ISSN 2414-3146

Received 13 August 2018 Accepted 18 September 2018

Edited by M. Bolte, Goethe-Universität Frankfurt, Germany

Keywords: crystal structure; N—H···N hydrogen bonds; one-dimensional chain structure.

CCDC reference: 1576945

Structural data: full structural data are available from iucrdata.iucr.org

2-(4-Aminophenyl)-3-[3,4-bis(pyridin-2-ylmethoxy)phenyl]acrylonitrile

Gang Liu,^a Qingsong Liu,^a Huihui Zhang^a and Jianhua Yu^{b*}

^aDepartment of Chemistry, Anhui University, Hefei 230601, People's Republic of China, and ^bCollege of Chemistry and Chemical Engineering, Anhui University and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Hefei 230601, People's Republic of China. *Correspondence e-mail: iu_jh@163.com

The crystal structure of $C_{27}H_{22}N_4O_2$ is characterized by N-H···N hydrogen bonds, which connect the molecules into zigzag chains running along the *b*-axis direction. The central ring subtends dihedral angles of 17.89 (6)° with the aminophenyl ring and of 8.75 (9) and 28.77 (7)° with the two pyridyl rings.

Structure description

A $D-\pi-A$ structure formed from aniline and benzenenacrylonitrile has excellent luminescence properties (Zhang *et al.*, 2018). We report here the crystal structure of 2-(4-aminophenyl)-3-[3,4-bis(pyridin-2-ylmethoxy)phenyl]acrylonitrile (Fig. 1). The central ring subtends dihedral angles of 17.89 (6)° with the aminophenyl ring and 28.77 (7) and 8.75 (9)° with the N1- and N2-containing pyridyl rings.

In the crystal, the molecules are connected by $N-H\cdots N$ hydrogen bonds, forming zigzag chains running along the *b*-axis direction (Table 1, Fig. 2). Weak $C-H\cdots O$ interactions are also observed.

Synthesis and crystallization

To a solution of 3,4-dihydroxy-benzaldehyde (1.38 g, 10 mmol) in acetonitrile (50 ml) was added potassium carbonate (1.38 g, 10 mmol) and 2-bromomethyl-pyridine (3.44 g, 20 mmol). After the reaction mixture had been refluxed for 6 h, all the volatile components had completely evaporated and the residue was partitioned between dichloromethane and water. The organic phase was washed with water, then dried over calcium chloride, and concentrated *in vacuo*. The crude solid was recrystallized from petroleum ether–ethyl acetate (v/v=1:1) solution to give a white solid. The white solid (0.5 g, 3.8 mmol) and (4-aminophenyl)acetonitrile (0.21 g, 3.8 mmol) were added to ethyl

Figure 1

The structure of title molecule, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

alcohol. The mixture solution was refluxed for 8 h, and the resulting yellow residue was collected by filtration and then purified by silica gel column chromatography (petroleum ether: ethyl acetate = 2:1, ν/ν) to afford the title compound (0.29 g, 43%). Yellow single crystals were obtained by slow evaporation from acetonitrile solution.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

Figure 2

Hydrogen bonds in the crystal packing of the title compound. $N-H\cdots N$ hydrogen bonds are drawn with dashed lines.

J 8 8 8 8				
$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$N4-H4B\cdots N1^{i}$	0.95 (2)	2.35 (2)	3.293 (3)	172.8 (18)
$N4-H4A\cdots N3^{i}$	0.89 (2)	2.52 (2)	3.390 (3)	165.5 (19)
$C6 - H6 \cdot \cdot \cdot N3$	0.93	2.59	3.431 (2)	151
$C26 - H26 \cdot \cdot \cdot N2^{ii}$	0.93	2.65	3.339 (3)	131

Symmetry codes: (i) $-x, y + \frac{1}{2}, -z + \frac{1}{2}$; (ii) -x + 2, -y + 1, -z + 2.

Tal	ble	2	
Ex	peri	mental	details.

