IUCrData

ISSN 2414-3146

Received 18 May 2018 Accepted 4 June 2018

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland

Keywords: crystal structure; cobalt(III) dibromide; methylamine; ethylene-1,2-diamine; hydrogen bonding.

CCDC reference: 894718

Structural data: full structural data are available from iucrdata.iucr.org

# cis-Bromidobis(ethylene-1,2-diamine)(methylamine)cobalt(III) dibromide

S. Manimaran,<sup>a,b</sup>\* E. Govindan,<sup>c</sup> M. Manjunathan,<sup>b</sup> K. Sambathkumar<sup>d</sup> and K. Anbalagan<sup>e</sup>

<sup>a</sup>Department of Physics, Thanthai Hans Rover College, Perambalur 621 220, India, <sup>b</sup>Department of Chemistry, BWDA Arts and Science College, Tindivanam 604 304, India, <sup>c</sup>Department of Physics, Thiruvalluvar University College of Arts and Science, Thiruvennainallur 607 203, India, <sup>d</sup>P. G. & Research Department of Physics, A. A. Govt. Arts College, Villupuram, India, and <sup>e</sup>Department of Chemistry, Pondicherry University, Pondicherry 605 014, India. \*Correspondence e-mail: drmanirec@gmail.com

In the title compound,  $[CoBr(CH_5N)(C_2H_8N_2)_2]Br_2$ , the cobalt(III) ion has a distorted octahedral coordination environment and is ligated by four N atoms in the equatorial plane, with an additional N atom and a Br<sup>-</sup> ion occupying the axial positions. In the crystal, the complex cation and the two counter-anions are linked *via* N-H···Br and C-H···Br hydrogen bonds, forming a supra-molecular framework.



### Structure description

Mixed-ligand cobalt(III) complexes exhibit antitumor, antibacterial, antimicrobial, radiosenzitation and cytotoxicity activities (Sayed *et al.*, 1992; Teicher *et al.*, 1990; Arslan *et al.*, 2009; Delehanty *et al.*, 2008). Cobalt is an essential and integral component of vitamin B12 and is therefore found physiologically in most tissues. Cobalt(III) complexes are known for their involvement in electron-transfer and ligand-substitution reactions, which find applications in chemical and biological systems. Our present research concerns the design and synthesis of cobalt(III) complexes with the objective of understanding of their structure–reactivity correlations. Substituting an amino ligand for the MeNH<sub>2</sub> moiety can yield complexes of similar structure, but with differing electron-transfer rates (Anbalagan, 2011; Anbalagan *et al.*, 2011).

The molecular structure of the title compound is illustrated in Fig. 1. The cobalt(III) ion has a distorted octahedral coordination environment and is ligated by four N atoms (N1, N2, N3 and N5) in the equatorial plane, with N atom (N4) and the  $Br^-$  ion (Br1) occupying the axial positions. The Co1-N(ethylene-1,2-diamine) bond lengths vary from







Molecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 30% probability level.

1.958 (7) to 1.966 (7) Å, comparable with the values reported [1.962 (7) to 1.957 (8) Å] in the literature (Lee *et al.*, 2007; Ramesh *et al.*, 2008; Anbalagan *et al.*, 2009; Ravichandran *et al.*, 2009). The Co1-N5 (methylamine) bond length is 1.983 (7) Å, which is also similar to the values of 1.9722 (2) to 1.988 (2) Å reported previously (Manimaran *et al.*, 2018).



Figure 2

A view along the *b* axis of the crystal packing of the title compound. The  $N-H\cdots Br$  hydrogen bonds are shown as dashed lines (Table 1). For clarity, C-bound H atoms have been omitted unless involved in hydrogen bonding.

| Table 1       |              |     |
|---------------|--------------|-----|
| Hydrogen-bond | geometry (Å, | °). |

