ISSN 2414-3146

Received 27 August 2018 Accepted 5 September 2018

Edited by M. Bolte, Goethe-Universität Frankfurt, Germany

Keywords: crystal structure; L-histidine; zinc metabolism; antimicrobial activity; intermolecular hydrogen bonds.

CCDC reference: 1865975

Structural data: full structural data are available from iucrdata.iucr.org

L-Histidinium iodide

P. Catherine,^a P. Praveen Kumar^{b*} and B. Gunasekaran^{c*}

^aPG and Research Department of Physics, Pachaiyappa's College, Chennai 600 030, Tamil Nadu, India, ^bDepartment of Physics, Presidency College, Chennai 600 005, Tamil Nadu, India, and ^cDepartment of Physics & Nano Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Kancheepuram Dist, Chennai 603 203, Tamil Nadu, India. *Correspondence e-mail: ppkpresidency@gmail.com, phdguna@gmail.com

In the title salt, $C_6H_{10}N_3O_2^+ \cdot I^-$, the cation is protonated at the imidazole ring and the amine group and deprotonated at the carboxylate group. The crystal packing features $N-H \cdots O$ and $N-H \cdots I$ hydrogen bonds.

Structure description

L-Histidine derivatives plays a major role in zinc metabolism, as a zinc binding moiety in serum (Casella & Gullotti, 1983), and these derivatives exhibit antimicrobial activity (Garza-Ortiz *et al.*, 2013). The title compound comprises a protonated L-histidine cation and an iodide anion (Fig. 1). The geometric parameters of the title cation agree well with those reported for similar structures (Gokul Raj *et al.*, 2006; Johnson & Feeder, 2004). The crystal packing (Fig. 2) is controlled by $N-H\cdots O$ and $N-H\cdots I$ hydrogen bonds (Table 1). The title compound is isostructural with the bromide and chloride salts.

Synthesis and crystallization

L-histidine (15.0 g, 0.0966 mol) and hydriodic acid (13.2150 ml mol⁻¹) were dissolved in 50 ml of double-distilled water and stirred at 293 K for 4 h. The solution was filtered and allowed to dry at room temperature by slow evaporation. After 30 d, pale-yello block-shaped crystals were obtained in a yield of 95% (m.p. 370 K).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

Figure 1

The molecular structure of the title compound, with atom labels and 30% probability displacement ellipsoids for the non-H atoms.

Figure 2

Packing diagram of the title compound. Hydrogen bonds are shown as dashed lines. H atoms bonded to C atoms have been omitted for clarity.

Acknowledgements

The authors acknowledge the SAIF, IIT Madras, Chennai.

References

- Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Casella, L. & Gullotti, M. (1983). J. Inorg. Biochem. 18, 19-31.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Garza-Ortiz, A., Camacho-Camacho, C., Sainz-Espunes, T., Rojas-Oviedo, I., Raul Gutierrez-Lucas, R., Gutierrez Carrillo, A. & Vera Ramirez, M. A. (2013). *Bioinorg. Chem. Appl.* pp. 1–12.
- Gokul Raj, S., Kumar, G. R., Mohan, R. & Jayavel, R. (2006). Acta Cryst. E62, 05–07.

Table 1	
Hydrogen-bond geometr	y (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1-H1A\cdots I1$	0.86	2.91	3.546 (3)	133
$N2-H2A\cdots O2^{i}$	0.86	1.91	2.693 (5)	151
$N3-H3A\cdotsO1^{ii}$	0.89	1.94	2.819 (3)	168
$N3-H3B\cdots I1^{iii}$	0.89	2.70	3.546 (2)	160
$N3-H3C\cdots O1^{iv}$	0.89	1.98	2.855 (3)	167
$N3-H3C\cdots O2^{iv}$	0.89	2.56	3.214 (3)	131

Symmetry codes: (i) $-x, y - \frac{1}{2}, -z + 1$; (ii) $-x, y + \frac{1}{2}, -z + 1$; (iii) x - 1, y, z - 1; (iv) x + 1, y, z.

