 39, 7911–7920.
- Biricik, N., Fei, Z., Scopelliti, R. & Dyson, P. J. (2003). Helv. Chim. Acta, 86, 3281–3287.
- Dulai, A., McMullin, C. L., Tenza, K. & Wass, D. F. (2011). Organometallics, 30, 935–941.
- Gaw, K. G., Smith, M. B. & Slawin, A. M. Z. (2000). New J. Chem. 24, 429–435.

- Gaw, K. G., Smith, M. B. & Steed, J. W. (2002). J. Organomet. Chem. 664, 294–297.
- Majoumo, F., Lönnecke, P., Kühl, O. & Hey-Hawkins, E. (2004). Z. Anorg. Allg. Chem. 630, 305–308.
- Majoumo-Mbe, F., Mendoza, L., Lönnecke, P., Gómez-Ruiz, S. & Hey-Hawkins, E. (2015). Z. Anorg. Allg. Chem. 641, 2306–2311.
- Payne, D. S., Mokuolu, J. A. A. & Speakman, J. C. (1965). Chem. Commun. (London), p. 599.
- Peitz, S., Peulecke, N., Aluri, B. R., Hansen, S., Müller, B. H., Spannenberg, A., Rosenthal, U., Al-Hazmi, M. H., Mosa, F. M., Wöhl, A. & Müller, W. (2010). *Eur. J. Inorg. Chem.* pp. 1167– 1171.
- Pyykkö, P. (2015). J. Phys. Chem. A, 119, 2326–2337.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Spek, A. L. (2015). Acta Cryst. C71, 9-18.
- Stoe & Cie (2005). X-SHAPE, X-RED32 and X-AREA. Stoe & Cie, Darmstadt, Germany.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

full crystallographic data

IUCrData (2018). **3**, x180846 [https://doi.org/10.1107/S2414314618008465]

Tetracarbonyl[N-(diphenylphosphanyl- κP)-N,N'-diisopropyl-P-phenylphosphorus diamide- κP]molybdenum(0) with an unknown solvent

Martha Höhne, Marc Gongoll, Anke Spannenberg, Bernd H. Müller, Normen Peulecke and Uwe Rosenthal

Tetracarbonyl[N-(diphenylphosphanyl-κP)-N,N'-diisopropyl-P-phenylphosphorus diamide-κP]molybdenum(0)

 $D_{\rm x} = 1.365 {\rm Mg} {\rm m}^{-3}$

 $\theta = 1.8 - 29.7^{\circ}$

 $\mu = 0.58 \text{ mm}^{-1}$

Prism, colourless

 $0.46 \times 0.38 \times 0.36 \text{ mm}$

 $\theta_{\rm max} = 27.5^{\circ}, \, \theta_{\rm min} = 1.9^{\circ}$

95647 measured reflections

6886 independent reflections

5657 reflections with $I > 2\sigma(I)$

T = 150 K

 $R_{\rm int} = 0.041$

 $h = -20 \rightarrow 20$

 $k = -22 \rightarrow 23$ $l = -28 \rightarrow 28$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 11600 reflections

Crystal data

 $[Mo(C_{24}H_{30}N_2P_2)(CO)_4]$ $M_r = 616.42$ Orthorhombic, *Pbca* a = 15.634 (3) Å b = 17.716 (4) Å c = 21.661 (4) Å V = 5999 (2) Å³ Z = 8F(000) = 2528

Data collection

Stoe IPDS II diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω scans Absorption correction: numerical (X-SHAPE and X-RED32; Stoe & Cie, 2005) $T_{\min} = 0.75, T_{\max} = 0.89$