Crystal data	
Chemical formula	$C_{27}H_{22}N_4O_2$
$M_{ m r}$	434.49
Crystal system, space group	Monoclinic, $P2_1/c$
Temperature (K)	296
a, b, c (Å)	8.0233 (15), 16.877 (3), 17.013 (3)
β (°)	101.021 (2)
$V(Å^3)$	2261.2 (7)
Z	4
Radiation type	Μο Κα
$\mu (\text{mm}^{-1})$	0.08
Crystal size (mm)	$0.20 \times 0.21 \times 0.19$
Data collection	
Diffractometer	Bruker SMART CCD area
No. of measured, independent and observed $[L > 2\pi(D)]$ reflections	16528, 4222, 3016
P	0.025
$(\sin \theta/\lambda) = (\dot{\Lambda}^{-1})$	0.606
$(\sin \theta/\lambda)_{\max}(A)$	0.000
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.041, 0.116, 1.07
No. of reflections	4222
No. of parameters	306
H-atom treatment	H atoms treated by a mixture of
	independent and constrained refinement

Computer programs: *SMART* and *SAINT* (Bruker, 2000) and *SHELXS*, *SHELXL* and *SHELXTL* (Sheldrick, 2008).

0.13, -0.12

Acknowledgements

 $\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$

This work was supported by the Undergraduate Research Training Program of Anhui University (KYXL2017019).

Funding information

Funding for this research was provided by: Anhui University (award No. KYXL2017019).

References

- Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Zhang, H., Wei, Z., Xia, Y., Fang, M., Zhu, W., Yang, X., Li, F., Tian, Y., Zhang, X. & Zhou, H. (2018). *Spectrochim. Acta Part A*, **196**, 256–261.

full crystallographic data

IUCrData (2018). **3**, x181329 [https://doi.org/10.1107/S2414314618013299]

