

ISSN 2414-3146

Received 8 June 2018 Accepted 15 June 2018

Edited by C. Rizzoli, Universita degli Studi di Parma, Italy

Keywords: crystal structure; dihydroquinoxaline; hydrogen bond; π – π stacking.

CCDC reference: 1849737

Structural data: full structural data are available from iucrdata.iucr.org

2-(3-Methyl-2-oxo-1,2-dihydroquinoxalin-1-yl)acetic acid dihydrate

Mohcine Missioui,^a* Mohammed El Fal,^{b,a} Jamal Taoufik,^a El Mokhtar Essassi,^b Joel T. Mague^c and Youssef Ramli^a

^aLaboratory of Medicinal Chemistry, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat, Morocco, ^bLaboratoire de Chimie Organique Heterocyclique URAC 21, Av. Ibn Battouta, BP, 1014, Faculte des Sciences, Universite Mohammed V, Rabat, Morocco, and ^cDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA. *Correspondence e-mail: mohcinemissioui@yahoo.com

In the title compound, $C_{11}H_{10}N_2O_3\cdot 2H_2O$, the constituent atoms of the dihydroquinoxaline moiety deviate from the mean plane of the unit by +0.0572 (8) to -0.0874 (8) Å while the acetic acid substituent is nearly orthogonal to this plane. The crystal packing consists of corrugated layers constructed by $O-H\cdots O$, $O-H\cdots N$ and $C-H\cdots O$ hydrogen bonds, which also involve the lattice water molecules. $O-H\cdots O$ hydrogen bonds and π - π stacking interactions hold these layers together.

Structure description

Quinoxaline derivatives have attracted interest because of their biological and pharmacological activities (Ramli *et al.*, 2014; Ramli & Essassi, 2015). As a continuation of our work on the synthesis of 3-methylquinoxalin-2-one derivatives in order to evaluate their pharmacological activities (Ramli *et al.* 2010*a*,*b*, 2011, 2013, 2017, 2018; Caleb *et al.*, 2016; Missioui *et al.*, 2017), the title compound (Fig. 1) was synthesized and its crystal structure is reported here.

The dihydroquinoxaline portion of the molecule is not completely planar, as can be seen from the displacements [+0.0572 (8) (N2) to -0.0874 (8) Å (C9)] from the mean plane (r.m.s. deviation = 0.0411 Å) of the bicyclic unit. In addition, a puckering analysis of the heterocyclic ring gave the parameters Q = 0.0893 (11) Å. $\theta = 72.7$ (7)° and $\varphi = 205.6$ (8)°. The N2/C10/C11 unit is inclined to the mean plane of the dihydroquinoxaline portion by 82.91 (8)° while the C11/O2/O3 unit is rotated from the N2/C10/C11 unit by 8.4 (2)°.

Figure 1

The asymmetric unit of the title compound with labelling scheme and 50% probability ellipsoids. The $O-H\cdots O$ hydrogen bonds (Table 1) involving the lattice water molecules are shown as dashed lines.

In the crystal, the main molecule, together with the lattice water molecules, form zigzag chains along the *b*-axis direction through $O3-H3A\cdots O4$ and $O4-H4B\cdots N1$ hydrogen bonds (Table 1 and Fig. 2). The chains are connected into corrugated

Figure 2

Packing diagram of the title compound viewed along the c axis with intermolecular interactions shown as in Fig. 2.