| $D - H \cdots A$                 | D-H  | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - H \cdot \cdot \cdot A$ |
|----------------------------------|------|-------------------------|--------------|-----------------------------|
| $N1 - HB \cdots Br3^{i}$         | 0.90 | 2.67                    | 3.484 (7)    | 151                         |
| $N1-HA\cdots Br3$                | 0.90 | 2.52                    | 3.389 (8)    | 163                         |
| N4 $-H0AB\cdots$ Br2             | 0.90 | 2.73                    | 3.485 (7)    | 142                         |
| N4-H0AA···Br3                    | 0.90 | 2.52                    | 3.374 (7)    | 158                         |
| $N2-H3AA\cdots Br2$              | 0.90 | 2.66                    | 3.498 (10)   | 156                         |
| N5-H2 $AB$ ···Br2 <sup>ii</sup>  | 0.90 | 2.56                    | 3.452 (7)    | 171                         |
| N5-H2 $AA$ ···Br2 <sup>iii</sup> | 0.90 | 2.58                    | 3.447 (7)    | 161                         |
| N3–H1AC···Br3                    | 0.90 | 2.55                    | 3.387 (8)    | 154                         |
| N3-H1 $AD$ ···Br2 <sup>ii</sup>  | 0.90 | 2.61                    | 3.511 (7)    | 174                         |
| $C5-H11A\cdots Br2$              | 0.96 | 2.85                    | 3.813 (13)   | 176                         |

Symmetry codes: (i) -x,  $y = \frac{1}{2}$ ,  $-z = \frac{3}{2}$ ; (ii) x,  $-y = \frac{1}{2}$ ,  $z = \frac{1}{2}$ ; (iii) -x = 1,  $y = \frac{1}{2}$ ,  $-z = \frac{3}{2}$ .

| Table 2      |   |
|--------------|---|
| Experimental | ć |

Experimental details.

| Crystal data                                               |                                                                        |
|------------------------------------------------------------|------------------------------------------------------------------------|
| Chemical formula                                           | $[CoBr(CH_5N)(C_2H_8N_2)_2]Br_2$                                       |
| $M_{\rm r}$                                                | 449.90                                                                 |
| Crystal system, space group                                | Monoclinic, $P2_1/c$                                                   |
| Temperature (K)                                            | 293                                                                    |
| <i>a</i> , <i>b</i> , <i>c</i> (Å)                         | 13.2883 (8), 7.5686 (5), 14.3602 (9)                                   |
| β (°)                                                      | 103.261 (6)                                                            |
| $V(\dot{A}^3)$                                             | 1405.75 (15)                                                           |
| Z                                                          | 4                                                                      |
| Radiation type                                             | Μο Κα                                                                  |
| $\mu (\mathrm{mm}^{-1})$                                   | 9.73                                                                   |
| Crystal size (mm)                                          | $0.23 \times 0.17 \times 0.11$                                         |
| Data collection                                            |                                                                        |
| Diffractometer                                             | Bruker SMADT ADEXII area                                               |
| Dimactometer                                               | detector                                                               |
| Absorption correction                                      | Multi-scan ( <i>SADABS</i> ; Bruker, 2008)                             |
| $T_{\min}, T_{\max}$                                       | 0.165, 0.361                                                           |
| No. of measured, independent and                           | 5583, 2458, 1398                                                       |
| observed $[I > 2\sigma(I)]$ reflections                    |                                                                        |
| R <sub>int</sub>                                           | 0.076                                                                  |
| $(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$         | 0.595                                                                  |
| Refinement                                                 |                                                                        |
| $R[F^2 > 2\sigma(F^2)], wR(F^2), S$                        | 0.057, 0.143, 0.89                                                     |
| No. of reflections                                         | 2458                                                                   |
| No. of parameters                                          | 128                                                                    |
| H-atom treatment                                           | H atoms treated by a mixture of independent and constrained refinement |
| $\Delta \rho = \Delta \rho \cdot (e \AA^{-3})$             | 1 31 - 1 14                                                            |
| $\Delta \rho_{\rm max}, \Delta \rho_{\rm min} (C \Lambda)$ | 1                                                                      |

Computer programs: *APEX2* and *SAINT* (Bruker, 2008), *SHELXS97* (Sheldrick 2008), *SHELXL97* (Sheldrick 2008), *PLATON* (Spek, 2009), *SHELXTL* (Sheldrick, 2008) and *publCIF* (Westrip, 2010).

Both five-membered chelate rings adopts twisted conformations (on the C1-C2 and C3-C4 bonds), and their mean planes are inclined to each other by 80.2 (5)°.