Table 2Experimental details.

Crystal data	
Chemical formula	$C_6H_{10}N_3O_2^+ \cdot I^-$
M _r	283.07
Crystal system, space group	Monoclinic, $P2_1$
Temperature (K)	296
a, b, c (Å)	5.7363 (2), 8.2696 (3), 10.0169 (4)
β (°)	94.314 (1)
$V(\text{\AA}^3)$	473.82 (3)
Ζ	2
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	3.35
Crystal size (mm)	$0.10 \times 0.10 \times 0.05$
Data collection	
Diffractometer	Bruker APEXII CCD
Absorption correction	Multi-scan (SADABS; Sheldrick, 1996)
T_{\min}, T_{\max}	0.731, 0.851
No. of measured, independent and	9180, 3569, 3231
observed $[I > 2\sigma(I)]$ reflections	
R _{int}	0.030
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.770
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.022, 0.082, 1.20
No. of reflections	3569
No. of parameters	110
No. of restraints	1
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({\rm e} {\rm \AA}^{-3})$	0.40, -0.87
Absolute structure	Flack (1983), with 1725 Friedel pairs
Absolute structure parameter	0.05 (3)

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Johnson, M. N. & Feeder, N. (2004). Acta Cryst. E60, o1273–o1274. Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

full crystallographic data

IUCrData (2018). 3, x181255 [https://doi.org/10.1107/S2414314618012555]

L-Histidinium iodide

P. Catherine, P. Praveen Kumar and B. Gunasekaran

L-Histidinium iodide

Crystal data

 $C_{6}H_{10}N_{3}O_{2}^{+}\cdot\Gamma^{-}$ $M_{r} = 283.07$ Monoclinic, P2₁ Hall symbol: P 2yb a = 5.7363 (2) Å b = 8.2696 (3) Å c = 10.0169 (4) Å $\beta = 94.314 (1)^{\circ}$ $V = 473.82 (3) \text{ Å}^{3}$ Z = 2

Data collection

Bruker APEXII CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator Detector resolution: 0 pixels mm⁻¹ ω and φ scans Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\min} = 0.731, T_{\max} = 0.851$

Refinement

Refinement on F^2 HydrogerLeast-squares matrix: fullneighb $R[F^2 > 2\sigma(F^2)] = 0.022$ H-atom p $wR(F^2) = 0.082$ $w = 1/[\sigma^2]$ S = 1.20where3569 reflections $(\Delta/\sigma)_{max} = 0$ 110 parameters $\Delta \rho_{max} = 0$ 1 restraint $\Delta \rho_{min} = -1$ Primary atom site location: structure-invariantAbsolutedirect methodsFriedelSecondary atom site location: difference FourierAbsolute

F(000) = 272 $D_x = 1.984 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 3626 reflections $\theta = 3.2-33.1^{\circ}$ $\mu = 3.35 \text{ mm}^{-1}$ T = 296 KBlock, pale yellow $0.10 \times 0.10 \times 0.05 \text{ mm}$

9180 measured reflections 3569 independent reflections 3231 reflections with $I > 2\sigma(I)$ $R_{int} = 0.030$ $\theta_{max} = 33.2^\circ, \ \theta_{min} = 3.2^\circ$ $h = -8 \rightarrow 8$ $k = -12 \rightarrow 12$ $l = -15 \rightarrow 15$

Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0422P)^2 + 0.0342P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.003$ $\Delta\rho_{max} = 0.40$ e Å⁻³ $\Delta\rho_{min} = -0.87$ e Å⁻³ Absolute structure: Flack (1983), with 1725 Friedel pairs Absolute structure parameter: 0.05 (3)