Figure 3

Packing diagram of the title compound viewed along the *a* axis with O– H···O, O–H···N and C–H···O hydrogen bonds (Table 1) shown, respectively, as red, light-blue and black dashed lines. The π - π stacking interactions are shown as orange dashed lines

 Table 1

 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O3-H3A\cdots O4^{i}$	0.87	1.67	2.5400 (12)	176
$C10-H10A\cdots O1^{ii}$	0.986 (15)	2.334 (15)	3.2524 (14)	154.7 (11)
$C10-H10B\cdots O4^{ii}$	0.989 (15)	2.369 (15)	3.3520 (14)	172.1 (12)
$O4-H4A\cdots O5$	0.87	1.83	2.6966 (11)	171
$O4-H4B\cdots N1^{iii}$	0.87	1.97	2.8344 (13)	171
$O5-H5A\cdots O2^{iv}$	0.87	1.96	2.8287 (12)	175
$O5-H5B\cdots O1$	0.87	1.96	2.8177 (11)	170

Symmetry codes: (i) $-x + \frac{1}{2}$, $y - \frac{1}{2}$, $-z + \frac{1}{2}$; (ii) -x + 1, -y + 1, -z + 1; (iii) x, y, z - 1; (iv) -x, -y + 1, -z + 1.

Table 2Experimental details.

Crystal data	
Chemical formula	$C_{11}H_{10}N_2O_3 \cdot 2H_2O$
M _r	254.24
Crystal system, space group	Monoclinic, $P2_1/n$
Temperature (K)	150
a, b, c (Å)	7.7306 (5), 16.8048 (11), 9.3113 (6)
β (°)	102.001 (2)
$V(\dot{A}^3)$	1183.20 (13)
Z	4
Radiation type	Cu Ka
$\mu \text{ (mm}^{-1})$	0.97
Crystal size (mm)	$0.21\times0.15\times0.08$
Data collection	
	Desta DO VENTURE DUOTON
Diffractometer	100 CMOS
Absorption correction	Multi-scan (SADABS: Krause et
F	al., 2015)
T_{\min}, T_{\max}	0.86, 0.93
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	9051, 2359, 2163
$R_{\rm ex}$	0.029
$(\sin \theta/\lambda)$ $(\dot{\Delta}^{-1})$	0.625
(Sin Original (Tr))	0.023
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.031, 0.082, 1.02
No. of reflections	2359
No. of parameters	200
H-atom treatment	H atoms treated by a mixture of
	independent and constrained refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ (e \ {\rm \AA}^{-3})$	0.22, -0.19
	/

Computer programs: *APEX3* and *SAINT* (Bruker, 2016), *SHELXT* (Sheldrick, 2015*a*), *SHELXL2018* (Sheldrick, 2015*b*), *DIAMOND* (Brandenburg & Putz, 2012) and *SHELXTL* (Sheldrick, 2008).

layers parallel to the bc plane by $O5-H5B\cdots O1$ hydrogen bonds and the layers are then associated through inversionrelated pairs of $O5-H5A\cdots O2$ hydrogen bonds and head-totail $\pi-\pi$ stacking interactions between inversion-related dihydroquinoxaline moieties [centroid-centroid distance = 3.5295 (7) Å; dihedral angle = 3.33 (5)°; symmetry code 1 - x, 1 - y, 2 - z; Table 1 and Fig. 3].

Synthesis and crystallization

1 g of ethyl 2- (3-methyl-2-oxoquinoxalin-1(2*H*)-yl) acetate in 15 ml of a mixture of H₂O/EtOH (50:50 ν/ν) and 5 ml of 10% NaOH were stirred at room temperature for 1 h. After completion of the reaction (monitored by TLC), the medium was acidified with HCl (3 M). The precipitate obtained was crystallized from ethanol to afford colourless crystals in 55% yield.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

Funding information

The support of NSF–MRI grant No. 1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged.

References

- Brandenburg, K. & Putz, H. (2012). *DIAMOND-* Crystal Impact GbR, Bonn, Germany.
- Bruker (2016). *APEX3, SAINT* and *SADABS*. Bruker AXS, Inc., Madison, Wisconsin, USA.