In the crystal, molecules are linked by a series of N– $H \cdots Br$  hydrogen bonds and a C– $H \cdots Br$  hydrogen bond, leading to the formation of a supramolecular framework (Fig. 2 and Table 1)

### Synthesis and crystallization

To a suspension of 2 g of *trans*- $[Co(en)_2Br_2]Br$ , made into a paste using 3–4 drops of water, *ca* 2 ml of methylamine was

added dropwise over 20 min with mixing. The mixture was ground until the colour changed from dull green to red. The reaction mixture was set aside until no further change was observed and then left to stand overnight. Finally, the solid was washed with ethanol, then dissolved in 5–10 ml of water pre-heated to 343 K and allowed to crystallize using hot acidified water (yield 0.75 g). The crystals were filtered off, washed with ethanol and dried under vacuum. Pink block-like crystals were obtained by repeated recrystallization from hot acidified distilled water.

## Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

### Acknowledgements

The authors thank the Department of Chemistry, Pondicherry University, for the data collection.

## **Funding information**

SM gratefully acknowledges the DST–SERB for a young scientist start-up research grant (YSS/2014/000561) and the DST–FIST for providing NMR facilities to the department.

#### References

- Anbalagan, K. (2011). J. Phys. Chem. C, 115, 3821-3832.
- Anbalagan, K., Maharaja Mahalakshmi, C. & Ganeshraja, A. S. (2011). J. Mol. Struct. 1005, 45–52.
- Anbalagan, K., Tamilselvan, M., Nirmala, S. & Sudha, L. (2009). Acta Cryst. E65, m836–m837.
- Arslan, H., Duran, N., Borekci, G., Ozer, C. K. & Akbay, C. (2009). *Molecules*, 14, 519–527.
- Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Delehanty, J. B., Bongard, J. E., Thach, C. D., Knight, D. A., Hickey, T. E. & Chang, E. L. (2008). *Bioorg. Med. Chem.* **16**, 830–837.
- Lee, D. N., Lee, E. Y., Kim, C., Kim, S.-J. & Kim, Y. (2007). Acta Cryst. E63, m1949–m1950.
- Manimaran, S. M., Manjunathan, M., Anbalagan, K., Sambathkumar, K. & Govindan, E. (2018). *IUCrData*. manuscript t4e0093 for review. Submitted [bh4035].
- Ramesh, P., SubbiahPandi, A., Jothi, P., Revathi, C. & Dayalan, A. (2008). Acta Cryst. E64, m300-m301.
- Ravichandran, K., Ramesh, P., Tamilselvan, M., Anbalagan, K. & Ponnuswamy, M. N. (2009). *Acta Cryst.* E65, m1174–m1175.
- Sayed, G. H., Shiba, S. A., Radwan, A., Mohamed, S. M. & Khalil, M. (1992). *Chin. J. Chem.* **10**, 475–480.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Teicher, B. A., Abrams, M. J., Rosbe, K. W. & Herman, T. S. (1990). *Cancer Res.* **50**, 6971–6975.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