Refinement

Refinement on F^2	Hydrogen site location: mixed
Least-squares matrix: full	H atoms treated by a mixture of independent
$R[F^2 > 2\sigma(F^2)] = 0.022$	and constrained refinement
$wR(F^2) = 0.050$	$w = 1/[\sigma^2(F_o^2) + (0.0338P)^2]$
S = 0.92	where $P = (F_o^2 + 2F_c^2)/3$
6886 reflections	$(\Delta/\sigma)_{\rm max} = 0.002$
342 parameters	$\Delta \rho_{\rm max} = 0.38 \text{ e} \text{ Å}^{-3}$
1 restraint	$\Delta \rho_{\rm min} = -0.31 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The N-bound H atom was located in a difference Fourier map and refined with the N–H distance constrained to be 0.87 Å. All other H atoms were placed geometrically and refined using a riding atom approximation, with C-H = 0.95-1.00 Å, and with $U_{iso}(H) = 1.2U_{eq}(C)$ or $1.5U_{eq}(C)$ for methyl H atoms. A rotating model was used for the methyl groups.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	0.34111 (9)	0.15827 (8)	0.28181 (6)	0.0269 (3)	
C2	0.28472 (9)	0.07619 (8)	0.38433 (7)	0.0271 (3)	
C3	0.44531 (9)	0.01870 (8)	0.40890 (7)	0.0262 (3)	
C4	0.40591 (9)	0.01114 (9)	0.28804 (7)	0.0288 (3)	
C5	0.40138 (9)	0.22378 (9)	0.48935 (7)	0.0287 (3)	
C6	0.39750 (10)	0.15799 (10)	0.52376 (7)	0.0343 (3)	
H6	0.4040	0.1106	0.5037	0.041*	
C7	0.38431 (11)	0.16021 (11)	0.58705 (8)	0.0416 (4)	
H7	0.3828	0.1147	0.6102	0.050*	
C8	0.37339 (12)	0.22824 (12)	0.61608 (8)	0.0450 (4)	
H8	0.3645	0.2299	0.6594	0.054*	
C9	0.37530 (12)	0.29434 (12)	0.58244 (9)	0.0487 (5)	
H9	0.3665	0.3413	0.6026	0.058*	
C10	0.38998 (11)	0.29266 (10)	0.51939 (8)	0.0399 (4)	
H10	0.3923	0.3384	0.4966	0.048*	
C11	0.37638 (9)	0.29940 (8)	0.37296 (7)	0.0271 (3)	
C12	0.29425 (10)	0.32308 (9)	0.38861 (7)	0.0314 (3)	
H12	0.2642	0.2987	0.4211	0.038*	
C13	0.25641 (11)	0.38204 (9)	0.35696 (8)	0.0372 (4)	
H13	0.2006	0.3983	0.3681	0.045*	
C14	0.29902 (12)	0.41738 (9)	0.30934 (9)	0.0417 (4)	
H14	0.2726	0.4578	0.2878	0.050*	
C15	0.38000 (12)	0.39387 (10)	0.29309 (9)	0.0432 (4)	
H15	0.4095	0.4182	0.2603	0.052*	
C16	0.41847 (10)	0.33487 (9)	0.32456 (8)	0.0354 (4)	
H16	0.4741	0.3186	0.3129	0.042*	
C17	0.63680 (9)	0.09612 (8)	0.37610 (6)	0.0241 (3)	
C18	0.64070 (10)	0.08548 (8)	0.43972 (7)	0.0290 (3)	
H18	0.5987	0.1080	0.4655	0.035*	
C19	0.70499 (11)	0.04247 (9)	0.46573 (8)	0.0361 (3)	
H19	0.7077	0.0364	0.5093	0.043*	
C20	0.76512 (11)	0.00839 (9)	0.42858 (8)	0.0394 (4)	
H20	0.8094	-0.0210	0.4466	0.047*	
C21	0.76123 (11)	0.01667 (10)	0.36556 (8)	0.0394 (4)	
H21	0.8025	-0.0074	0.3401	0.047*	
C22	0.69701 (10)	0.06027 (9)	0.33895 (7)	0.0310(3)	
H22	0.6943	0.0656	0.2954	0.037*	
C23	0.54833 (10)	0.19268 (10)	0.21953 (7)	0.0363 (4)	
H23	0.4871	0.2051	0.2283	0.044*	
C24	0.55048 (17)	0.12180 (16)	0.18082 (10)	0.0691 (7)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