Special details

Refinement. H atoms were positioned geometrically and refined using riding model with C-H = 0.97Å and $U_{iso}(H) = 1.2Ueq(C)$ for C-H₂, C-H = 0.93Å and $U_{iso}(H) = 1.2Ueq(C)$ for aromatic C-H, N-H = 0.89Å and $U_{iso}(H) = 1.5Ueq(C)$ for N-H3, and N-H = 0.86Å and $U_{iso}(H) = 1.2Ueq(C)$ for N-H.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
I1	1.11212 (3)	0.45507 (5)	1.108570 (15)	0.03755 (7)	
01	-0.3126 (3)	0.4108 (3)	0.4822 (3)	0.0346 (5)	
O2	-0.2046 (4)	0.6389 (3)	0.3852 (3)	0.0316 (4)	
N1	0.6300 (6)	0.5429 (4)	0.8774 (3)	0.0322 (6)	
H1A	0.7417	0.5871	0.9266	0.039*	
N2	0.4093 (5)	0.3651 (3)	0.7777 (3)	0.0279 (5)	
H2A	0.3535	0.2730	0.7512	0.033*	
C4	0.0921 (5)	0.5337 (4)	0.6622 (3)	0.0297 (6)	
H4A	0.0461	0.6462	0.6679	0.036*	
H4B	-0.0251	0.4698	0.7032	0.036*	
N3	0.2571 (3)	0.5839 (3)	0.4421 (2)	0.0221 (4)	
H3A	0.2532	0.6863	0.4691	0.033*	
H3B	0.2195	0.5790	0.3544	0.033*	
H3C	0.4003	0.5442	0.4600	0.033*	
C3	0.5991 (7)	0.3871 (5)	0.8599 (4)	0.0346 (7)	
H3	0.6940	0.3059	0.8984	0.042*	
C1	0.3171 (5)	0.5127 (4)	0.7421 (3)	0.0262 (5)	
C5	0.0875 (4)	0.4873 (2)	0.5136 (2)	0.0193 (5)	
H5	0.1272	0.3725	0.5068	0.023*	
C6	-0.1639 (4)	0.5135 (3)	0.4518 (3)	0.0216 (4)	
C2	0.4567 (6)	0.6230 (4)	0.8052 (4)	0.0338 (6)	
H2	0.4381	0.7346	0.8003	0.041*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
I1	0.04010 (10)	0.03940 (10)	0.03123 (9)	0.00380 (11)	-0.01003 (6)	-0.00188 (11)
01	0.0164 (8)	0.0278 (10)	0.0587 (14)	-0.0016 (6)	-0.0025 (8)	0.0096 (9)
O2	0.0230 (9)	0.0252 (9)	0.0444 (12)	0.0030 (7)	-0.0104 (8)	0.0063 (9)
N1	0.0295 (12)	0.0385 (15)	0.0272 (13)	-0.0035 (11)	-0.0077 (10)	-0.0098 (11)
N2	0.0307 (12)	0.0248 (11)	0.0270 (11)	0.0017 (9)	-0.0059 (10)	-0.0021 (9)
C4	0.0219 (11)	0.0428 (16)	0.0239 (12)	0.0047 (11)	-0.0012 (9)	-0.0031 (11)
N3	0.0139 (8)	0.0241 (9)	0.0280 (10)	0.0007 (7)	-0.0007 (7)	-0.0019 (8)
C3	0.0324 (16)	0.0397 (17)	0.0307 (16)	0.0052 (14)	-0.0055 (12)	-0.0001 (13)
C1	0.0255 (11)	0.0304 (12)	0.0220 (11)	-0.0026 (10)	-0.0033 (9)	-0.0016 (9)
C5	0.0133 (8)	0.0181 (13)	0.0260 (10)	0.0014 (6)	-0.0025 (7)	0.0013 (7)
C6	0.0152 (9)	0.0188 (9)	0.0302 (12)	0.0019 (8)	-0.0029 (8)	-0.0012 (9)
C2	0.0323 (14)	0.0323 (15)	0.0360 (15)	-0.0033 (12)	-0.0030 (11)	-0.0036 (12)

Geometric parameters (Å, °)