# full crystallographic data

## *IUCrData* (2018). **3**, x180819 [https://doi.org/10.1107/S2414314618008192]

## cis-Bromidobis(ethylene-1,2-diamine)(methylamine)cobalt(III) dibromide

## S. Manimaran, E. Govindan, M. Manjunathan, K. Sambathkumar and K. Anbalagan

cis-Bromidobis(ethylene-1,2-diamine)(methylamine)cobalt(III) dibromide

| Crystal data                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $[CoBr(CH_{5}N)(C_{2}H_{8}N_{2})_{2}]Br_{2}$<br>$M_{r} = 449.90$<br>Monoclinic, $P2_{1}/c$<br>Hall symbol: -P 2ybc<br>a = 13.2883 (8) Å<br>b = 7.5686 (5) Å<br>c = 14.3602 (9) Å<br>$\beta = 103.261$ (6)°<br>V = 1405.75 (15) Å <sup>3</sup><br>Z = 4                    | F(000) = 872<br>$D_x = 2.126 \text{ Mg m}^{-3}$<br>Mo K $\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$<br>Cell parameters from 2458 reflections<br>$\theta = 2.9-25.0^{\circ}$<br>$\mu = 9.73 \text{ mm}^{-1}$<br>T = 293  K<br>Block, pink<br>$0.23 \times 0.17 \times 0.11 \text{ mm}$                         |
| Data collection                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                     |
| Bruker SMART APEXII area-detector<br>diffractometer<br>Radiation source: fine-focus sealed tube<br>Graphite monochromator<br>$\omega$ and $\varphi$ scans<br>Absorption correction: multi-scan<br>( <i>SADABS</i> ; Bruker, 2008)<br>$T_{\min} = 0.165, T_{\max} = 0.361$ | 5583 measured reflections<br>2458 independent reflections<br>1398 reflections with $I > 2\sigma(I)$<br>$R_{int} = 0.076$<br>$\theta_{max} = 25.0^{\circ}, \ \theta_{min} = 2.9^{\circ}$<br>$h = -15 \rightarrow 15$<br>$k = -9 \rightarrow 8$<br>$l = -9 \rightarrow 17$                                            |
| Refinement                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                     |
| Refinement on $F^2$<br>Least-squares matrix: full<br>$R[F^2 > 2\sigma(F^2)] = 0.057$<br>$wR(F^2) = 0.143$<br>S = 0.89<br>2458 reflections<br>128 parameters<br>0 restraints<br>Primary atom site location: structure-invariant                                            | Secondary atom site location: difference Fourier<br>map<br>Hydrogen site location: inferred from<br>neighbouring sites<br>H atoms treated by a mixture of independent<br>and constrained refinement<br>$w = 1/[\sigma^2(F_o^2) + (0.0788P)^2]$<br>where $P = (F_o^2 + 2F_c^2)/3$<br>$(\Delta/\sigma)_{max} = 0.001$ |
| direct methods                                                                                                                                                                                                                                                            | $\Delta \rho_{\rm max} = 1.31 \text{ e} \text{ Å}^{-3}$                                                                                                                                                                                                                                                             |

## Special details

**Geometry**. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

 $\Delta \rho_{\rm min} = -1.14 \text{ e} \text{ Å}^{-3}$ 

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted R-factor wR and goodness of fit S are based on  $F^2$ , conventional R-factors R are based on F, with F set to zero for negative  $F^2$ . The threshold expression of  $F^2 > 2$ sigma( $F^2$ ) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on  $F^2$  are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

|      | x            | у             | Ζ           | $U_{ m iso}$ */ $U_{ m eq}$ |
|------|--------------|---------------|-------------|-----------------------------|
| Br3  | -0.00338 (8) | 0.22334 (16)  | 0.61657 (8) | 0.0449 (4)                  |
| Br2  | 0.37617 (8)  | 0.41487 (18)  | 0.63897 (7) | 0.0469 (4)                  |
| Br1  | 0.32768 (9)  | -0.27534 (18) | 0.87914 (9) | 0.0592 (4)                  |
| Col  | 0.27166 (8)  | 0.01016 (18)  | 0.82199 (8) | 0.0246 (3)                  |
| N1   | 0.1517 (5)   | -0.0985 (11)  | 0.7355 (5)  | 0.032 (2)                   |
| HB   | 0.1244       | -0.1818       | 0.7670      | 0.038*                      |
| HA   | 0.1030       | -0.0159       | 0.7145      | 0.038*                      |
| N4   | 0.2206 (5)   | 0.2493 (10)   | 0.7838 (5)  | 0.0280 (19)                 |
| H0AB | 0.2733       | 0.3175        | 0.7753      | 0.034*                      |
| H0AA | 0.1731       | 0.2444        | 0.7280      | 0.034*                      |
| N2   | 0.3397 (6)   | -0.0143 (13)  | 0.7154 (5)  | 0.043 (2)                   |
| H3AA | 0.3696       | 0.0888        | 0.7059      | 0.051*                      |
| H3AB | 0.3894       | -0.0972       | 0.7295      | 0.051*                      |
| C3   | 0.1739 (8)   | 0.3276 (15)   | 0.8585 (8)  | 0.047 (3)                   |
| HC   | 0.1244       | 0.4184        | 0.8312      | 0.057*                      |
| HD   | 0.2269       | 0.3804        | 0.9086      | 0.057*                      |
| C2   | 0.2630 (8)   | -0.0653 (17)  | 0.6268 (6)  | 0.048 (3)                   |
| H0AC | 0.2306       | 0.0396        | 0.5944      | 0.058*                      |
| H0AD | 0.2974       | -0.1275       | 0.5838      | 0.058*                      |
| C5   | 0.4424 (9)   | 0.2794 (17)   | 0.9017 (9)  | 0.060 (4)                   |
| H11A | 0.4280       | 0.3193        | 0.8365      | 0.090*                      |
| H11B | 0.5157       | 0.2798        | 0.9275      | 0.090*                      |
| H11C | 0.4096       | 0.3569        | 0.9387      | 0.090*                      |
| C1   | 0.1843 (8)   | -0.1797 (16)  | 0.6525 (7)  | 0.043 (3)                   |
| H1AB | 0.2126       | -0.2965       | 0.6694      | 0.051*                      |
| H1AA | 0.1253       | -0.1908       | 0.5987      | 0.051*                      |
| N5   | 0.4021 (5)   | 0.0986 (11)   | 0.9053 (5)  | 0.028 (2)                   |
| H2AB | 0.3964       | 0.0815        | 0.9659      | 0.033*                      |
| H2AA | 0.4524       | 0.0254        | 0.8962      | 0.033*                      |
| N3   | 0.1931 (6)   | 0.0318 (11)   | 0.9218 (5)  | 0.033 (2)                   |
| H1AC | 0.1588       | -0.0694       | 0.9258      | 0.039*                      |
| H1AD | 0.2368       | 0.0513        | 0.9787      | 0.039*                      |
| C4   | 0.1200 (7)   | 0.1775 (16)   | 0.8991 (8)  | 0.043 (3)                   |
| H2AD | 0.0993       | 0.2165        | 0.9563      | 0.052*                      |
| H2AC | 0.0588       | 0.1402        | 0.8524      | 0.052*                      |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