H24A	0.6100	0.1082	0.1720	0.104*
H24B	0.5201	0.1307	0.1419	0.104*
H24C	0.5228	0.0806	0.2034	0.104*
C25	0.58778 (15)	0.25923 (16)	0.18724 (11)	0.0718 (8)
H25A	0.5816	0.3043	0.2130	0.108*
H25B	0.5589	0.2674	0.1477	0.108*
H25C	0.6486	0.2494	0.1800	0.108*
C26	0.58322 (10)	0.28343 (9)	0.41876 (9)	0.0395 (4)
H26	0.5443	0.3277	0.4244	0.047*
C27	0.62182 (13)	0.26694 (12)	0.48171 (10)	0.0537 (5)
H27A	0.5774	0.2472	0.5093	0.081*
H27B	0.6454	0.3135	0.4991	0.081*
H27C	0.6675	0.2295	0.4774	0.081*
C28	0.65060 (13)	0.30750 (11)	0.37253 (11)	0.0554 (5)
H28A	0.6886	0.2648	0.3637	0.083*
H28B	0.6841	0.3493	0.3897	0.083*
H28C	0.6227	0.3239	0.3343	0.083*
N1	0.52898 (7)	0.22025 (7)	0.39514 (6)	0.0271 (3)
N2	0.59168 (8)	0.18048 (8)	0.27863 (6)	0.0332 (3)
01	0.30266 (7)	0.18956 (7)	0.24502 (5)	0.0397 (3)
O2	0.22161 (7)	0.06770 (8)	0.41024 (6)	0.0427 (3)
O3	0.46686 (8)	-0.03061 (7)	0.43865 (5)	0.0418 (3)
O4	0.41082 (8)	-0.03731 (7)	0.25315 (6)	0.0459 (3)
P1	0.42203 (2)	0.21436 (2)	0.40705 (2)	0.02325 (7)
P2	0.54809 (2)	0.14920 (2)	0.34291 (2)	0.02225 (7)
Mo1	0.39963 (2)	0.09633 (2)	0.34827 (2)	0.01978 (4)
H2	0.6430 (9)	0.1912 (10)	0.2777 (8)	0.035 (5)*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0232 (7)	0.0302 (8)	0.0274 (7)	-0.0046 (6)	-0.0005 (6)	0.0038 (6)
C2	0.0247 (7)	0.0285 (7)	0.0282 (7)	0.0004 (6)	-0.0026 (6)	0.0055 (6)
C3	0.0255 (7)	0.0273 (7)	0.0257 (7)	-0.0001 (6)	0.0015 (6)	0.0007 (6)
C4	0.0266 (7)	0.0304 (7)	0.0294 (7)	-0.0012 (6)	-0.0011 (6)	-0.0013 (6)
C5	0.0259 (7)	0.0305 (8)	0.0295 (7)	0.0043 (6)	-0.0041 (6)	-0.0062 (6)
C6	0.0389 (8)	0.0350 (8)	0.0291 (7)	0.0049 (7)	-0.0004 (7)	-0.0050 (6)
C7	0.0453 (10)	0.0508 (11)	0.0286 (8)	0.0027 (8)	0.0016 (7)	-0.0017 (7)
C8	0.0393 (9)	0.0657 (13)	0.0301 (8)	0.0075 (9)	-0.0017 (7)	-0.0139 (8)
C9	0.0477 (10)	0.0526 (12)	0.0458 (10)	0.0118 (9)	-0.0071 (8)	-0.0274 (9)
C10	0.0431 (9)	0.0341 (9)	0.0425 (9)	0.0051 (7)	-0.0070 (7)	-0.0109 (7)
C11	0.0258 (7)	0.0204 (7)	0.0349 (7)	0.0008 (5)	-0.0041 (6)	-0.0011 (6)
C12	0.0273 (7)	0.0270 (7)	0.0399 (8)	0.0027 (6)	-0.0009 (6)	-0.0010 (6)
C13	0.0295 (8)	0.0307 (8)	0.0515 (10)	0.0083 (6)	-0.0031 (7)	-0.0012 (7)
C14	0.0414 (9)	0.0284 (8)	0.0552 (10)	0.0087 (7)	-0.0069 (8)	0.0095 (7)
C15	0.0405 (9)	0.0364 (9)	0.0528 (10)	0.0021 (7)	0.0022 (8)	0.0156 (8)
C16	0.0277 (8)	0.0313 (8)	0.0471 (9)	0.0032 (6)	0.0017 (7)	0.0065 (7)
C17	0.0213 (6)	0.0214 (6)	0.0297 (7)	-0.0012 (6)	-0.0017 (5)	0.0022 (6)