- Caleb, A. A., Ramli, Y., Benabdelkamel, H., Bouhfid, R., Es-Safi, N., Kandri Rodi, Y., Essassi, E. M. & Banoub, J. (2016). *J. Marocain Chim. Heterocycl.* **15**, 109–123.
- Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.
- Missioui, M., Mague, J. T., El Fal, M., Taoufik, J., Essassi, E. M. & Ramli, Y. (2017). *IUCrData*, **2**, x171763.
- Ramli, Y., Benzeid, H., Bouhfid, R., Kandri Rodi, Y., Ferfra, S. & Essassi, E. M. (2010a). Sci. Study Res. 11, 67–90.
- Ramli, Y., El Bakri, Y., El Ghayati, L. M., Essassi, E. M. & Mague, J. T. (2018). *IUCrData*, **3**, x180390.
- Ramli, Y. & Essassi, E. M. (2015). Adv. Chem. Res, 27, 109-160.
- Ramli, Y., Karrouchi, K., Essassi, E. M. & El Ammari, L. (2013). Acta Cryst. E69, 01320–01321.
- Ramli, Y., Missioui, M., El Fal, M., Ouhcine, M., Essassi, E. M. & Mague, J. T. (2017). *IUCrData*, 2, x171424.
- Ramli, Y., Moussaif, A., Karrouchi, K. & Essassi, E. M. (2014). J. Chem. Article ID **563406**, 1–21.
- Ramli, Y., Moussaif, A., Zouihri, H., Bourichi, H. & Essassi, E. M. (2011). Acta Cryst. E67, 01374.
- Ramli, Y., Slimani, R., Zouihri, H., Lazar, S. & Essassi, E. M. (2010b). Acta Cryst. E66, 0992.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.

full crystallographic data

IUCrData (2018). 3, x180882 [https://doi.org/10.1107/S2414314618008829]

2-(3-Methyl-2-oxo-1,2-dihydroquinoxalin-1-yl)acetic acid dihydrate

Mohcine Missioui, Mohammed El Fal, Jamal Taoufik, El Mokhtar Essassi, Joel T. Mague and Youssef Ramli

2-(3-Methyl-2-oxo-1,2-dihydroquinoxalin-1-yl)acetic acid dihydrate

Crystal data

 $C_{11}H_{10}N_2O_3 \cdot 2H_2O$ $M_r = 254.24$ Monoclinic, $P2_1/n$ a = 7.7306 (5) Å b = 16.8048 (11) Å c = 9.3113 (6) Å $\beta = 102.001$ (2)° V = 1183.20 (13) Å³ Z = 4

Data collection

Bruker D8 VENTURE PHOTON 100 CMOS diffractometer
Radiation source: INCOATEC IμS micro-focus source
Mirror monochromator
Detector resolution: 10.4167 pixels mm⁻¹ ω scans
Absorption correction: multi-scan (SADABS; Krause et al., 2015)

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.031$ $wR(F^2) = 0.082$ S = 1.022359 reflections 200 parameters 0 restraints Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map F(000) = 536 $D_x = 1.427 \text{ Mg m}^{-3}$ Cu Ka radiation, $\lambda = 1.54178 \text{ Å}$ Cell parameters from 7699 reflections $\theta = 5.3-74.5^{\circ}$ $\mu = 0.97 \text{ mm}^{-1}$ T = 150 KBlock, colourless $0.21 \times 0.15 \times 0.08 \text{ mm}$

 $T_{\min} = 0.86, T_{\max} = 0.93$ 9051 measured reflections 2359 independent reflections 2163 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.029$ $\theta_{\text{max}} = 74.5^{\circ}, \theta_{\text{min}} = 5.3^{\circ}$ $h = -9 \rightarrow 9$ $k = -18 \rightarrow 21$ $l = -11 \rightarrow 11$

Hydrogen site location: difference Fourier map H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0401P)^2 + 0.3842P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.22$ e Å⁻³ $\Delta\rho_{min} = -0.19$ e Å⁻³ Extinction correction: *SHELXL2018* (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4} Extinction coefficient: 0.0073 (6)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The C-bound H atoms were located in a difference Fourier map and refined freely. As independent refinement of the H atoms attached to oxygen gave unsatisfactory geometries, particularly for H3A, the positions of these atoms were idealized and they were included as riding contributions with $U_{iso}(H) = 1.5 U_{eq}(O)$. Refinement of F² against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F², conventional R-factors R are based on F, with F set to zero for negative F². The threshold expression of F² > 2sigma(F²) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F² are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms attached to oxygen were placed in locations derived from a difference map, their coordinates were adjusted to give O—H = 0.87 Å and were included as riding contributions.