Atomic displacement parameters  $(Å^2)$ 

|     | $U^{11}$   | U <sup>22</sup> | $U^{33}$   | $U^{12}$   | $U^{13}$   | U <sup>23</sup> |
|-----|------------|-----------------|------------|------------|------------|-----------------|
| Br3 | 0.0442 (6) | 0.0487 (8)      | 0.0409 (6) | 0.0165 (5) | 0.0082 (5) | 0.0065 (6)      |

| Br2 | 0.0452 (7) | 0.0633 (10) | 0.0341 (6) | -0.0063 (6) | 0.0131 (5) | 0.0105 (6) |
|-----|------------|-------------|------------|-------------|------------|------------|
| Br1 | 0.0710 (8) | 0.0415 (9)  | 0.0602 (8) | 0.0087 (6)  | 0.0049 (6) | 0.0089 (7) |
| Co1 | 0.0289 (7) | 0.0234 (8)  | 0.0218 (6) | 0.0044 (6)  | 0.0064 (5) | 0.0027 (6) |
| N1  | 0.046 (5)  | 0.028 (6)   | 0.024 (4)  | 0.006 (4)   | 0.012 (4)  | 0.000 (4)  |
| N4  | 0.031 (4)  | 0.019 (5)   | 0.037 (5)  | 0.004 (3)   | 0.013 (4)  | 0.004 (4)  |
| N2  | 0.048 (5)  | 0.046 (7)   | 0.039 (5)  | 0.006 (5)   | 0.021 (4)  | 0.002 (5)  |
| C3  | 0.061 (7)  | 0.025 (7)   | 0.060 (8)  | 0.003 (6)   | 0.023 (6)  | -0.007 (6) |
| C2  | 0.064 (7)  | 0.062 (9)   | 0.017 (5)  | 0.008 (6)   | 0.007 (5)  | -0.003 (6) |
| C5  | 0.055 (7)  | 0.052 (10)  | 0.060 (8)  | -0.007 (6)  | -0.013 (6) | 0.007 (7)  |
| C1  | 0.056 (7)  | 0.037 (8)   | 0.035 (6)  | 0.004 (6)   | 0.010 (5)  | -0.002 (6) |
| N5  | 0.021 (4)  | 0.035 (6)   | 0.025 (4)  | 0.006 (3)   | 0.001 (3)  | 0.006 (4)  |
| N3  | 0.036 (5)  | 0.035 (6)   | 0.028 (4)  | -0.012 (4)  | 0.011 (4)  | -0.004 (4) |
| C4  | 0.034 (6)  | 0.051 (9)   | 0.052 (7)  | 0.003 (5)   | 0.023 (5)  | -0.018 (6) |
|     |            |             |            |             |            |            |