C18	0.0285 (7)	0.0285 (8)	0.0302 (7)	0.0021 (6)	-0.0009 (6)	0.0021 (6)
C19	0.0391 (9)	0.0347 (8)	0.0345 (8)	0.0026 (7)	-0.0082 (7)	0.0071 (7)
C20	0.0328 (8)	0.0316 (8)	0.0540 (10)	0.0085 (7)	-0.0092 (7)	0.0082 (8)
C21	0.0334 (8)	0.0338 (8)	0.0510 (10)	0.0109 (7)	0.0071 (7)	0.0024 (7)
C22	0.0312 (8)	0.0291 (8)	0.0325 (8)	0.0028 (6)	0.0032 (6)	0.0015 (6)
C23	0.0271 (8)	0.0521 (10)	0.0297 (8)	0.0028 (7)	0.0024 (6)	0.0148 (7)
C24	0.0814 (17)	0.0884 (18)	0.0377 (11)	0.0139 (14)	0.0051 (11)	-0.0063 (11)
C25	0.0556 (13)	0.0973 (19)	0.0625 (14)	-0.0232 (12)	-0.0123 (10)	0.0524 (14)
C26	0.0307 (8)	0.0263 (8)	0.0616 (11)	-0.0042 (6)	-0.0097 (7)	-0.0082 (8)
C27	0.0471 (11)	0.0448 (11)	0.0692 (13)	-0.0016 (9)	-0.0272 (10)	-0.0155 (10)
C28	0.0385 (10)	0.0386 (10)	0.0891 (16)	-0.0155 (8)	-0.0037 (10)	-0.0024 (10)
N1	0.0214 (6)	0.0224 (6)	0.0375 (7)	-0.0001 (5)	-0.0035 (5)	-0.0027 (5)
N2	0.0200 (6)	0.0465 (8)	0.0330 (7)	-0.0036 (6)	0.0010 (5)	0.0143 (6)
01	0.0351 (6)	0.0473 (7)	0.0368 (6)	-0.0053 (5)	-0.0095 (5)	0.0157 (5)
O2	0.0257 (6)	0.0557 (8)	0.0465 (7)	-0.0005 (5)	0.0076 (5)	0.0122 (6)
O3	0.0477 (7)	0.0373 (6)	0.0404 (6)	0.0068 (5)	-0.0008 (5)	0.0144 (5)
O4	0.0517 (8)	0.0420 (7)	0.0440 (7)	-0.0003 (6)	0.0014 (6)	-0.0174 (6)
P1	0.02145 (16)	0.02076 (17)	0.02755 (17)	0.00172 (13)	-0.00178 (13)	-0.00073 (14)
P2	0.01931 (16)	0.02283 (16)	0.02462 (16)	-0.00003 (13)	-0.00046 (13)	0.00359 (14)
Mo1	0.01891 (6)	0.02026 (6)	0.02017 (6)	-0.00123 (4)	-0.00037 (4)	0.00138 (4)

Geometric parameters (Å, °)

C1—01	1.1417 (17)	C15—C16	1.385 (2)
C1—Mo1	2.0282 (15)	C17—C22	1.392 (2)
C2—O2	1.1450 (18)	C17—C18	1.392 (2)
C2—Mo1	1.9912 (15)	C17—P2	1.8234 (14)
C3—O3	1.1366 (18)	C18—C19	1.381 (2)
C3—Mo1	2.0313 (15)	C19—C20	1.377 (2)
C4—O4	1.1463 (19)	C20—C21	1.374 (3)
C4—Mo1	1.9973 (15)	C21—C22	1.392 (2)
С5—С6	1.385 (2)	C23—N2	1.4646 (19)
C5—C10	1.394 (2)	C23—C25	1.503 (3)
C5—P1	1.8194 (15)	C23—C24	1.510 (3)
С6—С7	1.387 (2)	C26—N1	1.4946 (19)
С7—С8	1.370 (3)	C26—C28	1.515 (3)
С8—С9	1.380 (3)	C26—C27	1.520 (3)
C9—C10	1.385 (3)	N1—P1	1.6949 (13)
C11—C16	1.388 (2)	N1—P2	1.7185 (13)
C11—C12	1.393 (2)	N2—P2	1.6462 (13)
C11—P1	1.8232 (15)	P1—Mo1	2.4731 (5)
C12—C13	1.382 (2)	P1—P2	2.6733 (6)
C13—C14	1.378 (3)	P2—Mo1	2.5056 (6)
C14—C15	1.378 (3)		
O1-C1-Mo1	174.59 (12)	C23—N2—P2	126.68 (11)
O2—C2—Mo1	173.34 (13)	N1—P1—C5	108.58 (6)
O3—C3—Mo1	172.36 (13)	N1—P1—C11	105.88 (7)