2-(4-Aminophenyl)-3-[3,4-bis(pyridin-2-ylmethoxy)phenyl]acrylonitrile

Gang Liu, Qingsong Liu, Huihui Zhang and Jianhua Yu

2-(4-Aminophenyl)-3-[3,4-bis(pyridin-2-ylmethoxy)phenyl]acrylonitrile

Crystal data C27H22N4O2 F(000) = 912 $M_r = 434.49$ $D_{\rm x} = 1.276 {\rm Mg} {\rm m}^{-3}$ Mo *K* α radiation, $\lambda = 0.71073$ Å Monoclinic, $P2_1/c$ Cell parameters from 4649 reflections a = 8.0233 (15) Å*b* = 16.877 (3) Å $\theta = 2.4 - 24.8^{\circ}$ $\mu = 0.08 \text{ mm}^{-1}$ c = 17.013 (3) Å $\beta = 101.021 (2)^{\circ}$ T = 296 KV = 2261.2 (7) Å³ Block, yellow Z = 4 $0.21 \times 0.20 \times 0.19 \text{ mm}$ Data collection Bruker SMART CCD area detector 3016 reflections with $I > 2\sigma(I)$ diffractometer $R_{\rm int} = 0.025$ Radiation source: fine-focus sealed tube $\theta_{\text{max}} = 25.5^{\circ}, \ \theta_{\text{min}} = 1.7^{\circ}$ $h = -9 \rightarrow 9$ Graphite monochromator phi and ω scans $k = -20 \rightarrow 20$ 16528 measured reflections $l = -20 \rightarrow 20$ 4222 independent reflections Refinement Refinement on F^2 Hydrogen site location: mixed Least-squares matrix: full H atoms treated by a mixture of independent $R[F^2 > 2\sigma(F^2)] = 0.041$ and constrained refinement $wR(F^2) = 0.116$ $w = 1/[\sigma^2(F_0^2) + (0.0544P)^2 + 0.1757P]$ S = 1.07where $P = (F_0^2 + 2F_c^2)/3$ 4222 reflections $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{\rm max} = 0.13 \text{ e} \text{ Å}^{-3}$ 306 parameters 0 restraints $\Delta \rho_{\rm min} = -0.12 \ {\rm e} \ {\rm \AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2\text{sigma}(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. All H-atom positions were taken from a Fourier map. The H atoms were refined using a riding model with $U_{iso}(H) = 1.2U_{eq}(C,N)$.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.49999 (13)	0.35393 (6)	0.60726 (6)	0.0624 (3)	
O2	0.64442 (13)	0.43936 (6)	0.72240 (6)	0.0640 (3)	
N1	0.5073 (2)	0.18016 (8)	0.49938 (9)	0.0793 (4)	
N2	0.9308 (2)	0.45055 (9)	0.90889 (9)	0.0839 (5)	
N3	0.08360 (19)	0.41255 (8)	0.36157 (8)	0.0721 (4)	
N4	-0.3243 (2)	0.75632 (11)	0.17390 (10)	0.0807 (5)	
H4B	-0.383 (3)	0.7318 (13)	0.1266 (14)	0.114 (8)*	
H4A	-0.276 (3)	0.8029 (14)	0.1678 (13)	0.115 (8)*	
C1	0.44974 (17)	0.43157 (8)	0.60235 (8)	0.0484 (3)	
C2	0.53138 (17)	0.47891 (8)	0.66594 (8)	0.0502 (3)	
C3	0.49239 (19)	0.55817 (9)	0.66679 (9)	0.0560 (4)	
H3	0.545197	0.590099	0.708799	0.067*	
C4	0.37400 (19)	0.59051 (9)	0.60481 (8)	0.0555 (4)	
H4	0.349164	0.644269	0.605985	0.067*	
C5	0.29154 (17)	0.54486 (8)	0.54107 (8)	0.0484 (3)	
C6	0.33223 (17)	0.46381 (8)	0.54156 (8)	0.0501 (4)	
H6	0.278638	0.431542	0.500006	0.060*	
C11	0.4137 (2)	0.30045 (9)	0.55064 (9)	0.0644 (4)	
H11A	0.415632	0.318992	0.496858	0.077*	
H11B	0.296336	0.295468	0.556604	0.077*	
C12	0.50242 (19)	0.22186 (9)	0.56499 (9)	0.0592 (4)	
C13	0.5746 (3)	0.19608 (10)	0.64029 (11)	0.0829 (6)	
H13	0.564635	0.226012	0.685047	0.099*	
C14	0.6619 (3)	0.12559 (12)	0.64889 (13)	0.0966 (7)	
H14	0.713511	0.107670	0.699380	0.116*	
C15	0.6716 (3)	0.08249 (12)	0.58249 (15)	0.1040 (7)	
H15	0.731751	0.035105	0.586148	0.125*	
C16	0.5897 (3)	0.11113 (13)	0.50989 (14)	0.1060 (7)	
H16	0.591819	0.080287	0.464790	0.127*	
C21	0.7269 (2)	0.47956 (9)	0.79186 (9)	0.0609 (4)	
H21A	0.643897	0.504435	0.818532	0.073*	
H21B	0.801109	0.520361	0.777763	0.073*	
C22	0.82829 (19)	0.41938 (9)	0.84601 (8)	0.0566 (4)	
C23	0.8152 (2)	0.33945 (10)	0.83217 (10)	0.0700 (5)	
H23	0.742020	0.319653	0.787431	0.084*	
C24	0.9128 (3)	0.28889 (11)	0.88595 (12)	0.0837 (5)	
H24	0.908267	0.234429	0.877454	0.100*	
C25	1.0158 (3)	0.31990 (13)	0.95159 (12)	0.0909 (6)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