O1—C6	1.258 (3)	C4—H4B	0.9700
O2—C6	1.245 (3)	N3—C5	1.484 (3)
N1—C3	1.310 (5)	N3—H3A	0.8900
N1—C2	1.357 (5)	N3—H3B	0.8900

N1—H1A	0.8600	N3—H3C	0.8900
N2—C3	1.327 (5)	С3—Н3	0.9300
N2—C1	1.367 (4)	C1—C2	1.340 (5)
N2—H2A	0.8600	C5—C6	1.542 (3)
C4—C1	1.477 (4)	С5—Н5	0.9800
C4—C5	1.535 (4)	C6—O2	1.245 (3)
C4—H4A	0.9700	C2—H2	0.9300
C3—N1—C2	108.8 (3)	N1—C3—H3	125.8
C3—N1—H1A	125.6	N2—C3—H3	125.8
C2—N1—H1A	125.6	C2—C1—N2	106.2 (3)
C3—N2—C1	108.8 (3)	C2—C1—C4	129.9 (3)
C3—N2—H2A	125.6	N2—C1—C4	123.5 (3)
C1—N2—H2A	125.6	N3—C5—C4	111.7 (2)
C1—C4—C5	116.5 (2)	N3—C5—C6	110.96 (19)
C1—C4—H4A	108.2	C4—C5—C6	107.6 (2)
C5—C4—H4A	108.2	N3—C5—H5	108.9
C1—C4—H4B	108.2	С4—С5—Н5	108.9
C5—C4—H4B	108.2	С6—С5—Н5	108.9
H4A—C4—H4B	107.3	O2—C6—O1	126.1 (2)
C5—N3—H3A	109.5	O2—C6—O1	126.1 (2)
C5—N3—H3B	109.5	O2—C6—C5	117.7 (2)
H3A—N3—H3B	109.5	O2—C6—C5	117.7 (2)
C5—N3—H3C	109.5	O1—C6—C5	116.0 (2)
H3A—N3—H3C	109.5	C1—C2—N1	107.8 (3)
H3B—N3—H3C	109.5	С1—С2—Н2	126.1
N1—C3—N2	108.3 (3)	N1—C2—H2	126.1
C2—N1—C3—N2	0.0 (5)	N3—C5—C6—O2	-21.5 (3)
C1—N2—C3—N1	0.0 (5)	C4—C5—C6—O2	100.9 (3)
C3—N2—C1—C2	0.0 (4)	N3—C5—C6—O2	-21.5 (3)
C3—N2—C1—C4	-173.7 (3)	C4—C5—C6—O2	100.9 (3)
C5-C4-C1-C2	116.5 (4)	N3—C5—C6—O1	163.6 (2)
C5-C4-C1-N2	-71.3 (4)	C4—C5—C6—O1	-74.0 (3)
C1—C4—C5—N3	-59.8 (3)	N2-C1-C2-N1	0.0 (4)
C1—C4—C5—C6	178.2 (3)	C4—C1—C2—N1	173.2 (3)
O2—O2—C6—O1	0.0 (5)	C3—N1—C2—C1	0.0 (5)
O2—O2—C6—C5	0.0 (6)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	D···· A	D—H··· A	
N1—H1A…I1	0.86	2.91	3.546 (3)	133	
N2—H2A····O2 ⁱ	0.86	1.91	2.693 (5)	151	
N3—H3A····O1 ⁱⁱ	0.89	1.94	2.819 (3)	168	
N3—H3 <i>B</i> ···I1 ⁱⁱⁱ	0.89	2.70	3.546 (2)	160	

				data reports
N3—H3 <i>C</i> …O1 ^{iv}	0.89	1.98	2.855 (3)	167
N3—H3 <i>C</i> ···O2 ^{iv}	0.89	2.56	3.214 (3)	131

Symmetry codes: (i) -*x*, *y*-1/2, -*z*+1; (ii) -*x*, *y*+1/2, -*z*+1; (iii) *x*-1, *y*, *z*-1; (iv) *x*+1, *y*, *z*.