	X	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.29637 (11)	0.52589 (5)	0.56060 (9)	0.0275 (2)	
O2	0.23074 (10)	0.31882 (5)	0.56225 (9)	0.0284 (2)	
O3	0.49925 (11)	0.28631 (5)	0.52405 (9)	0.0275 (2)	
H3A	0.449130	0.245199	0.475735	0.041*	
N1	0.20378 (12)	0.53983 (6)	0.91754 (10)	0.0229 (2)	
N2	0.37927 (11)	0.44157 (5)	0.75315 (10)	0.0198 (2)	
C1	0.35985 (13)	0.41602 (6)	0.89191 (12)	0.0201 (2)	
C2	0.42554 (15)	0.34290 (7)	0.95184 (13)	0.0258 (3)	
H2	0.487 (2)	0.3067 (10)	0.8985 (18)	0.038 (4)*	
C3	0.39994 (17)	0.32121 (8)	1.08882 (14)	0.0308 (3)	
H3	0.443 (2)	0.2703 (10)	1.1277 (17)	0.038 (4)*	
C4	0.31163 (17)	0.37105 (8)	1.16941 (13)	0.0307 (3)	
H4	0.297 (2)	0.3572 (10)	1.2651 (19)	0.040 (4)*	
C5	0.24815 (15)	0.44351 (7)	1.11188 (13)	0.0262 (3)	
Н5	0.188 (2)	0.4802 (9)	1.1667 (16)	0.033 (4)*	
C6	0.27024 (14)	0.46666 (6)	0.97219 (12)	0.0209 (2)	
C7	0.21326 (15)	0.55956 (7)	0.78503 (12)	0.0227 (2)	
C8	0.1406 (2)	0.63718 (8)	0.72178 (14)	0.0340 (3)	
H8A	0.226 (2)	0.6636 (11)	0.672 (2)	0.052 (5)*	
H8B	0.029 (2)	0.6263 (10)	0.6467 (19)	0.044 (4)*	
H8C	0.109 (3)	0.6704 (12)	0.798 (2)	0.058 (5)*	
C9	0.29624 (14)	0.50840 (6)	0.68914 (12)	0.0209 (2)	
C10	0.48739 (14)	0.39698 (7)	0.67001 (12)	0.0217 (2)	
H10A	0.5238 (19)	0.4329 (9)	0.5980 (16)	0.028 (3)*	
H10B	0.592 (2)	0.3753 (9)	0.7384 (16)	0.031 (4)*	
C11	0.38939 (14)	0.32998 (7)	0.58021 (11)	0.0214 (2)	
O4	0.13522 (11)	0.66176 (5)	0.10852 (9)	0.0262 (2)	
H4A	0.091253	0.642524	0.180009	0.039*	
H4B	0.144293	0.623447	0.047672	0.039*	
05	0.03254 (10)	0.59251 (5)	0.33839 (8)	0.0271 (2)	
H5A	-0.048291	0.617676	0.373004	0.041*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