H25	1.080498	0.287013	0.989461	0.109*	
C26	1.0221 (3)	0.39952 (14)	0.96067 (12)	0.1004 (7)	
H26	1.093962	0.420198	1.005379	0.120*	
C31	0.17363 (17)	0.58435 (8)	0.47739 (8)	0.0517 (4)	
H31	0.157669	0.637714	0.487389	0.062*	
C32	0.08303 (17)	0.55909 (8)	0.40689 (8)	0.0482 (3)	
C33	0.08525 (18)	0.47669 (9)	0.38329 (9)	0.0537 (4)	
C34	-0.02236 (17)	0.61078 (8)	0.34649 (8)	0.0491 (3)	
C35	-0.0004 (2)	0.69284 (9)	0.34669 (9)	0.0625 (4)	
H35	0.082626	0.715972	0.385550	0.075*	
C36	-0.0996 (2)	0.74018 (9)	0.29030 (10)	0.0697 (5)	
H36	-0.083483	0.794767	0.292461	0.084*	
C37	-0.2235 (2)	0.70805 (9)	0.23018 (9)	0.0601 (4)	
C38	-0.24557 (19)	0.62686 (9)	0.22986 (9)	0.0609 (4)	
H38	-0.328422	0.603694	0.190933	0.073*	
C39	-0.14660 (19)	0.57983 (9)	0.28634 (9)	0.0565 (4)	
H39	-0.163616	0.525305	0.284117	0.068*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0689 (7)	0.0464 (6)	0.0622 (6)	0.0023 (5)	-0.0119 (5)	-0.0040 (5)
O2	0.0697 (7)	0.0587 (6)	0.0540 (6)	0.0053 (5)	-0.0127 (5)	-0.0048 (5)
N1	0.0970 (11)	0.0676 (9)	0.0737 (9)	0.0127 (8)	0.0175 (8)	-0.0085 (8)
N2	0.0964 (11)	0.0797 (10)	0.0616 (9)	0.0045 (8)	-0.0206 (8)	-0.0027 (7)
N3	0.0823 (10)	0.0548 (8)	0.0724 (9)	0.0021 (7)	-0.0020 (7)	-0.0032 (7)
N4	0.0973 (12)	0.0680 (10)	0.0690 (10)	0.0147 (9)	-0.0039 (9)	0.0166 (8)
C1	0.0481 (8)	0.0462 (8)	0.0500 (8)	-0.0017 (6)	0.0071 (6)	0.0014 (6)
C2	0.0483 (8)	0.0537 (9)	0.0462 (8)	-0.0004 (7)	0.0033 (6)	0.0021 (6)
C3	0.0580 (9)	0.0552 (9)	0.0515 (8)	-0.0027 (7)	0.0020 (7)	-0.0073 (7)
C4	0.0599 (9)	0.0491 (8)	0.0564 (9)	0.0032 (7)	0.0086 (7)	-0.0023 (7)
C5	0.0466 (8)	0.0514 (8)	0.0475 (8)	-0.0001 (6)	0.0101 (6)	0.0023 (6)
C6	0.0502 (8)	0.0508 (8)	0.0469 (8)	-0.0024 (6)	0.0031 (7)	-0.0013 (6)
C11	0.0672 (10)	0.0542 (9)	0.0643 (10)	-0.0010 (8)	-0.0063 (8)	-0.0083 (7)
C12	0.0614 (10)	0.0494 (9)	0.0646 (10)	-0.0062 (7)	0.0063 (8)	-0.0049 (7)
C13	0.1142 (16)	0.0580 (11)	0.0711 (12)	0.0086 (10)	0.0041 (11)	0.0004 (8)
C14	0.1231 (18)	0.0708 (13)	0.0920 (15)	0.0152 (12)	0.0106 (13)	0.0205 (11)
C15	0.1274 (19)	0.0717 (13)	0.1205 (19)	0.0357 (13)	0.0428 (16)	0.0181 (13)
C16	0.144 (2)	0.0806 (14)	0.0999 (16)	0.0316 (14)	0.0405 (15)	-0.0108 (12)
C21	0.0706 (10)	0.0601 (9)	0.0474 (8)	0.0004 (8)	-0.0008 (7)	-0.0050 (7)
C22	0.0592 (9)	0.0615 (9)	0.0468 (8)	0.0004 (7)	0.0044 (7)	0.0006 (7)
C23	0.0766 (11)	0.0638 (11)	0.0662 (10)	0.0003 (8)	0.0051 (9)	0.0025 (8)
C24	0.0921 (14)	0.0663 (11)	0.0924 (14)	0.0089 (10)	0.0166 (11)	0.0132 (10)
C25	0.0896 (14)	0.0964 (16)	0.0806 (13)	0.0255 (12)	0.0008 (11)	0.0244 (12)
C26	0.1075 (17)	0.1034 (17)	0.0730 (13)	0.0144 (13)	-0.0259 (11)	0.0026 (12)
C31	0.0526 (9)	0.0480 (8)	0.0542 (9)	0.0032 (6)	0.0098 (7)	0.0021 (7)
C32	0.0468 (8)	0.0485 (8)	0.0499 (8)	0.0014 (6)	0.0111 (6)	0.0042 (6)
C33	0.0517 (9)	0.0554 (9)	0.0511 (8)	0.0011 (7)	0.0025 (7)	0.0063 (7)