Geometric parameters (Å, °)

| Br1—Co1    | 2.3699 (18) | C3—HD        | 0.9700     |  |
|------------|-------------|--------------|------------|--|
| Co1—N2     | 1.958 (7)   | C2—C1        | 1.468 (14) |  |
| Co1—N1     | 1.962 (7)   | C2—H0AC      | 0.9700     |  |
| Co1—N3     | 1.963 (7)   | C2—H0AD      | 0.9700     |  |
| Co1—N4     | 1.966 (7)   | C5—N5        | 1.475 (14) |  |
| Co1—N5     | 1.983 (7)   | C5—H11A      | 0.9600     |  |
| N1—C1      | 1.490 (11)  | C5—H11B      | 0.9600     |  |
| N1—HB      | 0.9000      | C5—H11C      | 0.9600     |  |
| N1—HA      | 0.9000      | C1—H1AB      | 0.9700     |  |
| N4—C3      | 1.482 (12)  | C1—H1AA      | 0.9700     |  |
| N4—H0AB    | 0.9000      | N5—H2AB      | 0.9000     |  |
| N4—H0AA    | 0.9000      | N5—H2AA      | 0.9000     |  |
| N2-C2      | 1.487 (12)  | N3—C4        | 1.456 (13) |  |
| N2—H3AA    | 0.9000      | N3—H1AC      | 0.9000     |  |
| N2—H3AB    | 0.9000      | N3—H1AD      | 0.9000     |  |
| C3—C4      | 1.528 (15)  | C4—H2AD      | 0.9700     |  |
| С3—НС      | 0.9700      | C4—H2AC      | 0.9700     |  |
| N2—Co1—N1  | 85.3 (3)    | HC—C3—HD     | 108.6      |  |
| N2—Co1—N3  | 175.5 (3)   | C1—C2—N2     | 109.1 (8)  |  |
| N1—Co1—N3  | 90.4 (3)    | C1—C2—H0AC   | 109.9      |  |
| N2—Co1—N4  | 93.4 (3)    | N2—C2—H0AC   | 109.9      |  |
| N1—Co1—N4  | 91.8 (3)    | C1—C2—H0AD   | 109.9      |  |
| N3—Co1—N4  | 85.4 (3)    | N2—C2—H0AD   | 109.9      |  |
| N2—Co1—N5  | 90.4 (3)    | H0AC—C2—H0AD | 108.3      |  |
| N1—Co1—N5  | 173.7 (3)   | N5-C5-H11A   | 109.5      |  |
| N3—Co1—N5  | 93.9 (3)    | N5—C5—H11B   | 109.5      |  |
| N4—Co1—N5  | 93.2 (3)    | H11A—C5—H11B | 109.5      |  |
| N2—Co1—Br1 | 91.2 (3)    | N5—C5—H11C   | 109.5      |  |
| N1—Co1—Br1 | 89.0 (2)    | H11A—C5—H11C | 109.5      |  |
| N3—Co1—Br1 | 90.0 (3)    | H11B—C5—H11C | 109.5      |  |
| N4—Co1—Br1 | 175.4 (2)   | C2           | 108.2 (9)  |  |