data reports

H5B	0.11313	0 0	0.576940	0.412786	0.041*	
Atomic displacement parameters $(Å^2)$						
	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0292 (4)	0.0330 (5)	0.0219 (4)	0.0051 (3)	0.0089 (3)	0.0055 (3)
O2	0.0208 (4)	0.0309 (4)	0.0330 (4)	-0.0003 (3)	0.0045 (3)	-0.0072 (4)
O3	0.0254 (4)	0.0258 (4)	0.0329 (5)	0.0021 (3)	0.0099 (3)	-0.0062 (3)
N1	0.0235 (5)	0.0236 (5)	0.0208 (4)	0.0005 (4)	0.0027 (4)	-0.0018 (4)
N2	0.0186 (4)	0.0208 (4)	0.0203 (4)	-0.0003 (3)	0.0043 (3)	-0.0004 (4)
C1	0.0169 (5)	0.0222 (5)	0.0204 (5)	-0.0037 (4)	0.0015 (4)	-0.0003 (4)
C2	0.0245 (5)	0.0238 (6)	0.0282 (6)	0.0003 (4)	0.0036 (4)	0.0014 (5)
C3	0.0311 (6)	0.0279 (6)	0.0314 (6)	0.0007 (5)	0.0024 (5)	0.0082 (5)
C4	0.0323 (6)	0.0362 (7)	0.0231 (6)	-0.0028 (5)	0.0045 (5)	0.0085 (5)
C5	0.0253 (6)	0.0310 (6)	0.0219 (5)	-0.0022 (5)	0.0040 (4)	-0.0008 (5)
C6	0.0188 (5)	0.0219 (5)	0.0208 (5)	-0.0022 (4)	0.0012 (4)	-0.0009 (4)
C7	0.0235 (5)	0.0230 (5)	0.0209 (5)	0.0002 (4)	0.0028 (4)	-0.0013 (4)
C8	0.0493 (8)	0.0278 (6)	0.0250 (6)	0.0129 (6)	0.0079 (6)	0.0016 (5)
C9	0.0191 (5)	0.0221 (5)	0.0211 (5)	-0.0016 (4)	0.0036 (4)	0.0010 (4)
C10	0.0187 (5)	0.0239 (5)	0.0231 (5)	0.0015 (4)	0.0060 (4)	0.0004 (4)
C11	0.0217 (5)	0.0230 (5)	0.0196 (5)	0.0028 (4)	0.0049 (4)	0.0031 (4)
O4	0.0319 (4)	0.0259 (4)	0.0219 (4)	0.0014 (3)	0.0080 (3)	0.0012 (3)
O5	0.0235 (4)	0.0364 (5)	0.0216 (4)	0.0037 (3)	0.0051 (3)	0.0016 (3)

Geometric parameters (Å, °)

01—C9	1.2326 (14)	C4—H4	0.950 (17)
O2—C11	1.2173 (14)	C5—C6	1.4017 (16)
O3—C11	1.3107 (13)	С5—Н5	0.978 (16)
ОЗ—НЗА	0.8703	С7—С9	1.4785 (15)
N1—C7	1.2944 (15)	С7—С8	1.4919 (16)
N1—C6	1.3878 (15)	C8—H8A	0.989 (19)
N2—C9	1.3673 (14)	C8—H8B	1.011 (18)
N2-C1	1.3989 (14)	C8—H8C	0.98 (2)
N2-C10	1.4589 (14)	C10—C11	1.5092 (15)
C1—C2	1.4005 (16)	C10—H10A	0.986 (15)
C1—C6	1.4064 (16)	C10—H10B	0.989 (15)
С2—С3	1.3797 (18)	O4—H4A	0.8702
С2—Н2	0.972 (16)	O4—H4B	0.8701
C3—C4	1.3941 (19)	O5—H5A	0.8700
С3—Н3	0.961 (17)	O5—H5B	0.8700
C4—C5	1.3788 (18)		
С11—О3—НЗА	113.3	N1—C7—C9	122.98 (10)
C7—N1—C6	119.11 (10)	N1—C7—C8	120.60 (10)
C9—N2—C1	121.59 (9)	C9—C7—C8	116.42 (10)
C9—N2—C10	117.35 (9)	C7—C8—H8A	110.1 (11)
C1—N2—C10	121.05 (9)	C7—C8—H8B	108.2 (10)