data reports

C34	0.0495 (8)	0.0502 (8)	0.0482 (8)	0.0012 (6)	0.0112 (7)	0.0051 (6)
C35	0.0755 (11)	0.0532 (9)	0.0546 (9)	-0.0027 (8)	0.0021 (8)	0.0021 (7)
C36	0.0951 (13)	0.0473 (9)	0.0635 (10)	0.0031 (8)	0.0073 (9)	0.0056 (7)
C37	0.0675 (10)	0.0580 (9)	0.0541 (9)	0.0096 (8)	0.0097 (8)	0.0102 (7)
C38	0.0578 (9)	0.0624 (10)	0.0585 (9)	-0.0032 (8)	0.0006 (7)	0.0073 (7)
C39	0.0579 (9)	0.0493 (8)	0.0601 (9)	-0.0031 (7)	0.0059 (7)	0.0078 (7)

Geometric parameters (Å, °)

01—C1	1.3688 (16)	C14—H14	0.9300
01—C11	1.4023 (17)	C15—C16	1.371 (3)
O2—C2	1.3630 (16)	C15—H15	0.9300
O2—C21	1.4128 (17)	C16—H16	0.9300
N1-C12	1.3264 (19)	C21—C22	1.502 (2)
N1-C16	1.335 (2)	C21—H21A	0.9700
N2-C22	1.3271 (19)	C21—H21B	0.9700
N2-C26	1.345 (2)	C22—C23	1.370 (2)
N3—C33	1.1431 (18)	C23—C24	1.380 (2)
N4—C37	1.392 (2)	С23—Н23	0.9300
N4—H4B	0.95 (2)	C24—C25	1.360 (3)
N4—H4A	0.89 (2)	C24—H24	0.9300
C1—C6	1.3718 (18)	C25—C26	1.352 (3)
C1—C2	1.4025 (19)	C25—H25	0.9300
С2—С3	1.374 (2)	C26—H26	0.9300
C3—C4	1.389 (2)	C31—C32	1.3473 (19)
С3—Н3	0.9300	C31—H31	0.9300
C4—C5	1.3903 (19)	C32—C33	1.448 (2)
C4—H4	0.9300	C32—C34	1.4831 (18)
C5—C6	1.4060 (19)	C34—C39	1.3870 (19)
C5—C31	1.4564 (19)	C34—C35	1.396 (2)
С6—Н6	0.9300	C35—C36	1.379 (2)
C11—C12	1.503 (2)	С35—Н35	0.9300
C11—H11A	0.9700	C36—C37	1.393 (2)
C11—H11B	0.9700	C36—H36	0.9300
C12—C13	1.372 (2)	C37—C38	1.382 (2)
C13—C14	1.374 (3)	C38—C39	1.376 (2)
C13—H13	0.9300	C38—H38	0.9300
C14—C15	1.358 (3)	С39—Н39	0.9300
C1	118.25 (11)	O2—C21—C22	107.48 (12)
C2—O2—C21	119.76 (11)	O2—C21—H21A	110.2
C12—N1—C16	116.36 (16)	C22—C21—H21A	110.2
C22—N2—C26	116.77 (17)	O2—C21—H21B	110.2
C37—N4—H4B	117.3 (13)	C22—C21—H21B	110.2
C37—N4—H4A	112.7 (15)	H21A—C21—H21B	108.5
H4B—N4—H4A	116.4 (19)	N2-C22-C23	122.97 (15)
O1—C1—C6	125.29 (12)	N2-C22-C21	113.95 (14)
O1—C1—C2	114.18 (12)	C23—C22—C21	123.08 (14)