O4—C4—Mo1	178.85 (14)	C5—P1—C11	104.57 (7)
C6—C5—C10	118.67 (14)	N1—P1—Mo1	96.51 (4)
C6—C5—P1	117.26 (11)	C5—P1—Mo1	123.84 (5)
C10—C5—P1	124.07 (13)	C11—P1—Mo1	115.77 (5)
C5—C6—C7	120.99 (16)	N1—P1—P2	38.76 (4)
C8—C7—C6	119.81 (18)	C5—P1—P2	132.82 (5)
C7—C8—C9	120.10 (16)	C11—P1—P2	115.78 (5)
C8—C9—C10	120.40 (17)	Mo1—P1—P2	58.112 (14)
C9—C10—C5	120.01 (17)	N2—P2—N1	112.48 (7)
C16—C11—C12	118.98 (14)	N2—P2—C17	101.08 (7)
C16—C11—P1	119.63 (11)	N1—P2—C17	104.50 (6)
C12—C11—P1	120.75 (12)	N2—P2—Mo1	123.27 (5)
C13—C12—C11	120.10 (15)	N1—P2—Mo1	94.72 (4)
C14—C13—C12	120.49 (15)	C17—P2—Mo1	119.57 (5)
C13—C14—C15	119.85 (15)	N2—P2—P1	126.83 (5)
C14—C15—C16	120.07 (16)	N1—P2—P1	38.13 (4)
C15—C16—C11	120.49 (15)	C17—P2—P1	125.34 (5)
C22—C17—C18	118.74 (13)	Mo1—P2—P1	56.940 (15)
C22—C17—P2	121.45 (11)	C2—Mo1—C4	99.51 (6)
C18—C17—P2	119.57 (11)	C2—Mo1—C1	88.19 (6)
C19—C18—C17	120.68 (15)	C4—Mo1—C1	88.13 (6)
C20—C19—C18	120.02 (15)	C2—Mo1—C3	86.69 (6)
C21—C20—C19	120.23 (15)	C4—Mo1—C3	83.89 (6)
C20—C21—C22	120.17 (15)	C1—Mo1—C3	169.67 (6)
C21—C22—C17	120.11 (14)	C2—Mo1—P1	94.44 (5)
N2—C23—C25	109.43 (15)	C4—Mo1—P1	165.51 (4)
N2—C23—C24	110.63 (15)	C1—Mo1—P1	88.39 (4)
C25—C23—C24	112.62 (18)	C3—Mo1—P1	100.94 (4)
N1—C26—C28	112.27 (15)	C2—Mo1—P2	157.06 (4)
N1—C26—C27	112.87 (15)	C4—Mo1—P2	101.93 (4)
C28—C26—C27	111.79 (16)	C1—Mo1—P2	100.52 (4)
C26—N1—P1	123.61 (10)	C3—Mo1—P2	87.56 (4)
C26—N1—P2	132.47 (11)	P1—Mo1—P2	64.948 (13)
P1—N1—P2	103.10 (6)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	<i>D</i> —H··· <i>A</i>
C8—H8…O1 ⁱ	0.95	2.53	3.338 (2)	143
N2—H2…O1 ⁱⁱ	0.83 (1)	2.54 (1)	3.3419 (18)	163 (1)

Symmetry codes: (i) x, -y+1/2, z+1/2; (ii) x+1/2, y, -z+1/2.