N2—C1—C2	122.52 (10)	H8A—C8—H8B	108.6 (14)
N2—C1—C6	117.68 (10)	C7—C8—H8C	110.1 (12)
C2—C1—C6	119.80 (10)	H8A—C8—H8C	112.3 (15)
C3—C2—C1	119.36 (11)	H8B—C8—H8C	107.4 (15)
С3—С2—Н2	119.2 (10)	O1—C9—N2	121.60 (10)
C1—C2—H2	121.4 (10)	O1—C9—C7	122.39 (10)
C2—C3—C4	121.28 (11)	N2—C9—C7	115.96 (9)
С2—С3—Н3	118.5 (9)	N2-C10-C11	113.59 (9)
С4—С3—Н3	120.2 (9)	N2-C10-H10A	108.8 (8)
C5—C4—C3	119.73 (11)	C11-C10-H10A	105.1 (8)
С5—С4—Н4	118.5 (10)	N2-C10-H10B	109.2 (8)
C3—C4—H4	121.7 (10)	C11-C10-H10B	109.4 (9)
C4—C5—C6	120.23 (11)	H10A—C10—H10B	110.6 (12)
C4—C5—H5	121.6 (9)	O2—C11—O3	125.23 (10)
С6—С5—Н5	118.2 (9)	O2-C11-C10	124.50 (10)
N1—C6—C5	118.61 (10)	O3—C11—C10	110.27 (9)
N1—C6—C1	121.80 (10)	H4A—O4—H4B	108.7
C5—C6—C1	119.59 (10)	H5A—O5—H5B	107.6
C9—N2—C1—C2	171.99 (10)	C2-C1-C6-C5	0.25 (15)
C10—N2—C1—C2	-7.10 (15)	C6—N1—C7—C9	-1.59 (16)
C9—N2—C1—C6	-7.91 (14)	C6—N1—C7—C8	179.03 (11)
C10—N2—C1—C6	172.99 (9)	C1—N2—C9—O1	-171.44 (10)
N2—C1—C2—C3	-179.34 (10)	C10-N2-C9-O1	7.68 (15)
C6—C1—C2—C3	0.55 (16)	C1—N2—C9—C7	10.93 (14)
C1—C2—C3—C4	-0.71 (18)	C10—N2—C9—C7	-169.95 (9)
C2—C3—C4—C5	0.03 (19)	N1-C7-C9-O1	176.13 (11)
C3—C4—C5—C6	0.79 (18)	C8—C7—C9—O1	-4.46 (16)
C7—N1—C6—C5	-175.57 (10)	N1C7C9N2	-6.26 (16)
C7—N1—C6—C1	5.03 (16)	C8—C7—C9—N2	173.15 (10)
C4—C5—C6—N1	179.66 (10)	C9—N2—C10—C11	-93.62 (11)
C4—C5—C6—C1	-0.93 (17)	C1-N2-C10-C11	85.51 (12)
N2-C1-C6-N1	-0.45 (15)	N2-C10-C11-O2	8.67 (16)
C2-C1-C6-N1	179.64 (10)	N2-C10-C11-O3	-171.79 (9)
N2-C1-C6-C5	-179.85 (9)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	D—H···A
O3—H3A····O4 ⁱ	0.87	1.67	2.5400 (12)	176
C10—H10A…O1 ⁱⁱ	0.986 (15)	2.334 (15)	3.2524 (14)	154.7 (11)
C10—H10 <i>B</i> ····O4 ⁱⁱ	0.989 (15)	2.369 (15)	3.3520 (14)	172.1 (12)
O4—H4 <i>A</i> …O5	0.87	1.83	2.6966 (11)	171
O4—H4 <i>B</i> ···N1 ⁱⁱⁱ	0.87	1.97	2.8344 (13)	171
O5—H5 <i>A</i> ···O2 ^{iv}	0.87	1.96	2.8287 (12)	175
O5—H5 <i>B</i> …O1	0.87	1.96	2.8177 (11)	170

Symmetry codes: (i) -x+1/2, y-1/2, -z+1/2; (ii) -x+1, -y+1, -z+1; (iii) x, y, z-1; (iv) -x, -y+1, -z+1.