C6—C1—C2	120.53 (13)	C22—C23—C24	118.67 (17)
O2—C2—C3	126.26 (13)	C22—C23—H23	120.7
O2—C2—C1	114.47 (12)	C24—C23—H23	120.7
C3—C2—C1	119.27 (13)	C25—C24—C23	119.00 (18)
C2—C3—C4	119.90 (13)	C25—C24—H24	120.5
С2—С3—Н3	120.1	C23—C24—H24	120.5
C4 - C3 - H3	120.1	$C_{26} = C_{25} = C_{24}$	118 67 (18)
$C_{3} - C_{4} - C_{5}$	121.93 (14)	$C_{26} = C_{25} = C_{21}$	120.7
$C_3 - C_4 - H_4$	119.0	C_{24} C_{25} H_{25}	120.7
$C_5 = C_4 = H_4$	119.0	$N_{2} = C_{2} = C_{2}$	123.80 (10)
C_{4}	117.0 117.22(12)	N2 C26 H26	125.89 (19)
$C_{4} = C_{5} = C_{0}$	117.55(15) 119.12(12)	$N_2 = C_{20} = H_{20}$	110.1
$C_{4} - C_{5} - C_{51}$	110.12(13) 124.52(12)	$C_{23} = C_{20} = H_{20}$	110.1
$C_0 = C_3 = C_3 I$	124.52 (15)	$C_{32} = C_{31} = C_{31}$	132.90 (14)
CI = C6 = C5	121.04 (13)	C32—C31—H31	113.6
СІ—С6—Н6	119.5	С5—С31—Н31	113.6
С5—С6—Н6	119.5	C31—C32—C33	121.16 (13)
O1—C11—C12	107.47 (12)	C31—C32—C34	124.73 (13)
O1—C11—H11A	110.2	C33—C32—C34	114.10 (12)
C12—C11—H11A	110.2	N3—C33—C32	177.17 (16)
O1—C11—H11B	110.2	C39—C34—C35	116.61 (13)
C12—C11—H11B	110.2	C39—C34—C32	121.59 (13)
H11A—C11—H11B	108.5	C35—C34—C32	121.80 (13)
N1-C12-C13	122.85 (15)	C36—C35—C34	121.17 (15)
N1-C12-C11	114.88 (14)	С36—С35—Н35	119.4
C13—C12—C11	122.27 (15)	С34—С35—Н35	119.4
C12—C13—C14	119.32 (18)	C35—C36—C37	121.43 (15)
C12—C13—H13	120.3	С35—С36—Н36	119.3
C14—C13—H13	120.3	С37—С36—Н36	119.3
C15—C14—C13	118.96 (19)	C38—C37—N4	121.36 (16)
C15—C14—H14	120.5	C38—C37—C36	117.52 (14)
C13—C14—H14	120.5	N4—C37—C36	121.09 (16)
C14-C15-C16	117.81 (19)	$C_{39} - C_{38} - C_{37}$	120.87(14)
C14-C15-H15	121.1	C_{39} C_{38} H_{38}	119.6
C16-C15-H15	121.1	C_{37} C_{38} H_{38}	119.6
N1 - C16 - C15	121.1 124.6(2)	C_{38} C_{39} C_{34}	122 39 (14)
N1 C16 H16	1177	C_{38} C_{39} H_{39}	118.8
C_{15} C_{16} H_{16}	117.7	C_{34} C_{39} H_{39}	118.8
С13—С10—п10	11/./	C34—C39—N39	110.0
C11—O1—C1—C6	-6.9 (2)	C26—N2—C22—C23	-1.0 (3)
C11—O1—C1—C2	173.89 (13)	C26—N2—C22—C21	178.49 (17)
C21—O2—C2—C3	3.6 (2)	O2—C21—C22—N2	171.32 (14)
C21—O2—C2—C1	-176.08 (13)	O2—C21—C22—C23	-9.2 (2)
01—C1—C2—O2	-1.09(18)	N2—C22—C23—C24	0.0 (3)
C6-C1-C2-O2	179.70 (12)	C21—C22—C23—C24	-179.40 (16)
01 - C1 - C2 - C3	179.23 (13)	C_{22} C_{23} C_{24} C_{25}	1.4 (3)
C6-C1-C2-C3	0.0(2)	C_{23} C_{24} C_{25} C_{26}	-1.7(3)
02-C2-C3-C4	17998(14)	$C_{22} = N_{2} = C_{25} = C_{25}$	0.6(3)
C1-C2-C3-C4	-0.4(2)	C24-C25-C26-N2	0.8(4)
			(•)

Hydrogen-bond geometry (Å, °)

D—H···A
3 (3) 172.8 (18)
0 (3) 165.5 (19)
1 (2) 151
9(3) 131
() ()

Symmetry codes: (i) -*x*, *y*+1/2, -*z*+1/2; (ii) -*x*+2, -*y*+1, -*z*+2.