| N5—Co1—Br1    | 86.4 (2)   | C2—C1—H1AB    | 110.1      |
|---------------|------------|---------------|------------|
| C1—N1—Co1     | 109.6 (5)  | N1—C1—H1AB    | 110.1      |
| C1—N1—HB      | 109.7      | C2—C1—H1AA    | 110.1      |
| Co1—N1—HB     | 109.7      | N1—C1—H1AA    | 110.1      |
| C1—N1—HA      | 109.7      | H1AB—C1—H1AA  | 108.4      |
| Co1—N1—HA     | 109.7      | C5—N5—Co1     | 124.5 (6)  |
| HB—N1—HA      | 108.2      | C5—N5—H2AB    | 106.2      |
| C3—N4—Co1     | 109.9 (6)  | Co1—N5—H2AB   | 106.2      |
| C3—N4—H0AB    | 109.7      | C5—N5—H2AA    | 106.2      |
| Co1—N4—H0AB   | 109.7      | Co1—N5—H2AA   | 106.2      |
| C3—N4—H0AA    | 109.7      | H2AB—N5—H2AA  | 106.4      |
| Co1—N4—H0AA   | 109.7      | C4—N3—Co1     | 109.8 (6)  |
| H0AB—N4—H0AA  | 108.2      | C4—N3—H1AC    | 109.7      |
| C2—N2—Co1     | 110.1 (6)  | Co1—N3—H1AC   | 109.7      |
| C2—N2—H3AA    | 109.6      | C4—N3—H1AD    | 109.7      |
| Co1—N2—H3AA   | 109.6      | Co1—N3—H1AD   | 109.7      |
| C2—N2—H3AB    | 109.6      | H1AC—N3—H1AD  | 108.2      |
| Co1—N2—H3AB   | 109.6      | N3—C4—C3      | 107.5 (7)  |
| H3AA—N2—H3AB  | 108.1      | N3—C4—H2AD    | 110.2      |
| N4—C3—C4      | 106.8 (9)  | C3—C4—H2AD    | 110.2      |
| N4—C3—HC      | 110.4      | N3—C4—H2AC    | 110.2      |
| С4—С3—НС      | 110.4      | C3—C4—H2AC    | 110.2      |
| N4—C3—HD      | 110.4      | H2AD—C4—H2AC  | 108.5      |
| C4—C3—HD      | 110.4      |               |            |
|               |            |               |            |
| N2—Co1—N1—C1  | 14.7 (7)   | Co1—N2—C2—C1  | -33.9 (11) |
| N3—Co1—N1—C1  | -166.6 (7) | N2—C2—C1—N1   | 45.9 (11)  |
| N4—Co1—N1—C1  | 108.0 (7)  | Co1—N1—C1—C2  | -37.0 (10) |
| N5—Co1—N1—C1  | -33 (3)    | N2—Co1—N5—C5  | 77.4 (9)   |
| Br1—Co1—N1—C1 | -76.6 (6)  | N1—Co1—N5—C5  | 125 (3)    |
| N2—Co1—N4—C3  | -172.2 (6) | N3—Co1—N5—C5  | -101.7 (9) |
| N1—Co1—N4—C3  | 102.4 (6)  | N4—Co1—N5—C5  | -16.1 (9)  |
| N3—Co1—N4—C3  | 12.1 (6)   | Br1—Co1—N5—C5 | 168.5 (8)  |
| N5—Co1—N4—C3  | -81.6 (6)  | N2—Co1—N3—C4  | -59 (5)    |
| Br1—Co1—N4—C3 | 3 (3)      | N1—Co1—N3—C4  | -75.9 (7)  |
| N1—Co1—N2—C2  | 10.4 (7)   | N4—Co1—N3—C4  | 15.9 (7)   |
| N3—Co1—N2—C2  | -6 (5)     | N5—Co1—N3—C4  | 108.8 (7)  |
| N4—Co1—N2—C2  | -81.1 (8)  | Br1—Co1—N3—C4 | -164.8 (6) |
| N5—Co1—N2—C2  | -174.3 (8) | Co1—N3—C4—C3  | -39.5 (9)  |
| Br1—Co1—N2—C2 | 99.3 (7)   | N4—C3—C4—N3   | 49.1 (10)  |
| Co1—N4—C3—C4  | -36.0 (9)  |               |            |

# Hydrogen-bond geometry (Å, °)

| D—H···A                  | D—H  | H···A | D···A     | D—H··· $A$ |
|--------------------------|------|-------|-----------|------------|
| N1—HB···Br3 <sup>i</sup> | 0.90 | 2.67  | 3.484 (7) | 151        |
| N1—HA···Br3              | 0.90 | 2.52  | 3.389 (8) | 163        |
| N4—H0AB····Br2           | 0.90 | 2.73  | 3.485 (7) | 142        |

| N4—H0AA···Br3                        | 0.90 | 2.52 | 3.374 (7)  | 158 |  |
|--------------------------------------|------|------|------------|-----|--|
| N2—H3AA···Br2                        | 0.90 | 2.66 | 3.498 (10) | 156 |  |
| N5—H2 <i>AB</i> ···Br2 <sup>ii</sup> | 0.90 | 2.56 | 3.452 (7)  | 171 |  |
| N5—H2AA···Br2 <sup>iii</sup>         | 0.90 | 2.58 | 3.447 (7)  | 161 |  |
| N3—H1AC···Br3                        | 0.90 | 2.55 | 3.387 (8)  | 154 |  |
| N3—H1 <i>AD</i> ···Br2 <sup>ii</sup> | 0.90 | 2.61 | 3.511 (7)  | 174 |  |
| C5—H11A····Br2                       | 0.96 | 2.85 | 3.813 (13) | 176 |  |
|                                      |      |      |            |     |  |

Symmetry codes: (i) -*x*, *y*-1/2, -*z*+3/2; (ii) *x*, -*y*+1/2, *z*+1/2; (iii) -*x*+1, *y*-1/2, -*z*+3/2.